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ABSTRACT 

 

 

 Foam is purposely used in some of the Enhanced Oil Recovery (EOR) 

displacement processes in order to control the mobility ratio, hence improving the 

volumetric sweep efficiency. The efficiency of a foam displacement process in EOR 

depends largely on the stability of the foam films. In laboratory, foam stability is 

usually measured through physical observation of the foam bubble in a glass tube. 

Unfortunately, this direct observation is not possible in the reservoir. Therefore, 

indirect measurement such as the measurement of electrokinetic signal would be a 

better alternative. This study aimed to determine the correlation between the foam 

stability and the associated streaming potential signals which resulted from the 

flowing fluid in foam assisted water alternate gas (FAWAG) process. The downhole 

monitoring of streaming potential which uses electrodes mounted on the outside of 

an insulated casing is a promising new technology for monitoring fluid movement 

processes in real time. In this study, the experiments were divided into two: Foam 

stability test and electrokinetic signal measurement.  The electrokinetic signals were 

measured using five non-polarizing Cu/CuCl electrodes, installed along a sand pack 

model and measurement was recorded continuously using NIDAS and the LabView 

software.  Surfactant alternate gas was used to produce foams inside the porous 

media using five different Sodium Dodecyl Sulphate (SDS) concentrations, namely 

2500, 5000, 7500, 10000 and 12500 ppm. The result from the experiment showed 

that 10000 ppm was an optimum concentration of SDS.  Thus, the voltage 

(electrokinetic signal) decreased with an increase in foam stability up to optimum 

SDS concentration. While for 12500 ppm SDS concentration the electrokinetic signal 

increased as foam stability decreased.  The burst of the foam bubbles had changed 

the pattern of electrokinetic signals. Although the voltage was small, i.e., ranging 

from 0 to 1 mV, it was still measureable. These results present new findings in the 

relationship between foam stability and electrokinetic signals generated in the 

FAWAG process. This fundamental knowledge can lead to developing a new 

approach in monitoring FAWAG processes in making the EOR process more 

efficient.   

 

 

 



vi 

 

ABSTRAK 

 

 

 Busa digunakan pada sesetengah proses anjakan Perolehan Minyak 

Tertingkat (EOR) untuk mengawal nisbah mobiliti, seterusnya meningkatkan 

kecekapan sapuan isipadu. Kecekapan proses anjakan busa dalam EOR bergantung 

pada kestabilan selaput busa. Di makmal, kestabilan busa biasanya diukur menerusi 

pemerhatian secara fizikal terhadap gelembung busa di dalam tiub kaca. Malangnya, 

keadaan ini tidak boleh dilihat di dalam reservoir. Oleh itu, kaedah tak langsung, 

misalnya pengukuran isyarat elektrokinetik boleh menjadi pilihan yang lebih baik. 

Kajian ini bertujuan untuk mengenal pasti hubung kait antara kestabilan busa dan 

isyarat potensi aliran yang terhasil daripada aliran bendalir ketika berlakunya proses 

suntikan air berselang-seli gas berbantu busa (FAWAG). Pemantauan terhadap 

potensi aliran di dasar lubang menggunakan elektrod yang dipasang di luar 

selongsong tertebat ialah teknologi baharu untuk memantau proses pergerakan 

bendalir masa nyata. Dalam kajian ini, ujikaji dibahagikan kepada dua bahagian: 

Ujian kestabilan busa dan pengukuran isyarat elektrokinetik.  Isyarat elektrokinetik 

diukur menggunakan lima elektrod tidak mengkutub Cu/CuCl yang dipasang 

sepanjang model pek pasir. Pengukuran dilaksana secara berterusan menggunakan 

perisian NIDAS dan perisian LabView. Surfaktan berselang-seli gas diguna dalam 

kajian ini untuk menghasilkan busa di dalam liang menerusi penggunaan lima 

kepekatan Natrium Dodesil Sulfat (SDS) yang berlainan, iaitu 2500, 5000, 7500, 

10000 dan 12500 ppm.  Keputusan kajian menunjukkan bahawa 10000 ppm ialah 

kepekatan optimum untuk SDS.  Oleh itu, voltan (isyarat elektrokinetik) menurun 

dengan meningkatnya kestabilan busa sehingga ujikaji mencapai kepekatan optimum 

SDS.  Selain itu, untuk SDS dengan kepekatan 12500 ppm,  isyarat elektrokinetik 

meningkat dengan menurunnya kestabilan busa. Gelembung busa yang terletus telah 

mengubah corak isyarat elektrokinetik. Walaupun nilai voltan adalah kecil, iaitu 

berjulat dari 0 hingga 1 mV, tetapi nilai itu masih boleh diukur. Keputusan kajian  

mengetengahkan penemuan baharu bagi hubungan antara kestabilan busa dengan 

isyarat elektrokinetik yang terhasil dalam proses FAWAG. Pengetahuan asas ini 

boleh membantu dalam pembangunan kaedah baharu bagi pemantauan terhadap 

proses FAWAG dengan menjadikan proses EOR lebih cekap.   
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview 

