CHARACTERIZATION AND PROPERTIES OF BAMBOO ASH REPLACEMENT IN FLY ASH BASED GEOPOLYMER CONCRETE

SHAFIQ BIN ISHAK

UNIVERSITI TEKNOLOGI MALAYSIA

CHARACTERIZATION AND PROPERTIES OF BAMBOO ASH REPLACEMENT IN FLY ASH BASED GEOPOLYMER CONCRETE

SHAFIQ BIN ISHAK

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Philosophy

> School of Civil Engineering Faculty of Engineering Universiti Teknologi Malaysia

> > JULY 2018

DEDICATION

Praise be to Allah s.w.t, the Lord of the Worlds Who says (interpretation of the meaning): "Give thanks to Me and to your parents. Unto Me is the final destination" [Quraan, Luqmaan 31:14] All glory and honor to Him

To my parents

Noorizah binti Osman and Ishak bin Ahmad

To my greatest supporters

Shazry, Sharmine, Shameera, Nurul Suhada and Ayden Syah

And also to all who supported me by Doa and work.

Thanks for everything.

May Allah bless you.

Amin

ACKNOWLEDGEMENT

Praise Be To Allah S.W.T, the Lord of the World

First and foremost, I like to express my sincere appreciation and profound gratitude to my beloved supervisors, Dr. Mohd Azreen bin Mohd Ariffin and Dr. Nor Hasanah binti Abdul Shukor Lim for encouragement, guidance, critics and friendship. Without their continued support and interest, this thesis would not have been the same as presented here. I am thankful to Materials and Structures laboratory, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM) for providing the facilities for my research. My thanks also go to technicians and staffs for their assistance in this research.

Most importantly, I must be thankful of my amazing family for their steadfast support, love and encouragement. Mom and Dad, I cannot thank you enough for raising me to be an independent thinker and instilling the traits of ambition and perseverance in me at the young age. To my siblings, thank you for your constant support, for always making me laugh, and for reminding me not to take life too seriously. The bond that links your true family is not one of blood, but of respect and joy in each other's life. Rarely do members of one family grow up under the same roof. I love all of you with all my heart, and I am so lucky to call you my family.

My sincere appreciation also extends to all my colleagues and friends who have provided assistance at various occasions. Their views and tips are useful indeed.

To all of you, thank you for everything.

ABSTRAK

Malaysia, sebagai negara hutan hujan tropika, menikmati banyak tumbuhan buluh yang meluas di seluruh negara. Penggunaan teknologi geopolimer telah menjadi fenomena selain dapat memelihara alam sekitar dari bahaya. Geopolimer abu terbang memiliki kekuatan awal yang rendah dan memerlukan 24 jam untuk konkrit mengeras. Oleh itu, kehadiran kalsium dan kandungan kalium dalam abu buluh dapat memperbaiki masalah ini. Tiada kajian mengenai penggunaan abu buluh sebagai pengikat dalam konkrit geopolimer. Oleh itu, kehadiran abu buluh dapat meningkatkan lapangan penyelidikan dengan penggunaan sisa pertanian dalam pembinaan bangunan. Matlamat penyelidikan ini adalah menggunakan abu buluh dalam pengeluaran konkrit geopolimer abu terbang. Spesimen telah dikeraskan dalam 100mm x 100mm x 100mm kiub dan pengaktif berasaskan natrium digunakan sebagai cecair alkali. Pengikat digubal dengan nisbah pengikat yang berbeza dan cecair kepada nisbah pengikat. Semua spesimen ujian telah dirawat pada suhu ambien (23°C -25°C) dan 100% abu terbang dipilih sebagai spesimen kawalan. Bagi kajian awalan bancuhan konkrit, 3 ujian dijalankan, iaitu ujian pengerasan konkrit, ujian aliran dan ujian geopolimerisasi. Untuk sifat-sifat pengerasan, 10 eksperimen yang berbeza telah diuji iaitu kekuatan mampatan, kekuatan lenturan, kekuatan tegangan, modulus keanjalan, halaju nadi ultrasonik, penyerapan air, ketumpatan, pengecutan pengeringan dan pengembangan haba dalam suhu tinggi. Akhir sekali, analisis fasa dan analisis mikro dilakukan selama 7 hari dan 28 hari umur rawatan. Hasil ujian menunjukkan bahawa sebagai peratusan abu bulu berkurangan, kekuatan mampatan bertambah. Selain itu, penambahan 5% abu buluh ke dalam konkrit geopolimer abu terbang dapat meningkatkan kekuatan awal dalam 7 hari. Hasilnya terbukti dengan analisis fasa yang menjelaskan keberkesanan pembentukan natrium aluminat silikat hidrat (NASH) dan kalsium aluminat silikat hidrat (CASH) untuk kekuatan matriks geopolimer. Selain itu, penambahan 5% abu buluh mengurangkan masa pengerasan konkrit geopolimer abu terbang sebanyak 40%. Penambahan abu buluh meningkatkan kekuatan tegangan dan juga kekuatan mampatan apabila terdedah kepada suhu tinggi 800°C. Oleh itu, dapat disimpulkan bahawa penambahan abu buluh meningkatkan kekuatan awal, tempoh pengerasan, kekuatan tegangan dan kekuatan mampatan apabila terdedah kepada suhu tinggi.

ABSTRACT

Malaysia, as a tropical rainforest country, enjoys an abundance of bamboo plant that proliferate throughout the country. The application of geopolymer technology has become a trend and preserves the environment from harm. Fly ash geopolymer concrete has low early strength and requires 24 hours for the concrete to harden. Thus, the presence of calcium and potassium content in bamboo ash could remedy this problem. Besides, there is no research regarding the use of bamboo ash as a binder in geopolymer concrete. Therefore, the presence of bamboo ash could improve the research field with the use of agriculture waste in a building construction. The research aim is to use bamboo ash in the production of fly ash geopolymer concrete. The specimens were casted in 100mm x 100mm x 100mm cubes and sodium based activator were used as the alkaline solutions. The binders are formulated with different binder ratio and solution to binder ratio. All test specimens were cured at ambient temperature (23°C -25°C) and 100% fly ash was chosen as control specimen. For fresh state properties, 3 tests were conducted, which are setting time, flow table and geopolymerization test. For hardened state properties, 10 different experiments were tested which are compressive strength, flexural strength, splitting tensile strength, modulus of elasticity, ultrasonic pulse velocity, water absorption, density, drying shrinkage, thermal expansion and elevated temperature. Lastly, phase analysis and microstructure analysis were conducted for 7 days and 28 days of curing age. The test results depicted that as the percentage of bamboo ash decreases, compressive strength increases. Also, the addition of 5% of bamboo ash into fly ash geopolymer concrete could improve the early strength in 7 days. The results were proven with the phase analysis that explains the effectiveness of the formation of sodium aluminate silicate hydrate (NASH) and calcium aluminate silicate hydrate (CASH) for the strength of geopolymer matrix. Furthermore, addition of 5% of bamboo ash reduced the setting time of fly ash geopolymer concrete by 40%. The addition of bamboo ash improved tensile strength and also compressive strength when exposed to elevated temperature of 800°C. Therefore, it can be concluded that the addition of bamboo ash improved the early strength, setting time, tensile strength and compressive strength when exposed to high temperature.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	TITLE		i
	DEDIC	CATION	ii
	DECL	ARATION	iii
	ACKN	OWLEDGEMENTS	iv
	ABSTI	RAK	V
	ABSTI	RACT	vi
	TABL	E OF CONTENTS	vii-xii
	LIST (DF TABLES	xiii-xiv
	LIST (DF FIGURES	xv-xix
	LIST (DF ABBREVIATIONS	XX
	LIST (DF SYMBOLS	xxi
	LIST (OF APPENDIX	xxii
1	INTRO	DUCTION	1
	1.1	Background of Study	1
	1.2	Problem Statement	3
	1.3	Research Objectives	4
	1.4	Scope of Research	5
	1.5	Significance of Study	5
			6
2	LITER	ATURE REVIEW	6
	2.1	General	6
	2.2	Bamboo in Malaysia	8
	2.3	Geopolymer concrete	10
	2.4	Geopolymerization process	12

