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ABSTRACT 

 

 
 

 

In drug-delivery systems, the drug carriers should meet several prerequisites 

such as biocompatibility, biodegradability and lack of immune system activation, in 

order to play an effective role. In this study, a comprehensive attempt has been 

carried out to investigate the plausible intermolecular interactions of new drug-

delivery systems, by correlating the drug release kinetic with the different types of 

carriers used. A hydrophilic metal oxide, silica (SiO2), was used as the inorganic 

carrier, while poly(lactide-co-glycolide) (PLGA), a hydrophobic polyester, was used 

as the organic carrier. Based on these materials, the designed drug-delivery systems 

were SiO2/albumin/curcumin (SiO2/Alb/Cur) and PLGA/albumin/curcumin 

(PLGA/Alb/Cur), where albumin was used as the co-carrier, while curcumin as the 

hydrophobic model drug. The release of curcumin was proved to be controlled by the 

addition of albumin in the systems. It was expected that by using different kinds of 

carriers, different drug release patterns will be obtained, since the properties of the 

carriers can then influence the intermolecular interactions within the systems. Thus, 

the study of the intermolecular interaction of SiO2/Alb/Cur systems was carried out 

by varying SiO2 and albumin composition, and using different sources of SiO2. 

Besides that, the study of the intermolecular interaction of PLGA/Alb/Cur was also 

done using different pretreatment methods and dispersion media of PLGA. The 

release experiments of albumin and curcumin were conducted via in-vitro procedures 

and phosphate buffer solution (pH 7) was used as the medium. The amounts of 

albumin and curcumin desorbed from the systems at different time intervals were 

monitored by UV-Visible spectroscopy (UV-Vis). The samples were characterized 

using diffuse reflectance UV-visible (DR-UV) spectroscopy, Fourier transform 

infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron 

microscopy (SEM), specific surface area analysis and differential scanning 

calorimetry (DSC). The in-vitro studies show that the release of albumin and 

curcumin from SiO2/Alb/Cur system is dependent on the compositions of SiO2 and 

albumin, and the source of SiO2 used (tetraethoxysilane (TEOS) and fumed silica). 

The release of albumin and curcumin was correlated with the intermolecular 

interaction between SiO2, albumin, and curcumin. The addition of albumin as the co-

carrier caused an increase in the total cumulative release amount of curcumin, 

suggesting that there was a competition between albumin and curcumin to interact 

with either SiO2 or PLGA. Here, it was demonstrated that the amount of curcumin 

released was strongly affected by the carriers used. The use of SiO2 as the carrier 

showed that release of curcumin followed pseudo-second order kinetics, while the 

use of PLGA showed a first-order kinetic at 49 h. It is concluded that a sustained and 

controlled drug release system can be achieved by using SiO2 as the carrier. The 

different strategies and intermolecular interactions described here may be useful in 

designing a sustainable and controlled drug release system that can meet the medical 

demands of pharmaceutical applications.  
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ABSTRAK 

 

 

 

 

Dalam sistem penghantaran dadah, sesuatu pembawa dadah mesti memenuhi 

beberapa prasyarat seperti biodegradasi, bioserasi dan mempunyai kadar pengaktifan 

sistem imun yang rendah, bagi membolehkannnya memainkan peranan yang efektif. 

Dalam kajian ini, satu percubaan komprehensif telah dijalankan untuk mengkaji 

interaksi antara molekul yang berkemungkinan dalam sistem penghantaran dadah 

baru, dengan menghubungkaitkan kinetik pelepasan dadah dengan pelbagai jenis 

pembawa. Oksida logam hidrofilik, silika, digunakan sebagai pembawa tak organik, 

manakala poliester hidrofobik, poli(laktida-ko-glikolida) (PLGA) digunakan sebagai 

pembawa organik. Berdasarkan bahan ini, sistem penghantaran dadah yang dibentuk 

adalah silika/albumin/kurkumin dan PLGA/albumin/kurkumin, dengan albumin 

digunakan sebagai ko-pembawa, manakala kurkumin sebagai model dadah 

hidrofobik. Pelepasan kurkumin telah dibuktikan dapat dikawal dengan penambahan 

albumin kepada sistem. Adalah dijangkakan dengan menggunakan pembawa yang 

berlainan, pola pelepasan dadah yang berlainan akan diperoleh kerana sifat pembawa 

boleh mempengaruhi interaksi antara molekul dalam sistem. Oleh itu, kajian 

interaksi antara molekul untuk sistem SiO2/Alb/Cur telah dijalankan dengan pelbagai 

komposisi SiO2 dan albumin, dan sumber SiO2 yang berlainan. Selain itu, kajian 

interaksi antara molekul dalam sistem PLGA/Alb/Cur telah dilakukan dengan 

menggunakan kaedah prarawatan dan medium penyebaran PLGA yang berbeza. 

