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ABSTRACT

Research on magnetohydrodynamics in natural convection boundary layer
flow of dusty fluid has become a great interest in the fluid mechanic dynamics due to
its importance in many engineering applications. However, the present of solid
particles in the form of dust, ash or soot in dusty fluid either naturally or deliberately,
suspended in the electrically conducting fluid may influence the fluid flow
characteristics. Therefore, in this study the effect of suspended particles on
magnetohydrodynamics flow in a viscous fluid past a vertical stretching sheet is
investigated. Specific cases with different effects are considered such as slip effect,
thermal radiation. convective boundary condition and Hall effect. The governing
non-linear partial differential equations of the problems are transformed into a set of
non-linear ordinary differential equations by wusing a suitable similarity
transformation. The obtained equations are solved numerically by Keller-box
method. The numerical results of velocity profile, temperature profile, skin friction
and Nusselt number affected by fluid-particle interaction, magnetic, slip velocity, slip
thermal, radiation and Hall parameters as well as Biot number, Grashof number and
Prandtl number for particle and fluid phases are presented graphically and analyzed
in detail. This study shows that, the presence of suspended particles in a fluid caused
the momentum and thermal boundary layer thickness to become thinner. The
magnetic parameter plays the role in decreasing the velocity profile and momentum
boundary layer thickness. Also, magnetic parameter affects the increment of the
temperature profile and thermal boundary layer thickness. In addition, increasing slip
velocity parameter reduces the velocity profile and skin friction. However, increasing
slip thermal parameter decreases temperature profile and Nusselt number.
Furthermore, radiation parameter is observed to increase the velocity profile,
temperature profile and thermal boundary layer thickness. Lastly, the Hall parameter
increases the velocity profile but decreases the temperature profile. In all cases
studied, the velocity and temperature profiles for fluid phase are always higher than
the dust phase.
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ABSTRAK

Penyelidikan terhadap hidrodinamik magnet di dalam aliran olakan bebas
bagi bendalir berdebu telah menjadi kajian yang amat menarik dalam bidang dinamik
bendalir kerana kepentingannya dalam banyak aplikasi kejuruteraan. Namun, dengan
kehadiran zarah pepejal berbentuk habuk, abu atau jelaga di dalam bendalir berdebu
sama ada secara semulajadi atau sengaja, yang terampai di dalam aliran cecair
berelektrik boleh mempengaruhi ciri-ciri aliran bendalir. Oleh itu, dalam kajian ini
kesan zarah terampai ke atas aliran hidrodinamik magnet di dalam bendalir likat
yang melintasi lembaran regangan menegak disiasat. Beberapa kes tertentu dengan
kesan yang berbeza dipertimbangkan seperti kesan gelincir, sinaran terma, keadaan
sempadan berolakan dan kesan Hall. Persamaan menakluk pembezaan separa tak
linear bagi semua masalah diubah menjadi satu set persamaan pembezaan biasa tak
linear dengan menggunakan penjelmaan serupa yang sesuai. Persamaan yang
diperoleh diselesaikan secara berangka dengan menggunakan kaedah kotak-Keller.
Keputusan berangka bagi profil halaju, profil suhu, geseran kulit dan nombor Nusselt
yang terjejas akibat oleh parameter-parameter interaksi cecair-zarah, magnetik,
gelincir halaju, gelincir haba, sinaran dan Hall serta nombor Biot, nombor Grashof
dan nombor Prandtl untuk fasa bendalir dan fasa zarah dipersembahkan secara graf
dan dikaji secara terperinci. Kajian ini menunjukkan bahawa, kehadiran zarah
terampai di dalam bendalir menyebabkan ketebalan lapisan sempadan momentum
dan haba menjadi semakin nipis. Parameter magnetik memainkan peranan bagi
mengurangkan profil halaju dan ketebalan lapisan sempadan momentum. Parameter
magnetik juga meningkatkan profil suhu dan ketebalan aliran sempadan haba.
Tambahan lagi, parameter gelinciran halaju mengurangkan profil halaju dan geseran
kulit. Manakala, pertambahan nilai parameter gelinciran haba, menurunkan profil
suhu dan nombor Nusselt. Tambahan pula, parameter sinaran diperhatikan dapat
meningkatkan profil halaju, profil suhu serta ketebalan lapisan sempadan haba. Akhir
sekali, parameter Hall meningkatkan profil halaju tetapi mengurangkan profil suhu.
Secara keseluruhannya, profil halaju dan profil suhu untuk fasa bendalir adalah
sentiasa lebih tinggi daripada fasa zarah.
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CHAPTER 1