2.5	Binder	15
2.6	Materials	15
	2.6.1 Fly Ash	15
	2.6.2 Aggregates	17
	2.6.3 Alkaline Solution	17
	2.6.3.1 Sodium Silicate	18
	2.6.3.2 Sodium Hydroxide	18
	2.6.4 Superplasticizer (SP)	19
2.7	Mix Proportions	19
2.8	Curing of Geopolymer Concrete	20
2.9	Fresh Properties of Geopolymer Concrete	22
	2.9.1 Setting Time of Geopolymer	22
	Concrete	
2.10	Hardened State Properties of Geopolymer	24
	Concrete	26
	2.10.1 Compressive Strength	28
	2.10.2 Tensile Strength	
2.11	Factors Affecting Geopolymer Concrete	28
	Properties	
2.12	Previous Research on Geopolymer Concrete	28
		29
MET	HODOLOGY	32
3.1	Introduction	32
3.2	Research Framework	33
3.3	Materials	36
	3.3.1 Bamboo Ash	36
	3.3.2 Fly Ash	37
	3.3.3 Aggregates	37
	3.3.4 Alkaline Solution	37
	3.3.5 Superplasticizer	38
	3.3.6 Water	38
3.4	Characterization of Material	38
	3.4.1 Physical Characteristics of Binder	38

3

		3.4.1.1 Particle Size Analysis (PSA)	39
	3.4.2	Chemical Characteristics of Binder	39
		3.4.2.1 X-Ray Fluorescence (XRF)	39
		3.4.2.2 X-Ray Diffraction (XRD)	40
		3.4.3.3 Morphology	41
	3.4.3	Physical Characteristic of	41
		Aggregates	
		3.4.3.1 Sieve Analysis	42
		3.4.3.2 Specific Gravity and Water	42
		Absorption of Coarse Aggregates	
		3.4.3.3 Specific Gravity and Water	43
		Absorption of Fine Aggregates	
		3.4.3.4 Bulk Density of Aggregates	44
3.5	Prepar	ration of Specimens	45
3.6	Appro	priate Mix Design	45
3.6.1	Mix P	roportion	46
3.7	Mixin	g Process	48
3.8	Curing	9	49
3.9	Fresh	and Hardened State Properties	50
	3.9.1	Fresh State Properties of	50
		Geopolymer Concrete	
		3.9.1.1 Flow Table Test	50
		3.9.1.2 Setting Time Test	51
		3.9.1.3 Geopolymerization Test	52
	3.9.2	Hardened State Properties of	53
		Geopolymer Concrete	
		3.9.2.1 Compressive Strength Test	53
		3.9.2.2 Flexural Strength Test	54
		3.9.2.3 Splitting Tensile Strength	56
		Test	
		3.9.2.4 Modulus of Elasticity	56
		3.9.2.5 Ultrasonic Pulse Velocity	58
		Test	

	3.9.2.6 Density Test	60
	3.9.2.7 Water Absorption Test	60
	3.9.2.8 Drying Shrinkage	61
	3.9.2.9 Thermal Expansion	62
	3.9.2.10 Elevated Temperature	63
3.10	Microstructure and Phase Analysis	63
	Properties	
	3.10.1 Scanning Electron Microscopy	63
	(SEM)	
	3.10.2 X-Ray Diffraction (XRD)	64

4	СНА	RACTI	ERISTICS OF MATERIALS AND	65
	MIX DESIGN			
	4.1	Introd	uction	65
	4.2	Physic	cal Characteristic of Binder	65
		4.2.1	Particle Size Analysis	65
	4.3	Chem	ical Characteristics of Binder	66
		4.3.1	X-Ray Fluorescence	67
		4.3.2	X-Ray Diffraction	68
		4.3.3	Particle Morphology of Fly Ash and	69
			Bamboo Ash	
	4.4	Chara	cteristics of Aggregates	71
		4.4.1	Physical Properties of Aggregates	71
		4.4.2	Sieve Analysis	72
	4.5	Comp	ressive Strength	75
		4.5.1	Effect of Bamboo Ash and Fly Ash	75
			on Compressive Strength	
			4.5.1.1 Summary	76
		4.5.2	Effect of Solution to Binder Ratio on	77
			Compressive Strength	
			4.5.2.1 Compressive Strength	77

	4.5.3	Setting Time	78
	4.5.4	Flow Table	81
	4.5.5	Geopolymerization Process	85
4.6	Summ	nary	86
ENG	INEER	ING AND CONCRETE	87
CHA	RACTE	ERIZATION	
5.1	Introd	uction	87
5.2	Mecha	anical Properties	87
	5.2.1	Density of Geopolymer Concrete	88
	5.2.2	Ultrasonic Pulse Velocity	88
	5.2.3	Compressive Strength	89
		5.2.3.1 Effect of Curing Period on	90
		Compressive Strength	
	5.2.4	Flexural Strength	91
	5.2.5	Tensile Strength	93
	5.2.6	Correlation between UPV and	95
		Strength	
	5.2.7	Modulus of Elasticity	97
	5.2.8	Water Absorption	98
		5.2.8.1 Effect of Compressive	99
		Strength on Water	
		Absorption	
	5.2.9	Drying Shrinkage	100
	5.2.10	Thermal Expansion	101
	5.2.11	Elevated Temperature	102
		5.2.11.1 Cooling Effect on the	103
		Physical Appearance	
		of the Concrete	
	5.2.11.	2 Ultrasonic Pulse Velocity	109
	5.2.11.	3 Effect of Temperature on Weight	110
		Loss	
	5.2.1	1.4 Residual Compressive Strength of	111