Eksperimen pelepasan albumin dan kurkumin telah dijalankan melalui prosedur in 

vitro dan larutan penimbal fosfat (pH 7) digunakan sebagai medium. Jumlah albumin 

dan kurkumin yang ternyahjerap daripada sistem dipantau pada selang masa berbeza 

menggunakan spektroskopi ultralembayung-nampak. Sampel telah dicirikan 

menggunakan spektroskopi ultralembayung-nampak pantulan terbaur, spektroskopi 

inframerah transformasi Fourier, analisis termogravimetri, mikroskop imbasan 

elektron, analisis luas permukaan spesifik dan kalorimetri pembezaan pengimbasan. 

Kajian in-vitro menunjukkan pelepasan albumin dan kurkumin daripada sistem 

SiO2/Alb/Cur bergantung kepada komposisi SiO2 dan albumin, dan sumber SiO2 

yang digunakan (tetraetoksisilana dan wasap silika). Pelepasan albumin dan 

kurkumin kemudiannya dikorelasikan dengan interaksi molekul antara SiO2, 

albumin, dan kurkumin. Penambahan albumin sebagai ko-pembawa menyebabkan 

peningkatan jumlah pelepasan kumulatif untuk kurkumin, yang mencadangkan 

persaingan antara albumin dan kurkumin berinteraksi dengan SiO2 atau PLGA. Telah 

ditunjukkan bahawa jumlah pelepasan kurkumin amat dipengaruhi oleh pembawa. 

Penggunaan SiO2 sebagai pembawa menunjukkan pelepasan kurkumin mengikut 

kinetik tertib pseudo-kedua, manakala penggunaan PLGA menunjukkan kinetik 

tertib pertama pada 49 jam. Kesimpulannya, sistem penghantaran dadah terkawal dan 

beransur dapat dicapai dengan menggunakan SiO2 sebagai pembawa. Strategi 

berbeza dan interaksi molekul yang diterangkan berkemungkinan boleh digunakan 

dalam mereka bentuk sistem pelepasan dadah terkawal dan beransur yang memenuhi 

permintaan perubatan untuk kegunaan farmaseutikal. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Over the past few decades, there has been a significant growth in the drug-

delivery field due to the underlying principle that drug-delivery technology could 

carry both therapeutic and commercial values to the health care products (Ahmadi et 

al., 2014). Furthermore, it has also been reported that drug delivery is one of the 

fastest-growing areas of the pharmaceuticals market, with approximately 10% annual 

growth and with the value of US $82 billion for the US market (Bruinewoud et al., 

2005).  It has been generally acknowledged that conventional drug-delivery system 

(DDS) is composed of a delivery device or dosage forms like a simple carrier 

without a lot of added value. Among the examples of conventional dosage forms are 

tablets or suspensions for oral administration, and solution for parental 

administration by injection (Bruinewoud et al., 2005).   

 

 

The evolvement in the drug-delivery area led to the exploration of new 

dosing routes, for instance, transdermal, vaginal, pulmonary and sublingual (Wilson 

et al., 2011). Subsequently, more new drugs appeared with higher sensitive dose 

which often have poorer stabilities in a biological environment which is reported to 

have appeared in the 1990s (Barbe et al., 2004). This issue gave a stronger push 

towards the development of more efficient encapsulation and controlled-release of 

drug administration system. Therefore, a sustained and controlled-release of a drug-

delivery system was progressively studied. 
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In the pharmaceutical industry, controlled drug-delivery systems (CDDS) 

have been widely applied as a strategic procedure to extend the specific potential of a 

drug product that reaches the human body systems (Siepmann et al., 2012). This type 

of DDS is mainly designed by researchers with the aim to deliver drugs within the 