 

 

 Carbon dioxide (CO2), nitrogen (N2), air and hydrocarbon are among the 

common media used in gas flooding or gas injection.  One of the reasons for this is 

because the primary mechanism of gas injection focuses on displacement efficiency 

and gas flooding has a better microscopic displacement efficiency compared to water 

flooding. However, the major challenge when using gas displacement technique is its 

poor volumetric sweep efficiency.  In worst-case scenario, this situation might lead 

to inexistence of contact between gas and a large area of hydrocarbon in the reservoir 

(Farajzadeh et al., 2012).  The overall hydrocarbon recovery will remain low as a 

result of this situation. 

 

 Ideally, the foam needs to have good stability for it to be considered as 

alternative solution.  Various downhole monitoring techniques have been deployed to 

minimize reservoir uncertainties, including pressure and temperature sensors, seismic 

surveys, sonic velocity tools, and resistivity tools.  Even though the 
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measured data will be very useful in describing the situation that is happening 

downhole, the measurements obtained are mostly limited to near wellbore 

parameters.   

 

4D Seismic can be utilized to provide data in a deeper range of investigation. 

However, the resolution of the images is rather low.  Measurement of electrokinetic 

potential has been previously proposed as a detecting tool for water encroachment 

towards a production well (Jackson et al., 2012).  The dynamics of electrically 

charged fluids whether it is formation fluid or injected fluid could be measured by 

installing permanent electrodes downhole (Jaafar et al., 2009).  

 

In other industry, specifically the paper industry, electrokinetics measurement 

has been linked to foam, polymers and surfactant (Hubbe, 2006).  Since foam, 

surfactant and polymers are widely used in enhanced oil recovery (EOR) projects; 

electrokinetic signals could also be measured to predict the efficiency of the recovery 

mechanisms since EOR will be efficient if the foam is stable throughout the process 

and surfactant and polymer do not get adsorbed too much along the way.  

 

 Dynamic conditions are always going to be ideal for foam formation (Malysa 

and Lunkenheimer, 2008).  The foam half life is determined by the single foam film 

stability, depending on the physicochemical processes and quantities like surfactant 

concentration, salt concentration, adsorption kinetics, and gravitational drainage.  

Other factors such as gas diffusion through foam films, surface forces, capillary 

pressure and mechanical fluctuations could also be significant (Farajzadeh et al., 

2012; Salleh and Ismail, 2012 and Wiggers et al., 2000).  Both the formability and 

stability of foam are the key factors in ensuring high performance of recovery 

(Qingfeng et al., 2012). Theoretically, electrokinetic potential signal can be 

correlated with some of these parameters. 
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Indirect measurement of foam stability using electrokinetic potential is 

proposed in this study.  The aim of this study is to find the relationship between the 

foam stability in the reservoir and the generated electrokinetic (EK) potentials during 

the displacement process by using five non-polarizing Cu/CuCl electrodes installed 

along the sand pack model.  A National Instrument Data Acquisition System 

(NIDAS) was set to record streaming potential and pressure difference data 

continuously.  This system was directly connected to the computer by using 

LabView software.  The rupture of the foam could change the pattern of the EK 

signal due to the changes in the phases which are flowing through the media. 

 

 The correlation between the foam stability and electrokinetic potential could 

be identified but it will be highly dependent upon the foam film properties and 

associated characteristics.  Under the right circumstances, data obtained in this study 

could very well be useful in monitoring the macroscopic and microscopic efficiency 

of an EOR process.  Furthermore, by using electrokinetic potential signal, foam 

stability should be able to be monitored just from the surface conserving time, cost 

and environment in the process. 

 

 

 

 

1.2 Problem Statement 

 

 

 There are several causes associated with the low recovery problem; gravity 

segregation because of the large density difference between oil and gas, viscous 

fingering in which the more viscous oil is by-passed by the less viscous gas and 

channelling when the gas flows across the high permeable streaks in heterogeneous 

reservoir (Farajzadeh et al., 2012).  Foam flooding, foam displacement process, or 

foam assisted water alternate gas (FAWAG) has been singled out as a potential 

solution to overcome these challenges.  
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 Efficiency of the foam displacement process in EOR relies on the foam film 

stability.  Commonly, in laboratory conditions, foam stability is measured through 

physical observation of the foam bubble production in a glass tube. Unfortunately, 

this direct observation is impractical to be done in a reservoir. Alternatively, indirect 

measurement i.e. the measurement of electrokinetic signal is seen as a more viable 

option.  Measurement of electrokinetic signal is thus a promising approach in 

overcoming the limited range of detection into a reservoir.  However, in this study 

foam stability measurement in the static conditions was also taken into account in 

order to get a trend of changes between foam stability and Sodium Dodecyl Sulphate 

(SDS) concentrations which the concentrations ranging from 2500 up to 12,500 ppm.  