5

			Geopolymer Concrete.	
	5.3	Micro	ostructural Properties	112
		5.3.1	Crystalline Phase Analysis	113
		5.3.2	Morphology of the Geopolymer	114
			Concrete	
	5.4	Sumn	nary	118
6	CON	ICLUSI	ONS AND RECOMMENDATIONS	119
	6.1	Concl	usions	119
	6.1	Recor	nmendations	120

REFERENCES	121
Appendices A	131

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Year 2003 Main CO ₂ Producers (ORNL, 2006)	7
2.2	Peninsular Malaysia Bamboo Distribution (Lockman et	10
	al., 1992)	
2.3	Past Research on setting time of fly ash geopolymer	24
	concrete	
2.4	Si:Al ratio and geopolymerized material usage	31
	(Davidovits, 1994)	
3.1	Mix proportion of fly ash geopolymer concrete	47
	incorporating with bamboo ash	
3.2	Workability criteria for geopolymer mortar (Khushal	51
	and Partha, 2012)	
3.3	Quality of concrete based on Ultrasonic Pulse Velocity	59
	(Neville, 2011)	
4.1	Chemical Composition of Binder	67
4.2	Physical Properties of Aggregates	72
4.3	Sieve Analysis of Coarse Aggregates	73
4.4	Sieve Analysis of Fine Aggregates	74
4.5	Flow of different mix proportions of geopolymer	82
5.1	Experimental value for Modulus of Elasticity	98
5.2	Water Absorption of 100% fly ash and 95% fly ash +	99
	5% bamboo ash	
5.3	Cooling Type, Appearance, Colour and Texture of	104
	Control and Optimum Sample when exposed to desired	
	temperature	
5.4	UPV value when exposed to different temperature	110

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	Business-As-Usual CO ₂ Release (Szabo et al., 2003)	7
2.2	Process of Geopolymerization	11
2.3	Conceptual model for geopolymerization (Ferna and	13
	Deventer, 2007)	
2.4	Fly ash activation in alkaline solutions (Pacheco-	14
	torgal <i>et al.</i> , 2008)	
3.1	Flow of Research	32
3.2	Characterization of material	33
3.3	Flow Chart for Appropriate Mix Design	34
3.4:	Fresh and Hardened State Properties test	35
3.5	Microstructure and Phase analysis	35
3.6	Bamboo Ash after grinding	36
3.7	Condition of Fly Ash from Tanjung Bin	37
3.8	Equipment used for particle size analysis	39
3.9	XRF Testing Machine	40
3.10	Test procedure of XRD analysis (a) The specimens	41
	were scanned (b) Diffractometer machine	
3.11	Procedure of Sieve Analysis (a) Fine and coarse	42
	aggregates (b) Aggregates was oven-dried (c)	
	Mechanical sieve shaker	
3.12	Main materials for geopolymer concrete (a)Fly Ash	48
	(b)Bamboo Ash (c)Alkali Solution (d)Fine	
	Aggregates (e)Coarse Aggregates (f)Superplasticizer	
	(g)Water	

3.13	Test procedure of flow table (a) Conical frustum (b)	51
	The specimens was tamped (c) The steel plate was	
	tamped (d) The specimens was measured	
3.14	Test procedure of setting time test (a) Poured alkaline	52
	solution (b) The paste was tossed (c) The paste was	
	inserted (d) Excess paste was cut (e) The specimens	
	was ready	
3.15	Procedure of Geopolymerization test (a) Cubical	53
	plywood box (b) Equipment was set up (c) Specimen	
	was casted (d) Thermocouple was buried (e)	
	Specimens was ready	
3.16	Compressive Machine	54
3.17	Prism arrangement in the machine	55
3.18	Arrangement of test setup for centre point loading	55
3.19	Test procedure of splitting tensile strength (a)	56
	Specimens was prepared (b) Specimen was ready to	
	be tested (c) Shape of failure was observed	
3.20	Test procedure of Modulus of Elasticity (a)	57
	Specimens was trimmed (b) Specimens was prepared	
	(c) Strain gauge was attached (d) Equipment was set	
	up (e) Shape of failure was observed	
3.21	Test procedure of Ultrasonic Pulse Velocity (UPV)	59
	(a) Specimens was marked (b) Grease was applied (c)	
	Pulse generator was calibrated (d) Result was recorded	
3.22	Test procedure of water absorption (a) Specimens	61
	was immersed in water (b) Specimens was drained	
	using towel (c) Weight was recorded (d) Specimens	
	was oven-dried (e) Weight was recorded	
3.23	Sample preparation for Microstructure Analysis (a)	64
	Miniature specimens was prepared (b) Acetone was	
	poured (c) Specimen was oven-dried (d) Specimen	
	was ready for testing	

3.24	Sample preparation for Phase Analysis (a) Cube	64
	specimen was crushed (b) Small specimen was	
	crushed using jaw crusher (c) The specimens was	
	sieved	
4.1	Particle Size Distribution of Bamboo Ash	66
4.2	Particle Size Distribution of Fly Ash	66
4.3	XRD pattern of Bamboo Ash	68
4.4	XRD pattern of Fly Ash	69
4.5	SEM micrographs of fly ash (a)100X Magnification	70
	(b)500X Magnification (c)10,000X Magnification	
	(d)5000X Magnification	
4.6	SEM micrographs of bamboo ash (a)100X	71
	Magnification (b)500X Magnification (c)10,000X	
	Magnification (d)5000X Magnification	
4.7	Size Distribution of Coarse Aggregates	73
4.8	Size Distribution of Fine Aggregates	74
4.9	Effect of curing period and compressive strength on	76
	bamboo ash to fly ash ratio	
4.10	XRD analysis for 100% fly ash and 95% fly ash + 5%	76
	bamboo ash within 7 days of curing period	
4.11	Effect of solution over binder ratio on compressive	78
	strength and curing period	
4.12	Setting time of 100% fly ash and 95% fly ash + 5%	79
	bamboo ash with 0.40 ratio of alkaline/blended ash	
4.13	Setting time of 100% fly ash and 95% fly ash + 5%	80
	bamboo ash with 0.45 ratio of alkaline/blended ash	
4.14	Setting time of 100% fly ash and 95% fly ash + 5%	81
	bamboo ash with 0.50 ratio of alkaline/blended ash	
4.15	Flow table results depend on different mix proportion	82
4.16	Flowability of 95% fly ash + 5% bamboo ash for 0.4	83
	ratio	
4.17	Flowability of 100% fly ash with 0.40 ratio	83