INTRODUCTION

1:1 Introduction

In this chapter the strength of this thesis are explained concisely. The
background of the research is presented in Section 1.2. The problem statements as
well as objective and scope of the research are given in Section 1.3, 1.4 and 1.5
respectively. Consequently, the significance of the research is presented in Section

1.6. Lastly, Section 1.6 gives the outline of the whole thesis.

1.2 Research Background

Most living things in this world made of fluid. In average sixty five percent of
our body is fluid. In fact, the air we breathe every day is also considered as a fluid. In

1687, Newton (Anderson and Wendt, 1995) stated that

“A fluid is anybody whose parts yield to any force impressed on it, and by yielding,

is easily moved among themselves”

Theoretically, fluids consist of two different types of matter. It could be a
liquid or a gas. In fluid mechanics, fluids can be categorized as viscous or inviscid
flows. Viscous flow is the fluid flow in which its frictional effect is important.
Conversely, inviscid flow is the situation where the effect of friction on the fluid
flow is unimportant. These two types of fluids are restricted only for fluids in pure

form. However, it is difficult to find fluids in pure form; without any impurities such



as foreign bodies and dust particles. The fluid flow in simultaneous different phases
(ie. solid, liquid or gas) is known as multiphase flows. The simplest model of
multiphase flow is two phase flow which only involves two types of phases such as

solid-liquid flow, solid-gas flow, liquid-gas flow and liquid-liquid flow.

Noting that, this research only focuses on two phase flow in which the fluid
contains the distribution of solid spherical particle. These flows not only have
different velocities but also different temperature between the fluid and the particle.
Normally, most of the particles in such flow are never in uniform size. Since the
particle velocity is influenced by the particle size, hence the particle phase would
have many velocities. By reducing the complexity, the average size of particles is
measured and therefore only one velocity for particles phase is considered in most

case studies.

The importance of dusty fluid flow in several imperative processes in
engineering and industrial applications has attracted the interest of many engineers as
well as scientists to investigate the phenomenon. Their applications is obviously can
be found in sedimentation, pipe flow, fluidized bed. gas purification and transport
processes (Singleton, 1965). The experimental study published by Sproull (1961) on
the motion of the air flow carrying small dust particles. Many examinations have
been done either experimentally or theoretically regarding the problem of dusty fluid
flow among researchers in order to clarify the phenomenon between fluid and dust
particles. In general, this solid liquid two phase flow system can be described by
several theories which are macroscopic or microscopic method, continuum theory
and kinetic theory. In a study by Marble (1963). indicated that in the fluid-particle
flow system, the mutual interaction of fluid with the particle cloud are governed by
four similarity parameters; i) the velocity equilibration parameter, ii) the thermal
equilibration parameter, iii) the momentum interaction parameter and iv) the thermal
interaction parameter. It is noted that each of parameters has its own physical

significance.

In dusty fluid flow, dust particles have independent motion from the fluid
flow and affect the flow behavior. Hence. both fluid and particle phases are
separately governed by continuum theory via conservation law. The interaction

between dust particles and fluid appears as fluid-particle motion. The motion of fluid



phase is governed by Navier-Stokes equation and motion of particle phase described
by a separate set of Euler’s equation. The equation for each phase contains a term
describing the interaction between the fluid and the particle namely, Stokes drag.
Noting that, the term Stokes drag described the condition of laminar flow with the
low Reynold number involved with small particle size with low velocity (Collinson
and Roper, 1995). The mathematical analysis of this two phase flows is more
challenging than the fluids flow in pure form. In the most cases, it is found that one
of half the fluid particle mixture is particles and the density of the particle is larger
by a thousand times than the density of fluid which implies the volume fraction of

the particle is neglected.

In natural phenomenon, dusty fluid can be observed in atmospheric flow
during haze, rain erosion, smoke, flow of mud in river and air pollution. In fact, the
importance of the transport of solid particles by fluids is extensively wide in many
industries for example petroleum, cement processes, steel manufacture and
metallurgical. Furthermore, in engineering and technical fields, dusty fluid flows
have been applied in solid rocket exhaust nozzles, fluidized beds, environmental
pollutions, purification of crude oil, nuclear reactor cooling, sedimentation, paint
spraying and many others applications (Rudinger, 2012). There are many processes
in industry as well as at home that involve two phase solid-liquid flow phenomena.
For instance, preparing coffee in a coffeemaker where hot water mixture passes
through a bed of coffee beans particles. In almost a similar process. but in a larger
scale, can be found in the chemical industry such as when the fluid flow through a
bed of solid particles for filtration purpose or chemical interaction (see Ni and
Beckermann (1991), Johansen (2002), Micale et al. (2004) and Khopkar er al.
(2006)).