desired range in the body continuously over a long period of time.  Prolongation of 

the drug efficacy during administration process can be established by increasing the 

stability and enhancing the drug bioavailability (Wilson et al., 2011 and Bruinewoud 

et al., 2005). As the result, the frequency of the dose administered can be decreased 

considerably. Besides that, one more advantage promoted by the sustained delivery 

formulation contrary to the conventional dosing is the ability to avoid side effects 

when the drug is administered repeatedly (Zharapova et al., 2012). The examples of 

conventional drug dosing and controlled drug delivery are illustrated in Figure 1.1. 
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Figure 1.1: Conventional dosing versus sustained drug-delivery (Bruinewoud et al., 

2005) 

 

 

Therefore, it can be concluded that the foremost aim of a sustained and 

controlled-delivery system, is to design and control the drug releases at a specific 

rate over a defined period of time with minimal harm to the patient while improving 

human health (Bruinewoud et al., 2005 and Siepmann et al., 2012). Various aspects 

of a drug carrier need to be taken into account in order to play an effective role.  The 
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carrier should satisfy several perquisites such an excellent biocompatibility, 

biodegradable to human system and lack of immune system activation (Wang, 2009, 

Ahmadi et al., 2014 and Horjacada et al., 2006). 

 

 

On the other hand, numerous materials have been designed by the researchers 

to build up framework purposely for CDDS. Up until now, the drug-delivery system 

is designed according to the three kinds of carrier; inorganic, organic and inorganic-

organic composite. Metal oxides such as silica (SiO2) and titania (TiO2) have been 

frequently employed as for inorganic-based drug-delivery system. In the case of the 

organic-based system, a wide range of biodegradable materials including natural and 

synthetic polymers have been utilized in the previous researches. Apart from that, the 

composite of inorganic and organic carriers is has also gained attention in the drug-

delivery field. Table 1.1 summarizes the materials that have been used as drug 

carriers. 

 

 

Table 1.1: Inorganic, organic and inorganic-organic drug carriers 

Drug-delivery systems Drugs Ref. 

Inorganic-carriers   

Calcium carbonate microcapsules Lysozyme Fujiwara et al., (2008) 

Nanoporous TiO2 matrices Ibuprofen Signoretto et al., (2011) 

Mesoporous SiO2 (SBA-15) Ibuprofen Ahmadi et al., (2014) 

Mesoporous SiO2 nanoparticles 

(MCM-41) 

Ibuprofen and 

atenolol 

Steven et al., (2014) 

Organic-carriers   

Human Serum Albumin Curcumin Sahoo et al., (2008) 

PLGA nanoparticles Quercetin and 

catechin 

Pool et al., (2012) 

 

Hydroxypropylmethylcellulose 

(HPMC) matrix 

Melatonin Lee et al., (1999) 

 

Polyvinyl acetate Losartan 

potassium 

Sarwar et al., (2012) 

   

Continue on next page 
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Dendrimers Artemether, 

camptothecin, 

cisplatin 

Svenson et al., (2009) 

Bovine Serum Albumin Curcumin Sadeghi et al., (2014) 

Inorganic-organic composites   

Mesoporous SiO2 (MCM)/apatite 

nanocomposite 

Atenolol Souza et al., (2008) 

Chitosan coated mesoporous SiO2 

(MCM) nanoparticles 

Ibuprofen Popat et al., (2012) 

 

 

Our study here focuses on the utilization of SiO2 as an inorganic-based while 

Poly(lactide-co-glycolide) (PLGA) was employed as organic-based. SiO2 is 

intrinsically hydrophilic metal oxide due to the presence of hydroxyl group on its 

surface (Horjacada et al., 2006). This natural hydrophilic character avoids 

elimination of SiO2 by the reticuloendothelial system (RES). Specifically, RES is an 

immune system that works to evacuate any foreign entities from the body once it gets 

detected (Barbe et al., 2004). Therefore, tailoring SiO2 as a carrier for the drug-

delivery system can enhance circulation time of drug in blood stream. Amorphous 

SiO2 is used in numerous applications such as in implant or coating relying on its 

biocompatibility aspect (Barbe et al., 2004). Besides that, it is a non-toxic material 

and has been used in food additives or vitamin supplements (Gangwar et al., 2013). 