4.18	Flowability of 95% fly ash $+$ 5% bamboo ash for 0.45			
	ratio			
4.19	Flowability of 95% fly ash $+$ 5% bamboo ash for 0.50	84		
	ratio			
4.20	Heat released during the geopolymerization process	86		
5.1	Density of cubic samples			
5.2	UPV Value of control and optimum specimens of			
	geopolymer			
5.3	Compressive Strength of control and optimum	91		
	specimens			
5.4	Shape of Failure	91		
5.5	Flexural Strength of control and optimum specimens			
5.6	Relationship between Flexural Strength and	93		
	Compressive Strength of control and optimum			
	specimens			
5.7	Splitting tensile strength for control and optimum	94		
	specimens			
5.8	Relation of tensile and compressive strength of control	95		
	and optimum specimens			
5.9	UPV values as a function of compressive strength of	96		
	geopolymer concrete			
5.10	UPV values as a function of flexural strength of	96		
	geopolymer concrete			
5.11	UPV values as a function of tensile strength of	97		
	geopolymer concrete			
5.12	Relationship between compressive strength and water	100		
	absorption (a) 100% fly ash (b) 95% fly ash $+ 5\%$			
	bamboo ash			
5.13	Drying shrinkage of 100% fly ash and 95% fly ash +	101		
	5% bamboo ash			
5.14	Coefficient of Thermal Expansion value of 100% fly	102		
	ash and 95% fly ash + 5% bamboo ash			

5.15	Sample exposed to room temperature (27°C) (a) 100%	103
	fly ash (b) 95% fly ash + 5% bamboo ash	
5.16	Rate of weight loss (a) 100% fly ash (b) 95% fly ash +	111
	5% bamboo ash	
5.17	XRD Pattern of 100% fly ash and 95% fly ash + 5%	113
	bamboo ash for 7 days of curing ages	
5.18	XRD Pattern of 100% fly ash and 95% fly ash + 5%	114
	bamboo ash for 28 days of curing ages	
5.19	100% fly ash at 7 days of curing ages (a) SEM	115
	micrographs (b) EDX	
5.20	95% fly ash + 5% bamboo ash at 7 days of curing ages	116
	(a) SEM micrographs (b) EDX	
5.21	100% fly ash at 28 days of curing ages (a) SEM	117
	micrographs (b) EDX	
5.22	95% fly ash + 5% bamboo ash at 28 days of curing	118
	ages (a) SEM micrographs (b) EDX	

LIST OF ABBREVIATIONS

ASTM	-	American Society for Testing and Materials
BS	-	British Standard
CASH	-	Calcium Aluminatesilicate Hydrate
NASH	-	Sodium Aluminatesilicate Hydrate
PSA	-	Particle Size Analysis
XRF	-	X-Ray Fluorescence
XRD	-	X-Ray Diffraction
SEM	-	Scanning Electron Microscopy
EDX	-	Energy Dispersive X-Ray
UPV	-	Ultrasonic Pulse Velocity
CTE	-	Coefficient of Thermal Expansion
CO ₂	-	Carbon Dioxide
SiO ₄	-	Silicate
AlO ₄	-	Aluminate
NaOH	-	Sodium Hydroxide
Na ₂ SiO ₃	-	Sodium Silicate
SP	-	Superplasticizer
BA	-	Bamboo Ash
FA	-	Fly Ash
POFA	-	Palm Oil Fuel Ash
RHA	-	Rice Husk Ash
OPC	-	Ordinary Portland Cement
GGBS	-	Ground Granulated Blast Furnace Slag
U.N. FAO	-	Food and Agriculture Organization of the United Nations
OD	-	Oven-Dried
SSD	-	Saturated-Surface Dry

LIST OF SYMBOLS

- *M* Bulk Density of Aggregates
- F_C Compressive Strength
- *R* Flexural Strength
- *Fct* Splitting Tensile Strength
- σc Compressive Strength of Cylindrical
- *Ec* Modulus of Elasticity
- *V* UPV value
- T Density
- ε Strain

LIST OF APPENDIX

APPENDIX

А

TITLEPAGEList of Publications129

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Production of Portland cement consumes considerable energy while providing a massive volume of carbon dioxide (CO₂) to the atmosphere. This conventional binder in concrete has performed exceedingly well in most civil engineering applications (Rajamane *et al.*, 2012) but its production contributes to the emission of greenhouse gas of CO₂. In addition, concrete produced with Portland cement is less durable in some of the aggressive environment conditions (Neville, 2011). Over time, geopolymers have become a problem solver to all these issues (Duxson *et al.*, 2007). High demand of conventional concrete leads to high emission of carbon dioxide to the atmosphere. Thus, using geopolymer concrete which is known as an environmental friendly concrete, can solve landfills problems by recycling and reusing waste materials. The best option to eliminate these problems is by utilizing the waste for construction purposes. Using waste products as a cementitious material in geopolymer concrete would also maximize its recycling potentials throughout the industrial sector.

Geopolymer is an organic polymeric composite that is hardened at ambient temperature under highly alkaline conditions (Davidovits, 1994). Alumina silicates are dissolved and free element (SiO₄ and AlO₄) of tetrahedral units are moving randomly, known as geopolymerization. Apart from that, geopolymer concrete has superb resistance to chemical attack and show great ability against the aggressive environment. Aggressive marine environments, surroundings with enormous percentage of carbon dioxide, high content of sulphate and acidity in soils are particularly applicable (Rangan, 2014).

Interest the using of fly ash as sustainable materials in geopolymer concrete has increased since 2000 (Dhananjay and Vikrant, 2015). The development of geopolymer concrete mix design has been successfully done in Australia (Curtin University and Western Australia). Hardjito and Rangan (2005) investigated the effects such as alkaline parameters, water content and curing conditions in their research. In Malaysia, some researchers focused on geopolymer concrete (Nuruddin *et al.*, 2014; Azreen *et al.*, 2015). Eventually, geopolymer topic has become prominent among researchers because of its environmentally friendly and high performance aspects.

Agriculture waste is a serious environmental problem in many countries. These waste was dominantly produced from garden and rice fields. Concerning the ecological sustainability, the importance of recycling, finding economical fruit by-products is one important approach to protecting the environment. The majority of previous research involving agriculture waste consist of Palm Oil Fuel Ash (POFA) (Abdul and Abubakar, 2011; Yong *et al.*, 2014; Ahmad Hussein *et al.*, 2017) and Rice Husk Ash (RHA) (Habeeb and Mahmud, 2010; Kartini and Ir, 2011; Kawabata *et al.*, 2012) as binder.