Nowadays, theoretical study of dusty fluid boundary layer on stretching sheet
is quite prominent among researchers. This is due to its essential contributions
especially in engineering processes as well as in industries; mainly in manufacturing
development. The production of a quality product is highly emphasized in the
demand of industries. In producing a high quality of the resulting sheeting material
(product), the knowledge of the flow properties of the ambient fluid, speed of the
collection and the rate of heat transfer at the stretching surface become important.

The study of boundary layer flow and the rate of heat transfer past a stretching sheet



are initiated by Crane (1970). Thereafter, a huge amount of investigations which
were extended based on Crane (1970) with various physical problems has been
reported especially related to stretching sheet in dusty fluid. In pursuing the
expansion of the dusty fluid theory, many researchers have done exploration in
various methods with different physical situations. The geometry of the stretching
sheet can be horizontal, vertical or inclined. This research focused only on vertical
stretching sheet. If there is a difference between the temperatures of stretching sheet
with the ambient temperature in a vertical surface, hence the fluid flow will
experience a natural convection flow. The hot fluids will have a lower density than

the cooler fluids, as a result the hotter fluids will rise.

Furthermore., there is condition where the others effects such as
Magnetohydrodynamics (MHD), Hall effect, radiation, convective boundary
condition and slip effect are significant to observe along with the phenomenon of

natural convection of dusty fluid over a vertical stretching sheet.

1.2.1 Magnetohydrodynamics

The advantages of the effect of Magnetohydrodynamics (MHD) on natural
convection flow past a stretching sheet is expressive in development of the
technology in industry and engineering applications. MHD can be defined as the
study of dynamics of matter moving in an electromagnetic field, especially where
currents established in the matter by induction modify the field, so that the field and
dynamics equations are coupled. For example, plasmas, liquid metals, and salt water
or electrolytes. Fundamentally, the magnetic fields induces currents in a moving
conductive fluid, which then tends to form a drag forces on the fluid flow called
Lorentz force. Lorentz force will consequently affect the fluid flow. Investigation on
the effects of this buoyancy force together with MHD is totally essential in various
fields which include construction of cooling systems with liquid metals, petroleum
industry, refinement of crude oil, polymer technology, centrifugal separation of
matter from fluid, the cooling reactors, and solidification processing for metallic

alloys and semiconductors. The study of dusty fluid is relevant with these devices or



processes as the resulting effects from corrosion and wear activities which produce

solid particles in the form of ash or soot suspended in a conducting fluid.

1.2.2 Hall Effect

The above studies investigate the situation where the electrical conductivity
of the fluid is assumed to be uniform and experience a low strength magnetic field.
Nonetheless, the situation where the magnetic field is substantially large in ionized
fluid with low density leads to the occurrence of phenomenon of Hall Effect. This
study is meaningful as it produces substantial changes to the fluid flow properties. In
1879 Edwin Herbert Hall discovered the existence of Hall Effect (Hannaway,1980).
He found that a potential, proportional to the current and to the magnetic field is
developed across the material in a direction perpendicular to both the current and the
magnetic field when an electric current is applied through a medium in the presence
of magnetic field. In other words, Hall effect is an advancement of the Lorentz force
when it react on the electrons moving through a conductor, then an electrical

potential difference is developed between the two sides of the conductor.

In the view of the impact of Hall Effect on dusty fluid problem, Gireesha et
al. (2016) inspect the Hall effect on dusty fluid past a permeable stretching sheet
with the presence of suction or injection. The Hall effect current is seen to increase
the boundary layer thickness of transverse and axial velocity of the fluid and dust

phases.

1.2.3 Thermal Radiation

[n industry, many technological processes take places at high temperature. In
this situation the effect of thermal radiation become critical and its effects cannot be
ignored. Thermal radiation is the third mode of heat transfer. It can be defined as

energy emitted by matter that is at a finite temperature in the form of electromagnetic



waves (Bergmen and Incropera, 2011). Radiation not only occurs from a solid
surface but also occur from liquids and gasses. It attributes to a variation in the
electron configurations of the constituent atom or molecules. The energy of the
radiation field is transported by electromagnetic waves or photon. In addition, the
energy transfer by radiation does not require material medium unlike others modes
such conduction and convection. Due to its importance, many researchers investigate
the impact of thermal radiation on boundary layer of dusty fluid. The knowledge of
this study is very helpful in development of engineering application as well as two

phase theory.

1.2.4 Convective Boundary Condition

The boundary layer and heat transfer problem is normally considered the
boundary condition with constant surface temperature or a constant surface heat flux.
However, there might be a situation where a constant surface temperature or a
constant heat flux may not be relevant in which the surface heat transfer depends on
the surface temperature. For example engineering device such as in heat exchanger
where the conduction in a solid tube wall is highly influenced by the convection in
the fluid flowing over it. Hence, Aziz (2009) initiated the study of laminar thermal
boundary layer over a flat plat with convective surface boundary condition. Apart
from this work, there is extensive amount of researches which have studied the
convective boundary condition on various fluid flow problems with different
orientation, condition and type of fluids. In concerning the dusty fluid problem,
Ramesh er al. (2015) explored the effect of convective boundary condition of

boundary layer flow of fluid containing dust particles past a stretching sheet.