Figure 1.2 illustrates SiO2 particle decorated with hydroxyl surface. 

 

 OH 
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Figure 1.2: SiO2 with hydroxyl surfaces 

 

 

 

 



5 

PLGA is relatively hydrophobic polyester which consists of hydroxyl-end 

group in the structure (Erbetta et al., 2012). It is built up by the subunit of lactic and 

glycolic acids, where these acids can be eliminated from the body as carbon dioxide 

and water through the tricarboxylic acid cycle (Cheng et al., 2008 and Gentile et al., 

2014). One of the interesting aspects of PLGA is that the degree of hydrophobicity of 

PLGA can be tuned by varying the ratio of lactide to glycolide. The selection of the 

required ratio is important as this can strongly influence the physiochemical 

characteristics of the end-product and the dissolution of the drug. Figure 1.3 displays 

the chemical structure of PLGA and its monomer. Apart from that, the biodegradable 

character of PLGA is explained by the hydrolysis of its ester linkages in water 

(Makadia et al., 2011). PLGA is utilized in delivery system and bone tissue 

engineering applications because it is less toxic and biocompatible (Cheng et al., 

2008 and Gentile et al., 2014). Incorporation of hydrophobic drug in PLGA particles 

increases circulation of material in blood stream. Various techniques have been 

employed to prepare PLGA nanoparticles such as emulsification-evaporation, 

emulsion-diffusion, salting-out, and precipitation (Song et al., 2006). Besides that, 

different types of solvent used in the dispersion of PLGA crystal, resulting in 

particular particle sizes of PLGA particle (Song et al., 2006). 
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Figure 1.3: Chemical structure of PLGA and its monomers (Gentile et al., 2014) 
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In addition, we also intend to explore the functionality of albumin, the 

common component in a drug-delivery system, as co-carrier to control the release of 

the drug. It has been reported that the use of the protein as a drug-carrier does not 

affect the properties of the associated drug (Elzoghby et al., 2012 and Thomas et al., 

2014). Here, egg white protein or ovalbumin is used as the source of albumin. 

Ovalbumin consists of 385 amino acid residues with a molecular weight of 47 kDa. It 

has an internal disulfide bond and four free sulphydryl groups (Elzoghby et al., 2012 

and Huntington et al., 2001). Its tertiary structure was composed of nine α-helices 

and three β-sheets that folded into a compact globule supported mainly by the 

hydrogen bonds and disulfide bonds (Leunissen, 2001 and Bhattacharya et al., 2012). 

Albumin can enhance the apparent solubility of hydrophobic drug (Mohanta et al., 

2013). Drugs could bind into the hydrophobic pocket of albumin via hydrophobic or 

van der Waals interactions. The presence of numerous functional groups in protein 

residues provides feasibility of drug-albumin interaction.  

 

 

In this research, curcumin was used as the hydrophobic drug model. 

Curcumin, or diferuloylmethane, is a natural component of the rhizome of turmeric 

(Curcuma longa). Numerous studies on using curcumin as a therapeutic agent have 

been carried out due to its anti-oxidant, anti-inflammatory, anti-carcinogenic and 

anti-bacterial properties (Chereddy et al., 2013, Gangwar et al., 2013, Hatamie et al., 

2012, Jithan et al., 2011 and Mathew et al., 2012). The anti-oxidant property of 

curcumin is contributed to the presence of phenolic –OH and β-diketone moiety that 

have the ability to scavenge the molecular species of active oxygen. Its hydrophobic 

nature and poor bioavailability leads to poor activity, low absorption, high rate of 

metabolism within the living system and rapid elimination from the body system. 

Curcumin undergoes rapid degradation in pH 7.4 buffer solution, where it is 

degraded more than 50% in 30 min release period (Leung et al., 2015). Therefore, 

there is a need for extensive research on this matter, which do not only improve the 

bioavailability of curcumin by increasing its solubility, but also to keep the 

multifunctional properties of the conjugated system. Figure 1.4 shows the chemical 

structure of curcumin with the presence of phenolic –OH and β-diketone moiety.  
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Figure 1.4: Chemical structure of curcumin (Leung et al., 2015)  

 
 

The corresponding drug-delivery systems that were designed here are 

SiO2/albumin/curcumin (SiO2/Alb/Cur) and PLGA/albumin/curcumin 

(PLGA/Alb/Cur), where SiO2 act as the inorganic carrier while PLGA is the organic 

carrier. It is interesting to note that the release trend of the drug can be affected by 

the type of carriers. In other words, the dissolution of the drug can be controlled 

depending on the carrier employed due to the particular intermolecular interaction 

within the system. Therefore, it can be summarized generally that the drug release 

from the system is correlated to the specific intermolecular interaction within the 

system and the type of carrier used. The presence of albumin as a co-carrier can 

provide in new role in term of intermolecular interaction in the drug-delivery system. 