Interest in bamboo for construction grows continuously as focus shifts towards reducing the environment impact and embodied energy of the built environment. Naturally, the form of bamboo is cylindrical pole or culm. Bamboo is also part of the grass family. There are over 1200 species of bamboo all over the world, with structural species varying by location. The different species can be categorized into three types of root systems, sympodial (clumping), monopodial (running) and amphipodial (clumping and running). According to Food and Agriculture Organization of the United Nations (U.N. FAO), a total of 72% of land area in Malaysia is filled with forests; 42 000 km² is filled with tree plantations. Bamboo is an easy growing plant. Tropical rainforest such as that found in Malaysia provide ideal growing conditions for the bamboo plant. The production of bamboo charcoal has increased and its application especially in healthcare, cooking, water purification and gardening have grown significantly (Mingjie, 2004). Consequently, bamboo ash is the waste from the production of bamboo charcoal. Although rich in silica, the poor performance of bamboo ash as a sole aluminasilicate material for geopolymer synthesis due to low alumina content has made it attractive for combination with other material rich in alumina such as fly ash.

Unfortunately, literature about bamboo ash as aluminasilicate materials in geopolymer concrete are unavailable. Thus, this research is conducted to fill this gap for the development, manufacturing and engineering properties of bamboo ash replacement in fly ash based geopolymer concrete.

1.2 Problem Statement

Production of fly ash geopolymer concrete gives high strength and durability. However, the setting time performance was disappointing. According to Ramujee (2016), fly ash geopolymer concrete requires 24 hours to harden and the duration is not suitable for certain type of construction works (Srinivasan and Sivakumar, 2013). Nevertheless, a material with calcium content can improve the setting time and the addition of calcium content in bamboo ash could remedy these problem.

According to previous research (Nath *et al.*, 2015), fly ash geopolymer concrete bothering on the low early strength to exaggerate the geopolymerization process. Bamboo ash has unique speciality where it contains high percentage of potassium. The presence of high potassium in bamboo ash can contribute to the formation of early ettringite, thus producing a better early strength (Huynh and Laefer,

2009). This advantage was believed to contribute to the early strength of fly ash geopolymer concrete.

No information from the previous study regarding the utilization of bamboo ash in geopolymer concrete is available. In addition, there is no research on the replacement of bamboo ash into fly ash geopolymer concrete. Most of the researchers only focuses onto well-known agriculture waste such as rice husk ash (RHA) and palm oil fuel ash (POFA). Besides, bamboo ash was believed can contribute on setting time and early strength of geopolymer concrete with the presence of calcium and potassium content. This strongly indicates important gaps to be filled in the process of development of an efficient fly ash geopolymer concrete with the replacement of bamboo ash for practical construction purposes.

1.3 Research Objectives

The aim of this study is to investigate the characterization and properties of bamboo ash replacement in fly ash based geopolymer concrete. A number of objectives are highlighted to guarantee all the fundamental parameters are achieved.

- 1. To investigate the characteristics and appropriate mix design of fly ash geopolymer concrete with bamboo ash replacement.
- 2. To determine the physical and mechanical properties of geopolymer concrete using a combination of bamboo ash and fly ash.
- 3. To study the effect of bamboo ash and fly ash on the microstructure and phase analysis of the geopolymer concrete.

1.4 Scope of Research

In this study, bamboo ash and fly ash are the binder in geopolymer concrete. As a new material, bamboo ash needed to undergo a few processes before being used in the mix. Test such as physical analysis, chemical composition analysis, phase analysis and microstructure analysis are identified for both materials. Then, bamboo ash were added in ratio of 0%, 5%, 10%, 15% and 20% as fly ash replacement.

Next, the proportion is formulated with different solution to binder ratio which is 0.40, 0.45 and 0.50. However, for fresh state properties, several tests were conducted which are setting time, flow table and geopolymerization process test. For hardened state properties, 10 experiment were conducted to determine compressive strength, flexural strength, splitting tensile strength, modulus of elasticity, ultrasonic pulse velocity, water absorption, density, drying shrinkage, thermal expansion and elevated temperature. For comparison purposes, fly ash geopolymer concrete was used as control specimens. Also, phase analysis and microstructure analysis were conducted for 7 days and 28 days of curing ages. All specimens were casted into 100mm x 100mm x 100mm cube size and cured at ambient temperature (23 °C -25 °C).

1.5 Significance of Study

One of the problems associated with the established geopolymer concrete, which is fly ash, is the high setting time and low early strength. Therefore, by adding new material, which is bamboo ash, with calcium and potassium content will reduce the setting time and improve early strength of fly ash based geopolymer concrete. Thus, it is suitable to use in construction with ambient temperature for curing purposes.

REFERENCES

- Abdul Awal A.S.M. and Abubakar S.I. (2011). Properties of Concrete Containing
 High Volume Palm Oil. *Malaysian Journal of Civil Engineering*, 2(13), pp.54–66.
- Adam A. A. and Horianto (2014). The effect of temperature and duration of curing on the strength of fly ash based geopolymer mortar. *Procedia Engineering*, 95(10), pp.410–414.
- Adam A.A., Amiri N.H., Suarnita I.W., Rupang N. (2016). The Effect of Lime Addition on the Setting Time and Strength of Ambient Cured Fly Ash Based Geopolymer Binder, *MATEC Web of Conferences*, 47(16), pp.1–5.
- Ahmad M.H., Omar R.C., Malek M.A., Md Noor N., Thiruselvem S. (2017). Compressive Strength of Palm Oil Fuel Ash Concrete, *International Conferences* on Construction and Building Technologies, 27(16), pp.297-306
- Aliabdo A.A., Elmoaty A.E.M.A., Salem H.A. (2016). Effect of Water Addition, Superplasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance. *Construction and Building Materials*, 121(20), pp.694-703.
- Arioz O. (2007). Effects of elevated temperatures on properties of concrete. *Fire Safety Journal*, 42(8), pp.516-522.
- Azmy H.M. (1991). The structure and demography of Gigantochloa Scortechinii natural stand. Japan Bamboo Journal, 9(19), pp. 21-26.
- Azmy H.M. and Hall J.B. (1992). Observation on the growth of Gigantochloa Scortechinii (buluh semantan) shoots at Nami, Kedah. *FRIM*, pp.89-96.
- Azreen M.A., Husiin M.W., Bhutta M.A.R. (2011). Mix design and compressive strength of geopolymer concrete containing blended ash from agro-industrial wastes. *Advanced Materials Research*, 339(11), pp.452-457.
- Aliabdo A.A., Elmoaty A., Elmoaty M.A., Salem H.A. (2016). Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance. *Construction and Building Materials*, 121(9),

pp.694-703.

