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ABSTRACT 

The heat shock protein 100 (Hsp100) ClpC is a member of the AAA+ protein 

superfamily that contributes to the maintenance of the cellular protein homeostasis by 

energy dependent proteolysis. The aim of this work was to elucidate the interaction of 

the alkaliphilic Hsp100 ClpC from Bacillus lehensis G1 (Bl-ClpC) and its adaptor 

protein MecA in order to postulate their functions.  The ClpC N-terminal domain of B. 

lehensis (Bl-ClpCN) was crystallised and the structure was solved to 1.85 Å. The crystal 

structure of ClpCN was analysed and compared to that of the archetypal species Bacillus 

subtillis. Comparisons of the N-terminal ClpC-interacting and hexamerisation domains 

between both species showed that B. lehensis G1 had an insertion (of unknown function) 

of four amino acids at the loop between helix 4 and strand 2, which were located on the 

outer surface of the barrel-shaped molecule. Apart from being highly unique, this 

characteristic was conserved only in the newly-isolated alkaliphilic B. lehensis G1 and 

not in any of the previously-reported structures of N-terminal domains isolated from the 

Hsp100 family. Furthermore, information concerning the physicochemical basis of 

alkaliphilic ClpC is still unclear. Therefore, the biochemical properties of Bl-ClpC were 

characterised under varying pH, temperatures, salt concentrations, and metal ions. Bl-

ClpC showed two features which were distinct from other proteins in the Hsp100 family 

which were high salt concentrations and mild acidic pH caused an increase in ATPase 

activity. Bl-ClpC activity was considered to be similar to that of a halophilic protein, 

which demonstrated increased activity in high concentrations of NaCl, which was a 

common characteristic of a highly acidic protein. pH-induced structural changes and Bl-

ClpC stability have been investigated as well, and these changes correlated with ATPase 

activity modulations in different pH. There was little effect on the protein structure when 

the pH was lowered from 9 to 5. In alkaline pH (pH 9 - 11), the presence of an ɑ-helical-

dominated molten globule state was reported. The function of the unique four-residue 

insertion at the ɑ4-β2 loop, which was absent in the B. subtilis ClpC orthologue, has 

been successfully elucidated by using the structure-guided mutation approach, whereby a 

deletion mutation devoid of residue 76-79 (∆76-79) was constructed. Circular dichroism 

spectroscopy was used to evaluate the structural perturbations associated with the 

deletion. The results demonstrated that the precise configuration of the ɑ4-β2 loop was 

important for maintaining the structure and function of Bl-ClpC. ∆76-79 led to severe 

destabilisation as well as unfolding of the secondary structure of the protein, all of which 

decreased ATPase activity. The optimum temperature for ∆76-79 was 25°C instead of 

45°C for Bl-ClpC. These findings showed that the additional four residues at the ɑ4-β2 

loop were critical for Bl-ClpC‟s structure and function. Overall, Bl-ClpC exhibited 

distinct responses to salt stress and mild acidic pH, hence implying that environmental 

conditions and stress adaptations were important selective forces which gave rise to the 

divergence of Hsp100 ClpC from its alkaliphilic archetype. 
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ABSTRAK 

Protein renjatan haba 100 (Hsp100) ClpC merupakan ahli kumpulan superfamili 

protein AAA+ yang menyumbang kepada pengekalan homeostasis protein sel melalui 

proteolisis bersandarkan tenaga.  Kajian ini bertujuan untuk menjelaskan interaksi 

alkalofilik Hsp100 ClpC daripada Bacillus lehensis G1 (Bl-ClpC) dengan penyesuainya 

protein MecA bagi mencadangkan fungsi-fungsinya. Domain N-terminal ClpC pada 

B.lehensis dihablurkan dan strukturnya telah diselesaikan kepada 1.85 Å. Struktur hablur 

dianalisis dan dibandingkan dengan spesies arkitipal Bacillus subtillis. Perbandingan 

domain interaksi dan heksamerisasi N-terminal ClpC antara kedua-dua spesies 

menunjukkan B. lehensis G1 mengalami penyisipan (tidak diketahui fungsinya) empat 

asid amino pada gelung heliks 4 dan lembar 2 yang terletak pada permukaan luar 

molekul berbentuk tong itu. Selain daripada sifatnya yang unik, ciri ini terpulihara hanya 

pada B. lehensis G1 alkalofilik yang baharu terasing dan tiada pada struktur domain N-

terminal yang diasingkan daripada famili Hsp100 yang pernah dilaporkan sebelum ini. 