It is realized that curcumin release can be controlled due to the existence of albumin 

in the system. Moreover, it has been demonstrated that conjugation of curcumin to 

albumin has increased its bioavailability characteristic (Thomas et al., 2014). 

Subsequently, the system designed here could be a promising drug-delivery system 

that related to the administration of hydrophobic pharmaceutical compound.  

 

 

 

 

1.2 Statement of Problem 

 

  

 Generally, drug release is a process where a drug or any pharmaceutical 

compound is detached from its carrier, and then is associated to the absorption, 

distribution, metabolism and excretion (Singhvi et al., 2011). Significant efforts and 

advances in biotechnology have facilitated the production of new pharmaceutical 
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compounds. Hence, various drug-delivery systems or vehicles for the delivery of 

drug have been developed to satisfy the ever-growing demand for prolonged and 

better control of the drug administration. As a consequence, the controlled-released 

systems have been progressively conducted in the last few decades with the 

following objectives (Siepmann et al., 2012): 

 to improve the appearance or enhance the circulation time of drug in the body 

 to avoid elimination drug by RES system 

 to improve the quality control in the production of drug products  

 

 

 In the past few years, there are numerous drug-delivery systems that have 

been designed in the administration of curcumin due to its favorable advantages in 

clinical aspects. Curcumin has been used as the remedy for some illness, for instance, 

inflammation and breast cancer. In conjunction with that, there are different 

formulations that have been studied such as PLGA loaded curcumin (Chereddy et al., 

2013), albuminated curcumin (Thomas et al., 2014) and curcumin attached to the 

SiO2 carrier (Gangwar et al., 2013).  

 

 

  However, these studies are more focused on the curcumin’s solubility 

properties from the different formulation. To the best of our knowledge, a 

comprehensive study on controlled-released of curcumin from different kinds of 

carrier was less reported. Therefore, this study aims to design new drug-delivery 

systems that comprising both inorganic and organic material as the system-based 

with a co-carrier in the system. The novelty of the study can be related to the 

development of the new drug-delivery systems which are SiO2/albumin/curcumin 

and PLGA/albumin/curcumin systems. Besides that, we also focused on the 

relationship between the drug release kinetic towards the particular intermolecular 

interactions exhibited by the drug-delivery systems with respects to SiO2 and PLGA 

as system-based.  

 

 

By using two different kinds of carriers, SiO2 and PLGA in our case, it was 

expected that the drug release pattern could be different owing to the different 

characteristic of the carrier used. The hydrophilic character of SiO2, due to its 

hydroxyl surface, can improve the solubility of curcumin and directly increase the 
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bioavailability in the clinical application. PLGA, on the other hand, is a hydrophobic 

polymer with the hydroxyl-end. Incorporation of curcumin within the PLGA matrix 

may prolong the circulation times in blood stream. The biocompability character of 

SiO2 and the biodegradability property of PLGA towards the body system promote a 

safe and reliable drug-delivery system. It can be suggested that the properties of 

carrier may influence the release pattern of the drug, since the release mechanism 

between them is governed by its specific intermolecular interaction between the drug 

and the carrier. In a simple way, the property of the carrier itself affects the release 

mechanism of drug. In general, the interactions of a drug with carrier are associated 

through the hydrogen bond, hydrophilic and hydrophobic interactions, and Van der 

Waals force.  