- Arioz E., Arioz Ö., Koçkar Ö.M. (2013). The Effect of Curing Conditions on the Properties of Geopolymer Samples, *International Journal of Chemical Engineering and Applications*, 4(6), pp.4–7.
- Azreen M.A., Hussin M.W., Nor Hasanah A.S.L., Mostafa S. (2015). Effect of ceramic aggregate on high strength multi blended ash geopolymer mortar. *Jurnal Teknologi*, 16(5), pp.33-36
- Barbosa V. F. F., MacKenzie K. J. D. and Thaumaturgo, C. (2000). Synthesis and Characterisation of Materials Based on Inorganic Polymers of Alumina and Silica: Sodium Polysialate Polymers." *International Journal of Inorganic Materials* 2(4): 309-317.
- Barbhuiya, S.A., Basheer, P.A.M., Clark, M.W., and Rankin, G.I.B. (2009). Use of neutralised bauxite refinery residue (Bauxsol) to improve acid and sulphate 016 resistance of concretes in aggressive environments. In Proceedings of the conference on concrete in aggressive aqueous environments (pp. 434–441), Toulouse, France, RILEM Publications.
- Bhikshma V., and Kumar T.N. (2016). Mechanical properties of fly ash based geopolymer concrete with addition of GGBS. *The Indian Concrete Journal*, 4(27), pp.64–68.
- Balaguru, P., Kurtz, S. and Rudolph, J. (1997). Geopolymer for Repair and Rehabilitation of Reinforced Concrete Beams. *St Quentin, France, Geopolymer Institute*.
- Bhowmick A., and Ghosh S. (2012). Effect of synthesizing parameters on workability and compressive strength of Fly ash based Geopolymer mortar. *International Journal of Civil and Structural Engineering*, *3*(1), pp.168–177.
- Brooks J.J., M.A. Megat Johari, M. Mazloom (2016). Effect of admixtures on the setting times of high-strength concrete. *Cement and Concrete Composites*. 22(2), pp.293-301.
- Chandra S. and Bjo J. (2002). Influence of cement and superplasticizers type and dosage on the fluidity of cement mortars. *Cement and Concrete Research*, 1(32), pp.1605–1611.
- Chen T. W. and Chiu J. P. (2003). "Fire-resistant Geopolymer Produced by Granulated Blast Furnace Slag." *Minerals Engineering* 16(3): 205-210.
- Choy Yee Keong (2005). Recovering Renewable Energy from Palm Oil Waste and Biogas Energy Sources. *Part A: Recovery, Utilization, and Environmental*

Effects, 27(7), pp.589 – 596.

- Chindaprasirt P., Thaiwitcharoen S., Kaewpirom S. and Rattanasak U. (2013). Cement
 & Concrete Composites Controlling ettringite formation in FBC fly ash
 geopolymer concrete. *Cement and Concrete Composites*, 41(23), pp.24–28.
- Danso H., Martinson D.B., Ali M. and Williams J.B. (2015). Physical, mechanical and durability properties of soil building blocks reinforced with natural fibres. *Construction and Building Materials*, 101(5), pp.797–809.
- Drechsler. M. and Graham, A. (2005). Bringing resource sustainability to construction and mining industries. *Innovative materials technology*, 6(12), pp.156-160.
- Davidovits J. (1999)."Geopolymer chemistry & sustainable development. The Poly (silicate) terminology: a very useful and simple model for the promotion and understanding of green-chemistry", *Proceedings of the World Congress Geopolymer*, 5(9), pp. 9-13
- Davidovits J. (1994). Geopolymer man-made rock geosynthesis and the resulting development of very early high strength cement, *J. Mater. Educ.*,16(9), pp.91.
- Davidovits J. (2011). Geopolymer Chemistry and Applicatons. *Third ed., Saint-Quentin: Institut Géopolymère*, 9(20), pp.552.
- Davidovits J. (1988). Geopolymers of the first generation: SILIFACE-Process. Proceedings of the 1st International Conference on Geopolymer, 88(1), p. 4967.
- Deb P.S., Nath P. and Sarker P.K. (2014). The effects of ground granulated blastfurnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. *Journal of Material and Design*. 62(4), pp.32–39.
- Duxson P., Provis J.L., Lukey G.C., Van Deventer J.S.J. (2007). The role of inorganic polymer technology in the development of green concrete. *Cement and Concrete Research*, 37(12), pp.1590–1597.
- Duxson P., A.Fernandez-Jimenez, J.L. Provis, G.C. Lukey, A.Palomo, J.S.J. Van Deventer (2007). Geopolymer technology : the current state of the art. Advances in Geopolymer Science and Technology (42), pp.2917–2933.
- Embong R., Kusbiantoro A., Shafiq N., Fadhil M. (2016). Strength and microstructural properties of fly ash based geopolymer concrete containing high-calcium and water-absorptive aggregate. *Journal of Cleaner Production*, 112(7), pp.816–822.
- Gharzouni A., Vidal L., Essaidi N., Joussein E., Rossignol S. (2016). Recycling of geopolymer waste: Influence on geopolymer formation and mechanical

properties. Materials and Design, 94(2), pp.1-9.

- Ghasan F.H., Jahangir Mirza, Mohammad Ismail, S.K. Ghosal, Mohd Azreen Mohd Ariffin (2016). Effect of Metakaolin replaced Granulated Blast Furnace Slag on Fresh and Early Strength Properties of Geopolymer Mortar. *Ain Shams Engineering Journal*, 20(8), pp.1-10.
- Gourley J.T. (2003). Geopolymers: opportunities for environmentally friendly construction materials. *Conference on Adaptive materials for a modern society*, Sydney. 7-13 April. Institute of Materials Engineering, Australia.
- Habeeb G.A. and Mahmud H.B. (2010). Study on Properties of Rice Husk Ash and Its Use as Cement Replacement. *Materials Research*, 13(2), pp.185–190.
- Hanehara, S. and Yamada K. (1999). Interaction Between Cement and Chemical Admixture From the Point of Cement Hydration. *Cement and Concrete Research*, 29(19), pp.1159-1165.
- Hardjito D. and Rangan B.V. (2005). Development and Properties of Low Calcium Fly Ash Based Geopolymer Concrete. *Research Report GC1*, 8(21), pp.10-103.
- Hasanah A.S.L., Ismail M.A., Seung Lee H., Hussin M.W., Rahman M.S., Samadi M. (2015). The effects of high volume nano palm oil fuel ash on microstructure properties and hydration temperature of mortar. *Construction and Building Materials*, 93(6), pp.29–34
- Havlica J, Brandstetr J, Odler I. (1998). Possibilities of utilizing solid residues from pressured fluidized bed coal combustion (PSBC) for the production of blended cements. *Cem.Concr. Res.*, 28(2), pp.299–307
- Huseien G.F., J. Mirza, M. Ismail, M.W. Hussin, M.A.M Ariffin, A.A. Hussein (2016).
 The Effect of Sodium Hydroxide Molarity and Other Parameters on Water absorption of Geopolymer Mortars. Indian Journal of Science and Technology, 9(48), pp.1-7.
- Hwang C., Tran V., Hong J., Hsieh Y. (2016). Effects of short coconut fiber on the mechanical properties, plastic cracking behavior, and impact resistance of cementitious composites. *Construction and Building Materials*, 127(8), pp.984– 992
- Ismail M., ElGelany Ismail M., Muhammad B. (2011). Influence of elevated temperatures on physical and compressive strength properties of concrete containing palm oil fuel ash. *Construction and Building Materials*, 25(5), pp.2358-2364.