Selain itu, maklumat berkenaan asas fizikokimia ClpC alkalofilik masih tidak jelas. Oleh 

itu, sifat biokimia Bl-ClpC dicirikan melalui bacaan pH, suhu, kepekatan garam dan ion 

logam yang berbeza. Bl-ClpC menunjukkan dua sifat yang jelas berbanding protein lain 

dalam famili Hsp 100: kepekatan garam yang tinggi dan pH sedikit berasid yang 

menyebabkan peningkatan aktiviti ATPase. Aktiviti Bl-ClpC dianggap menyamai 

protein halofilik yang menunjukkan peningkatan aktiviti pada kepekatan NaCl yang 

tinggi iaitu satu ciri protein yang sangat berasid. Perubahan struktur dan kestabilan Bl-

ClpC disebabkan pH tinggi juga dikaji, dan perubahan ini berkorelasi dengan modulasi 

aktiviti ATPase pada pH yang berbeza. Hanya terdapat sedikit kesan ke atas struktur 

protein ketika pH diturunkan dari 9 ke 5. Keadaaan pH beralkali (pH 9 - 11) dilaporkan 

menyebabkan kehadiran keadaan globul lebur terdominasi ɑ-heliks. Fungsi penyisipan 

empat residu unik pada gelung ɑ4-β2 yang tiada pada ortolog B. subtilis ClpC berjaya 

dihuraikan menggunakan pendekatan mutasi berpandukan struktur, dimana mutasi delesi 

yang melibatkan residu 76-79 (Δ76-79) dijalankan.  Spektroskopi edaran dikroisme 

digunakan untuk menilai gangguan struktur yang berkaitan dengan penghapusan residu. 

Hasil kajian menunjukkan bahawa konfigurasi gelung ɑ4-β2 yang tepat adalah penting 

untuk struktur dan fungsi Bl-ClpC. Δ76-79 menyebabkan ketidakstabilan yang kritikal 

dan pembukaan lipatan struktur sekunder protein, yang mengurangkan aktiviti ATPase. 

Walau bagaimanapun, suhu optimum Δ76-79 dikurangkan kepada 25 °C, berbanding 

dengan Bl-ClpC, iaitu pada 45 °C. Keputusan mencadangkan bahawa empat residu 

tambahan dalam gelung ɑ4-β2 adalah berperanan penting didalam menentukan struktur 

dan fungsi Bl-ClpC. Secara keseluruhannya, Bl-ClpC mempamerkan tindakbalas jelas 

terhadap tegasan garam dan pH sedikit berasid, membuktikan bahawa keadaan 

persekitaran dan adaptasi tegasan adalah daya selektif yang penting bagi meningkatkan 

penyimpangan Hsp100 ClpC dari sifat arkitip alkalofiliknya.   
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

Owing to several reasons, there has been a resurgent interest in the industrial 

and academic potentials of alkaliphilic microorganisms. Fundamentally, there is a 

desire to understand the biological pathways which are mostly influenced by an 

alkaline external pH apart from the adaptations required for an organism to thrive in 

alkaline conditions.  From the industrial point of view, the search for enzymes that 

are capable of catalysing reactions in conditions above pH 9 has burgeoned due to 

the proven utility of alkali-tolerant proteases, hydrolases and lipases. Intriguingly, 

progress has also been witnessed in the incorporation of live microorganisms into the 

alkaline environment of cement-based construction materials. This innovative use of 

encapsulated bacteria can facilitate self-repair (Jonkers et al., 2010) and enhance 

compressive strengths of concrete as well as mortar (Sung-Jin et al., 2012). Jonkers 

(2010) has shown that alkaliphilic Bacillus pasteurii spores along with calcium 

lactate, when inserted into a concrete mixture, gave rise to a self-healing product.  