 

 

 Figures 1.5 summarizes the schematic of the research approach and research 

questions in this study. In the inorganic-based system, SiO2 particle was prepared 

using Stöber method prior to the addition of albumin and curcumin. The precursor of 

SiO2 here was tetraethoxysilane (TEOS). The intermolecular interactions of the 

SiO2/Alb/Cur systems were studied by varying the composition of SiO2 and albumin, 

and using other type of SiO2 which was fumed silica. For the preparation of PLGA-

based systems, the intermolecular interaction of PLGA/Alb/Cur systems were 

explored by focusing on the different pre-treatment methods and different dispersion 

solvents of PLGA. The pre-treatment methods of PLGA were done by the addition of 

methyl methacrylate (MMA), and the addition of MMA followed by the irradiation 

under UV light. The pre-treatment procedures engaged here were purposely to 

modify the molecular structural of PLGA, which was theoretically, could promotes a 

good intermolecular interaction within the system. Moreover, the pre-treatment step 

proposed here reflects the novelty of PLGA that was used as a carrier for 

incorporation of drug. Most of the previous studies were using PLGA as the 

nanoparticles to encapsulate the associated drug (Akl et al., 2016, Dinda et al., 2011, 

Manoochehri et al., 2013 and Luz et al., 2012) 

 

 

 The engagement of albumin in the systems is expected to control the drug 

release. It has been reported that albumin may enhance the solubility of curcumin 

(Mohanta et al., 2013). Therefore, the utilization of albumin may increase the 



10 

bioavailability characteristic of curcumin which is beneficial in the clinical field. 

Besides that, it is also biocompatible material and widely abundance in nature (Li et 

al., 2009).  

 

 

Preparation of SiO2/Alb/Cur and PLGA/Alb/Cur systems present a new 

approach in developing a new controlled-release drug-delivery system. The crucial 

parts here were the comprehensive attempt to investigate the correlation between the 

drug releases from the designed drug-delivery systems towards its specific 

intermolecular interactions due to the different kind of carriers used. The release of 

curcumin together with albumin was explored in order to examine the effects of 

different parameters applied (SiO2/Alb/Cur systems) and dissimilar preparation 

procedures and solvent used (PLGA/Alb/Cur systems). It is hypothesized that the 

release of curcumin and albumin from the carriers were strongly correlated with the 

intermolecular interactions within SiO2/Alb/Cur and PLGA/Alb/Cur systems.  Based 

on the above considerations, statement of the problem can be defined as follows: 

Release of curcumin can be controlled in the SiO2- and PLGA-based systems with 

albumin as the co-carrier. 

 

 

 This study proposed a new drug-delivery system involving controlled-release 

of drug in both inorganic and organic-based DDS. The impact of the engagement of 

albumin in the systems can influence the detachment of curcumin from SiO2 and 

PLGA carrier. Besides that, the intermolecular interaction aspects on each system 

will be clarified in this study. This new design of DDS is expected to show 

pronounced advantages as a drug carrier in the administration of a hydrophobic 

compound (curcumin). A detailed exploration through this study will yield a 

fundamental understanding as well as the new intermolecular interaction between 

drug and carriers. 
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Research Questions 

 What are the effects of SiO2 and PLGA that act as the 

inorganic and organic-based in the drug-delivery systems?  

 What are the effects of albumin as the co-carrier in 

the drug-delivery systems? 

 What are the physiochemical properties of the drug-

delivery systems obtained? 

 What are the intermolecular interactions that 

influence the drug-delivery systems? 

 

Controlled-release of curcumin from  

Poly(lactide-co-glycolide)/Albumin/Curcumin and 

Silica/Albumin/Curcumin drug-delivery system 

SiO2/albumin/curcumin PLGA/albumin/curcumin 

Experimental 

The study of the 

intermolecular interaction of 

SiO2/albumin/curcumin with 

the variation of SiO2 and 

albumin compositions, and 

sources of SiO2 carrier 

 

 

The study of intermolecular 

interaction of 

PLGA/albumin/curcumin with 

different pre-treatment 

methods of PLGA and 

dispersion media for PLGA 

 

 

 

Release studies of albumin and curcumin  

 

 

 

Figure 1.5: The schematic of the research approach and research questions 

 

 

 

 

1.3 Objectives of Study 

 

 

The ultimate goal of the present work is to design and prepare new drug-

delivery systems that could achieve a controlled drug-delivery system (see Figure 

1.1). The novelty of the work lies partly in the preparation of novel drug-delivery 

systems by using inorganic and organic materials as the system carrier. Besides that, 

the release kinetic of the albumin and curcumin are studied in order to elucidate the 
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mechanism of drug release. Therefore, this study has been carried out with the 

following objectives:     

 

 To prepare and characterize inorganic and organic-based drug-delivery 

systems, SiO2/Alb/Cur and PLGA/Alb/Cur.   