1.2.5 Slip Effect

Most of fluid flow problem especially in Navier-Stokes theory is often
considered condition of the no slip boundary condition. No slip condition states that
at a solid boundary, the velocity of fluid equal to the velocity of solid boundary.
Nevertheless, there is phenomenon where the no slip boundary condition is not valid
that is when the fluid is particulate such as emulsions, suspensions, foams and
polymer solutions. In such phenomenon, partial slip velocity may occur on the
stretching surface where the velocity of fluid at the surface interface may be in

conflict with the velocity of the surface.

In Prandtl boundary layer theory, based on Navier-Stokes allows boundary
layer structure, in which, this region of the flow is independent of the Mach number
as well as Knudsen number. Noting that, Knudsen number represents the ratio of the
molecular mean free path length to a representative physical length scale. It is used to
specify the formulation of fluid dynamic to model certain situations, either statistical
mechanics or continuum mechanics should be chosen. If the Knudsen number is near
and less than one, the continuum assumption of fluid mechanics is a good
approximation and known as hydrodynamic regime. On the other hand, if the
Knudsen number is near and greater than one, the statistical method should be used
and known as Knudsen regime. Increasing in Knudsen number may decrease the
boundary layer thickness and in time a slip-like phenomenon occurs, and slip

boundary condition are used to account the phenomenon (Naoufel ez al., 2004).

1.3 Problem Statement

Research on MHD natural convection flow and heat transfer due to stretching
sheet has risen considerably due to the occurrence of magnetic effect in various
industrial applications such as extrusion of plastic and rubber sheets, polymer
processing and metallurgy (Tamizharasi and Kumaran, 2011). For a long term, the
impact from corrosion and wear activities may produce solid particles in the form of

ash or soot suspended in a conducting fluid. Moreover, these resulting solid particles



may influence the behavior of flow as well as the temperature of the fluid. Therefore,
the study of two phase flow or dusty fluid in which solid particles distributed in a
conducting fluid are very imperative and motivating to investigated. Furthermore, the
phenomenon of natural convection flow of dusty fluid affected by several important
effects such as MHD, Hall effect, radiation, convective surface and slip interesting to
be investigated. Therefore, this study of dusty fluid with various effects leads us to

the following research questions:

1. How is the mathematical model of the dusty fluid problem formulated?

2. How do dusty fluid models compared with existing Navier-Stokes models
describe the nature of boundary layer flow of dusty fluid past a vertical
stretching surface?

3. How do the effects of fluid particle suspension, MHD, Hall effect, slip,
radiation and convective surface influence the boundary layer flow and heat

transfer characteristics?

1.4  Objective of the Research

This research aims to investigate theoretically the effect of the presence of dust
particles distributed in a fluid on natural convection flow past a vertical stretching
sheet. This involves the mathematical formulation which included the derivation of
the continuity, momentum and energy equations for fluid and dust phases and the
transformation of the resulting governing equations into non-dimensional ordinary
differential equations by using similarity transformation. The solution of the non-
dimensional ordinary differential equation is obtained numerically by using implicit
finite difference scheme, known as Keller-box method. The main objectives of this
study are:

1. To investigate the effect of MHD on natural convection flow of dusty fluid.

2. To investigate the slip effect on MHD natural convection flow of dusty fluid.

3. To investigate the effect of thermal radiation on MHD natural convection

flow of dusty fluid with convective boundary condition.



4. To investigate the effect of Hall current on MHD natural convection flow of
dusty fluid.
5. To investigate the slip effect and Hall current on MHD natural convection

flow of dusty fluid with thermal radiation and convective boundary condition.

1.5 Scope of the Research

The two dimensional incompressible fluid models is taken into consideration
in this study. The energy dissipation is neglected due to its small magnitude (Rivin,
1999) and only laminar boundary layer MHD dusty fluid flow is considered. This
study focused on MHD boundary layer flow of dusty fluid past a vertical stretching
sheet. The usual boundary conditions in which no slip condition and constant surface
temperature is considered in this study. In addition, the occurrence where the partial
slip velocity and convective surface boundary condition is also considered.
Furthermore, the MHD natural convection past a stretching sheet is applied in dusty
fluid. The Keller-box method is used in order to solve the coupled ordinary
differential equation with the help of FOTRAN software. The research framework of

this study is shown in Figure 1.2.
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