These bacteria grow in small cracks and undergo biomineralisation, hence producing 

calcite and seal the damage.  As such, there is a great interest to understand the way 

by which alkaliphilic bacteria cope with the stresses imposed by high pH.  This is the 

first study to examine the differences between stress-induced heat shock protein 

(hsp) systems of alkaliphilic Bacilli and that of a related neutrophilic species.  



2 

 

The Caseinolytic protein C (ClpC) is a member of the Hsp100/Clp ATPase 

associated with various cellular activities (AAA+) family, which form hexameric 

ATP-dependent protein-unfolding units that are conserved throughout eubacteria 

(Weibezahn et al., 2004). Bacillus subtilis ClpC (Bs-ClpC) is a well-characterised 

stress-induced chaperone that exists as part of a larger proteolytic machine – the 

ClpCP protease – which is responsible for degrading aggregated or denatured 

proteins (Wang et al., 2011; Turgay et al., 1998).  The ClpC molecule is a 91 kDa 

protein consisting of five separate domains: (1) a small N-terminal protein interaction 

domain; (2) an AAA
+
 ATPase domain; (3) a coiled-coil M-domain; (4) a second 

AAA
+
 ATPase domain; as well as (5) a C-terminal domain that couples to Clp 

Protease (ClpP). The appearance of the protease resembles two barrels joined 

together (Figure 1.1A). The first barrel has a six-fold symmetry and is built from six 

ClpC molecules in a complex which contains six MecA adaptor proteins (see Figure 

1.1A and B, Wang et al., 2011). ATP hydrolysis within the ClpC ATPase sites is 

coupled with the unfolding of substrate proteins in the barrel‟s interior. These 

facilitate either the refolding or degradation of the said proteins following their 

translocation to the associated tetradecameric barrel. Generally, the system is multi-

functional and plays a major role in preventing the accumulation of detrimental 

cellular aggregates that form under chemical or thermal stress. However, ClpCP also 

regulates (1) competence by controlling the levels of the specific transcription factor 

ComK (Turgay et al., 1998); as well as (2) sporulation through an unknown 

mechanism (Persuh et al., 2002). ClpC is therefore a vital and interesting molecular 

marker which is involved in both stress-survival and sporulation.  

 



                                                                                         3 

 

  

Figure 1.1 The ClpC-MecA hexameric structure (A) Model of the Bs-ClpC hexameric assembly based on the work of Wang et al. (2011). 

The ClpC “barrel” is shown in a complex with the ClpP tetradecameric protein ring (left of the image in green). A single chain of the ClpC 

hexamer is displayed with its five domains coloured and labelled. The associated MecA adapter molecule is coloured with α-helices in teal, β-

strands in orange and loop regions in cyan. The symmetry related monomers are transparent. (B) The hexameric assembly and internal channel 

of the barrel through a 90° clockwise rotation about the y-axis relative to Figure 1.1A. 
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To date, many of the best-characterised alkaliphilic species belong to the 

Bacillus genus. Thus, they are a useful tool for comparing alkali-extremophile 

adaptions with well-studied neutrophilic species such as B. subtilis, B. cereus and B. 

megaterium. The entire genome sequence is now available for alkaliphilic (Takami et 

al., 2000; Veith et al., 2004) and neutrophilic (Eppinger et al., 2011) species, hence 

allowing the execution of comparative genomic studies to examine the ways by 

which some branches of the Bacillus evolutionary tree acquired alkaliphilic 

adaptations (Takami et al., 2000). To contribute to this analysis, the complete 

genome of B. lehensis G1 has been sequenced by the Malaysia Genome Institute 

(MGI) (Noor et al., 2014). This research was aimed to build on the genomic data of 