 To evaluate the performance of the drug-delivery systems by carrying out 

release experiments of SiO2/Alb/Cur and PLGA/Alb/Cur sytems. 

 To investigate the intermolecular interaction between these two kinds of 

inorganic and organic carriers, which are SiO2 and PLGA, with albumin as 

the co-carrier. 

 

 

 

 

1.4 Thesis Outline 

 

 

 This thesis comprises of five chapters and the outlines of each chapter are as 

follows. Chapter 1 contains an introduction of research background on the drug-

delivery field followed by the research’s problem statement. The objectives, scope 

and the significance of the present study are described in this chapter. Chapter 2 

comprises of literature reviews that are related to this study. Chapter 3 discusses the 

experimental and characterization methods of both systems. Chapter 4 contains the 

characterization outcomes, release performance results and kinetics study of the 

SiO2/Alb/Cur system while Chapter 5 contains the similar outlines for 

PLGA/Alb/Cur system including the comparative studies of both of the systems. 

Chapter 6 discussed a concise conclusion based on the research findings and the 

recommendations for future study.  

 

 

 

 

1.5 Scope of the Study 

 

 

This study aims to develop a new drug-delivery system using SiO2 and PLGA 

as the inorganic- and organic-based illustrated in the Figures 1.2 and 1.3. In the first 

system, the interaction between the albumin with the SiO2 carrier was studied. Three 
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different SiO2/albumin materials were prepared by dissimilar approaches; fumed 

silica/albumin (FS/Alb), fumed silica/albumin treated with NaBH4 (FS/Alb-N) and 

SiO2 sol from TEOS/Albumin (SS/Alb). Albumin release was carried out by the in-

vitro method in phosphate buffer solution (PBS) at pH 7 and the amount of albumin 

desorbed from SiO2 was detected by using UV-Visible (UV-Vis) spectrometer. 

Based on the characterization and cumulative release findings of SiO2/albumin 

samples, the study was further carried out by using SiO2 sol from TEOS as the SiO2 

precursor for all prepared SiO2/Alb/Cur systems. There were three different 

parameters engaged in the SiO2/Alb/Cur systems; different SiO2/albumin 

composition, different albumin composition and the use of fumed silica as the SiO2 

source. Release of both albumin and curcumin were detected by UV-Vis. In order to 

determine the influence of albumin to the release of curcumin from SiO2/Alb/Cur 

system, one sample consisting of SiO2 and curcumin was prepared. The kinetic 

release orders are clarified accordingly. The obtained materials were characterized by 

diffuse reflectance UV-Visible (DR UV-Vis) spectrometer, Fourier transform 

infrared (FTIR) spectrometer, thermogravimetric analysis (TGA), Specific Surface 

Area (BET) Analysis, and scanning electron microscopy (SEM).  

 

 

Apart from that, there were two approaches in the PLGA/Alb/Cur system. 

Firstly, this kind of system was prepared in two pre-treatment steps; PLGA added 

with methyl methacrylate and PLGA added with methyl methacrylate and followed 

by exposure to UV irradiation. Secondly, PLGA/Alb/Cur systems were prepared by 

using two different solvents for the dispersion of the PLGA polymer. The solvents 

were acetone and ethyl acetate. PLGA/Cur sample was prepared with the purpose to 

identify the impact of albumin present in the PLGA/Alb/Cur system. The obtained 

materials were also characterized by FTIR, DRUV, TGA, differential scanning 

calorimetry (DSC), BET and SEM. Release of both albumin and curcumin were 

detected by DRUV-Vis. Figure 1.6 summarizes concisely the scope of this research. 
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Figure 1.6: Diagram representation of scope of the study 

 

 

 

 

1.6 Significance of the Study 

 

 

This research comprehensively investigates the intermolecular interaction of 

new drug-delivery systems by correlating the drug release kinetics towards the 

different types of carriers. It would significantly contribute to the knowledge of 

controlled drug release and would be useful to the pharmaceutical industry in the 

future. Besides that, the new drug-delivery systems prepared here can be a potential 

system in the administration of other hydrophobic pharmaceutical compound in the 

future. 
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