- Jaarsveld J.G.S., Van Deventer J.S.J., Lukey G.C. (2002). The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. *Chemical Engineering Journal*, 89(22), pp.63–73.
- Jalali S. and Fernando P.T. (2010). Compressive strength and durability properties of ceramic wastes based concrete. *Materials and Structures*, 44(1), pp.155-167
- Joseph B. and Mathew G. (2012). Influence of aggregate content on the behavior of fly ash based geopolymer concrete. *Scientia Iranica*, 19(5), pp.1188–1194.
- Kandasamy S. and Shehata M. H. (2014). Durability of ternary blends containing high calcium fly ash and slag against sodium sulphate attack. *Construction and Building Materials*, 53(7), pp.267–272.
- Komljenovi'c M., Bascarevic Z., Bradic V. (2010), "Mechanical and microstructural properties of alkali-activated fly ash geopolymer", Journal on Hazardous Material, 181, pp. 35-42.
- Kartini K. (2011). Rice Husk Ash-Pozzolanic Material for Sustainability. *International Journal of Applied Science and Technology*, 1(6), pp.169–178.
- Kawabata C.Y., Junior H.S., Sousa-coutinho J. (2012). Rice Husk Ash derived Waste Materials as Partial Cement Replacement in Lighweight Concrete. *Agriculture Engineering*, 36(4), pp.26-31.
- Khan M. I. and Lynsdale C.J. (2002). Strength, permeability, and carbonation of highperformance concrete. *Cement and Concrete Research*, 32(1), pp.123-131.
- Kong D. L. and Sanjayan J.G. (2008). Damage behavior of geopolymer composites exposed to elevated temperatures. *Cement and Concrete Composites*, 30(10), pp.986-991.
- Krishna R. (2011). Strength Development in Geopolymer Pastes and Mortars. International Journal of Earth Sciences and Engineering, 4(21), pp.830-834.
- Kumar K. (2016). Strength and Durability Characteristics of Fly Ash and Slah Based Geopolymer. *International Journal of Civil Engineering and Technology*, 7(5), pp.305–314.
- Kumaravel S. (2014). Development of various curing effect of nominal strength geopolymer concrete. *Journal of Engineering Science and Technology Review*, 7(1), 116–119.
- Lertwattanaruk P. and Suntijitto A. (2015). Properties of natural fiber cement materials containing coconut coir and oil palm fibers for residential building applications. *Construction and Building Materials*, 94(8), pp.664–669

- Lloyd N.A. and Rangan B.V. (2010). Geopolymer Concrete: A Review of Development and Opportunities. *Our World in Concretes and Structures*, 2(5), pp.20-28.
- Lockman M.S., H.O Mohd Shahwahid, L.Y. Poh, J. Saroni. 1992. Distribution of bamboo and the potential development of the bamboo industry. *FRIM*, 8(2), pp.6-19.
- Luna Y., Querol X., Antenucci D., Vale J. (2009). Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geopolymers. *Fuel*, 88(29), pp.1185–1193.
- Madandoust R., Ghavidel R., Nariman-zadeh N. (2010). Evolutionary design of generalized GMDH-type neural network for prediction of concrete compressive strength using UPV. *Computational Materials Science*, 49(7), pp.556–567
- Malhotra V.M. (1990). Durability of Concrete Incorporating High-Volume of Low-Calcium (ASTM Class F) Fly Ash, *Cement and Concrete Composites*, 12(7), pp.271–277.
- McGrath K.P. (1970). The Potential of bamboo as a Source of Pulp and Paper in West Malaysia. *UNDP-FAO Technical Report*, pp.8.
- Mehta A. and Siddique R. (2017). Properties of low-calcium fly ash based geopolymer concrete incorporating OPC as partial replacement of fly ash. *Construction and Building Materials*, 150(27), pp.792–807.
- Mustafa Al Bakri A.M., Kamarudin H., BinHussain M., Khairul Nizar I., Zarina Y., Rafiza A.R. (2011). The Effect of Curing Temperature on Physical and Chemical Properties of Geopolymers, *International Conference on Physics Science and Technology*, 22(7), pp. 286–291.
- Mindess S., Young J.F. and Darwin D. (2003). Concrete, pearson education, Inc., New Jersey, U.S.A
- Mingjie G. (2004). Manual for Bamboo Charcoal Production and Utilization, 4(6), pp.1–24.
- Nagral M.R., Ostwal T., Chitawadagi M.V. (2014). Effect Of Curing Temperature And Curing Hours On The Properties Of Geo-Polymer Concrete. *International Journal of Computational Engineering Research*, 4(14), pp.1–11.
- Nath P., Kumar P., Rangan V.B. (2015). Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing. *Procedia Engineering*, 125(25), pp.601–607.

Nath, P., Sarker P.K. (2014). Effect of GGBFS on setting ,workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. *Construction and Building Materials*, 66(4), pp.163–171.

Neville A.M. (2011). Properties of Concrete (5th Edition). California : Pearson.

- Neville G.B. (2015). Concrete Manual. America : International Code Council
- Ng F.S.P. and Nor A.M. (1980). Bamboo Research in Asia. *International Union Forestry Research Organization and International Development Research Centre*, pp. 91-96.
- Nuruddin M.F., Demie S., Shafiq N. (2011). Effect of mix composition on workability and compressive strength of self-compacting geopolymer concrete. *Canadian Journal of Civil Engineering*, 38(8), pp.1-8.
- Nuruddin M. F., Kusbiantoro A., Qazi S., Shafiq N., (2011). Compressive Strength and Interfacial Transition Zone Characteristic of Geopolymer Concrete with Different Cast In-Situ Curing Conditions. *International Scholarly and Scientific Research and Innovation*, 5(1), pp.51–54.
- Nurwidayati R., Ulum M.B., Ekaputri J.J., Triwulan, Suprobo P. (2016). Characterization of Fly Ash on Geopolymer Paste. *Materials Science Forum*, 841(5), pp.118-125.
- Okoye F.N., Durgaprasad J., Singh N.B. (2015). Mechanical properties of alkali activated flyash/Kaolin based geopolymer concrete. *Construction and Building Materials*, 98(12), pp.685–691.
- Pacheco-torgal F. (2008). Alkali-activated binders: A review Part 1. Historical background, terminology, reaction mechanisms and hydration products. *Construction and Building Materials*, 22(54), pp.1305–1314.
- Patankar S.V., (2014). Mix Design of Fly Ash Based Geopolymer Concrete. *V.Matsagar ed (Advanced in Structural Engineering)*, 2014, pp.16149-1634.
- Palomo A, Grutzek M.W., Blanco M.T.(1999). Alkali-activated fly ashes: A cement for the future. *Cem. Concr. Res.*, 29(8), pp.1323–1329.
- Park Y., Abolmaali A., Hoon Y., Ghahremannejad M. (2016). Compressive strength of fly ash-based geopolymer concrete with crumb rubber partially replacing sand. *Construction and Building Materials*, 118(7), pp.43–51.
- Pithadiya P.S. and Nakum A.V. (2015). Experimental Study on Geopolymer Concrete by Using GGBS. *International Journal of Research in Engineering and Technology*, 4(21), pp.2319–2321.