B. lehensis G1. As such, the adaptive alterations in the Hsps coded by the same were 

assessed to identify those which were speciation-related and vital for survival in 

high-pH environments. It is hypothesised that the adaptation of B. lehensis to 

alkaline conditions appears to have been possible with only minor changes within the 

protein environment in its stress-response machinery.This include by changing a lot 

of difference parameter within the protein environment as such changing the ionic 

strength of the buffer. This study may provide more insight into the structural and 

functional adaptations of alkaliphiles. 
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1.2 Problem statement 

Heat shock proteins are known to be highly common in extremophilic 

organisms. However, a knowledge gap exists regarding the roles of the structure and 

physicochemistry of Hsp100 ClpC in the stress response mechanism of alkaliphilic 

Bacilli. In fact, the sole crystal structure of heat shock proteins that has been solved 

thus far is that of the neutrophilic Bs-ClpC (Wang et al., 2011). Nevertheless, the low 

resolution (6.9Å) employed to assess the hexameric complex comprising ClpC (full 

length) and MecA has failed to provide an in-depth comprehension of ClpC‟s 

mechanism of action. (1) As such, the structures of both Bl-ClpC (stress protein) and 

MecA (adaptor protein) of B. lehensis G1 needed to be explicated in an attempt to 

understand the stress-related functions as well as regulation of extremophilic stress 

proteins. (2) This in turn would facilitate discussions about the origins and functions 

of the Hsp in terms of evolution.  There is currently no published study on the 

structure of alkaliphilic ClpC and the effects of stressful conditions on its activity.  

Protein crystallisation has become a leading technique for a detailed understanding of 

the structure of the protein at the atomic level. Therefore, X-ray crystallography will 

give a clearer insight into the relationship between the structure and functions of the 

said protein. 

 

1.3 Objectives and novelty 

 

The most basic biological activity of live cells is protein-protein interactions, 

which can be used to predict the functions of the proteins. As such, researches into 

the Bl-ClpC-MecA interaction were likely to yield reasonable postulates regarding 

the said functions. Based on this concept, X-ray crystallography technique has been 
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used to allow an in-depth comprehension of the atomic structures of proteins. This in 

turn has provided greater clarity of the proteins‟ structure-function association. 

 

 

The novelty and rationale of the of the study is that, a) biochemical studies on 

MecA-dependent ClpC have not yet characterised the protein with respect to the 

influence of the environmental stressors on its ATPase activity. Also, little has been 

deciphered regarding its 2D structure stability and physicochemical properties, 

making it an attractive candidate in the understanding of this class of protein. b) This 

study is the first to describe the structure of an intracellular stress-response protein of 

an alkaliphile. C)  Finally, the conservation of the protein sequence of B. lehensis G1 

MecA only occurred in alkaliphilic Bacilli. Hence, the aim of this research was to 

bring to light previously-unknown aspects of the MecA of this alkaliphilic Bacillus 

species. A structural biology technique was employed to provide molecular data for 

proving the connection between the MecA-ClpC of B. lehensis G1 as well as B. 

subtilis.
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1.4 Scopes of study 

This study aims to elucidate the structure and functions of B. lehensis ClpC 

(Bl-ClpC) using appropriate strategies. Hence, the following scopes were outlined to 

achieve the objective: 

 

I. Cloning, expression, and purification of ClpC and MecA in E. coli expression 

system. 

II. Determining the 3D structures of ClpC and MecA through protein 

crystallisation. 

III. Studying the effects of environmental stressors including a) pH, b) salt 

concentration, c) temperature, d) metal exposure and e) MecA concentration 

on the regulation of the ATPase activity of Bl-ClpC.  

IV. Investigating the effects of various pH on the 2D structure stability of 

proteins.  

V. Studying the potential possibilities of the Bl-ClpC in light of the combined 

effects of dual extremities of salt and temperature with pH, on ATPase 

activity by response surface methodology analysis. 

VI. Structure-guided mutation construction, cloning, expression, and purification 

of the mutants. 

VII. Investigating the effects of beneficial mutations towards pH and other 

environmental stressors through activity assays and secondary structure 

stability, as well as thermostability. 
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