The analysis of the foam stability tests include foam half-life time, surface tension, 

foam size and pH value. 

 

Streaming potentials in porous media arises from the electrical double layer 

which is formed at solid-fluid interfaces (Jaafar, 2009 and Hunter, 1988).  The solid 

surfaces are electrically charged, leading to a formation of a stern layer and a 

diffused layer in the adjacent fluid which contains excess of counter charges.  If this 

fluid is directed by the external potential gradient to flow tangentially to the 

interface, some of the excess charge within the diffused layer will be transported 

along with the flow, raising the streaming current.  Electrical potential or also known 

as streaming potential is the result of the amassment of charges which associated 

with divergence of the streaming current density (Jaafar, 2009). 

 

However, the magnitude and sign of the electrokinetic signal related to foam 

stability are still considered as significant uncertainties associated with the 

interpretation of electrokinetic signal measurement.  With regards to a FAWAG 

process, very few studies have reported the electrokinetic for foam.  What happen 

after the foam rupture is also uncertain. Will the electrokinetic increase after the 

rupture due to the flow becoming more liquid dominant or will it decrease because 

the flow becoming more gas dominant?  This study aims to solve these uncertainties 

and determine the correlation between the foam stability with the associated 

streaming potential signals resulted from the flowing fluid in FAWAG processes.  
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The foam has been produced by in-situ generation in sand pack model by applying 

the surfactant alternate gas (SAG) foam technique.  Electrokinetic signal 

measurement has been used in this study in monitoring the changes of foam stability 

by using Cu/CuCl electrodes together with NIDAS and LabView software. 

 

 

 

 

1.3 Objectives 

 

 

The aim of this study is to further improve our understanding of the 

correlation between fluid and electrical potentials particularly when foam is present 

in the system.  The study will delve deeper on application of electrokinetic signal in 

hydrocarbon reservoir monitoring.  These goals have been achieved through 

comprehensive measurements of the electrokinetic signal in a laboratory 

environment.  The specific objectives are: 

 

i. To measure the foam stability in the static environment as a result of the 

changes in the Sodium Dodecyl Sulphate (SDS) concentration. 

ii. To measure the electrokinetic signal as a result of the changes in the foam 

stability. 

iii. To generate a correlation which enables prediction of foam stability based on 

electrokinetic signals. 
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1.4 Scope 

 

 

The scope defines the project limitation and the extent of coverage.  The scopes 

for this project are as follows: 

 

i. Designing a FAWAG process by using sand pack with length and diameter of 

the model fixed at 30.4 cm and 3.4 cm respectively. 

ii. Sodium Dodecyl Sulphate (SDS) was used as a surfactant in FAWAG system 

in order to enhance the foam stability. The amounts of surfactant added are 

varied, ranging from 2500 – 12,500 ppm in order to find the ideal foam 

stability. 

iii. The analysis of the foam stability tests are foam half-life time, surface 

tension, foam size and pH value. 

iv. The surfactant alternate gas (SAG) foam technique in FAWAG process was 

applied in order to produce foam by generating in-situ foam in the sand pack 

model. 

v. Monitoring the changes in electrokinetic potential signal in relation to foam 

stability by using Cu/CuCl electrodes together with National Instrument Data 

Acquisition System (NIDAS) and LabView software. 

viii. Applying the following conditions: temperature = 220C - 260C, pressure = 

14.7 –    30 psi. 

 

 

 

 

1.5 Significance of the Research 

 

 

The correlation between foam stability and electrokinetic signals generated in 

the foam assisted water alternate gas (FAWAG) process presents new findings in this 



7 

 

study.  This fundamental knowledge could lead to developing new approach in 

monitoring FAWAG process.  The indirect measurement could be very useful for 

monitoring the efficiency of the enhanced oil recovery (EOR) method in real-time 

due to low-cost and easy to use monitoring technique.  Application in the real field 

could benefit the oil and gas industry in term of making the EOR process more 

efficient and more economic.  This project could also contribute to better energy and 

natural resources management. 

 

 

 

 

1.6 Concluding Remark 

 

 

Chapter 1 explained the details of problem statement, objectives, scopes and 

significance of the study.   Several objectives were withdrawn from this study which 

are to measure the foam stability in the static environment as a result of the changes 

in the Sodium Dodecyl Sulphate (SDS) concentration, to measure the electrokinetic 

signal as a result of the changes in the foam stability and to generate a correlation 

which enables prediction of foam stability based on electrokinetic signals. 
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