- Puertas F. and Fecha X. (2001). Early hydration cement Effect of admixtures superplasticizers, *Materials of Construction*, 51(7), pp.53–61.
- Rajamane N.P., Nataraja M.C., Lakshmanan N., Dattatreya J.K., Sabitha D. (2012). Sulphuric acid resistant ecofriendly concrete from geopolymerisation of blast furnace slag. *Indian Journal of Engineering and Materials Sciences*, 19(5), pp.357–367.
- Ramani P.V. and Chinnaraj P.K. (2015). Geopolymer concrete with ground granulated blast furnace slag and black rice husk ash. *Gradevinar*, 67(16), pp.741–748.
- Ramli M., Kwan W.H., Abas N.F. (2013). Strength and durability of coconut-fiberreinforced concrete in aggressive environments. *Construction and Building Materials*, 38(12), pp.554–566.
- Rangan B. V. (2008), "Fly ash-based Geopolymer Concrete", Research Report GC 4, Engineering, Curtin University of Technology, Perth, Australia.
- Rangan, B. V. (2014). Upcycling Fly Ash into Geopolymer Concrete Products, *3*(4). pp.55-60.
- Rao G.M. and Rao T.D.G. (2015). Final Setting Time and Compressive Strength of Fly Ash and GGBS-Based Geopolymer Paste and Mortar. *Arabian Journal for Science and Engineering*, 40(23), pp.3067–3074.
- Rashad A.M. (2015). Metakaolin:Fresh Properties and Optimum Content for Mechanical Strength in Traditional. *Rev.Adv.Mater.Sci*, 40(4), pp.15-44.
- Raut A.N. and Gomez C.P. (2016). Thermal and mechanical performance of oil palm fiber reinforced mortar utilizing palm oil fly ash as a complementary binder. *Construction and Building Materials*, 126(4), pp.476–483.
- Raval A.D., Patel I.N., Pitroda P.J. (2013). Ceramic Waste : Effective Replacement Of Cement For Establishing Sustainable Concrete. *International Journal of Engineering Trend and Technology*, 4(6), pp.2324–2329.
- Ramujee K. (2016). Strength and Setting Times of F-Type Fly Ash-Based Geopolymer Mortar. *International Journal of Earth Sciences and Engineering*, 9(26), pp.360-365
- Rees C.A., Provis J.L., Lukey G.C., Van Deventer J.S.J., (2007). Attenuated total reflectance Fourier transform infrared analysis of fly ash geopolymer gel aging. *Langmuir*, 23(7), pp.8170–8179.
- Saha A., Pan S., Ash F. (2014). Strength Development Characteristics Of High Strength Concrete Incorporating An Indian Fly Ash. *International Journal of*

Technology Enhancements and Emerging Engineering Research, 2(10), pp.101-107.

- Sathonsaowaphak, A., Chindaprasirt P., Pimraksa K. (2009). Workability and strength of lignite bottom ash geopolymer mortar. *Journal of Hazardous Materials*, 168(9), pp.44–50.
- Satpute Manesh B., Wakchaure Madhukar R., Patankar Subhash V. (2012). Effect of Duration and Temperature of Curing on Compressive Strength of Geopolymer Concrete. *International Journal of Enginnering and Innovative Technology*, 1(3), pp.152–155.
- Shafiq, I., Azreen, M., & Hussin, M. W. (2017). Sulphuric Acid Resistant of Self Compacted Geopolymer Concrete Containing Slag and Ceramic. *MATEC Web of Conferences*, 97(4), pp.1-7.
- Sheetz B.E., Kwan SPIs. (2003). Control of ettringite swelling. *Ashlines*, 4(1), pp.1–10.
- Sidek M.N.M., Johari M.A.M., Arshad M.F., Jaafar M.F. (2013). Behaviour of Metakaolin Concrete in Different Curing Condition. *International Journal of Civil Engineering and Geo-Environmental*, 4(56), pp.1-7.
- Sobolev K., Flores I., Saha R., Wasiuddin N.M., Saltibus N.E. (2014). The effect of fly ash on the rheological properties of bituminous materials. *FUEL*, 116(14), pp.471–477.
- Song X.J., Marosszeky M., Brungs M., Munn R. (2005). Durability of fly ash geopolymer concrete against sulphuric acid attack. *International Conference on Durability of Building Materials and Components*, 2(8), pp.1-7.
- Tan K., Ahn N., Anh T., Lee K. (2016). Theoretical and experimental study on mechanical properties and flexural strength of fly ash-geopolymer concrete. *Construction and Building Materials*, 106(12), pp.65–77.
- Teixeira E.R., Mateus R., Cam A.F., Branco F.G. (2016). Comparative environmental life-cycle analysis of concretes using biomass and coal fl y ashes as partial cement replacement material. *Journal of Cleaner Production*, 112(5), pp.2221-2230.
- Temuujin J., Minjigmaa A., Lee M., Chen-Tan N., Van Riessen A. (2011). Characterisation of Class F Fly Ash geopolymer pastes immersed in acid and alkaline solutions. *Cement and Concrete Composites*, 33(13), pp. 1086-1091.
- Thokchom S., Ghosh P., Ghosh S. (2009). Effect of water absorption, porosity and sorptivity on durability of geopolymer mortars. *ARPN Journal of Engineering*

and Applied Sciences, 4(7), pp.8-15.

- Topark-ngarm P., Chindaprasirt P., Sata V. (2015). Setting Time , Strength , and Bond of High-Calcium Materials. *Journal Material of Civil Engineering*, 27(7), pp.1– 7.
- Trtnik G., Kavcic F., Turk G. (2009). Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks. *Ultrasonics*, 49(4), pp.53–60.
- Van Jaarsveld J.G.S., Van Deventer J.S.J., Lukey, G.C. (2003). The Characterisation of Source Materials in Fly Ash-based Geopolymers. *Materials Letters*, 57(7), pp.1272-1280.
- Vickers L. (2015). Precursors and Additives for Geopolymer Synthesis. *Springerbriefs in Materials*, 2(7), pp.17-37.
- Wallah S.E. and Rangan B.V. (2006). Low calcium fly ash based geopolymer concrete: Long term properties, *Research report GC2*, Curtin University of Technology, Australia.
- Xu H. and Van Deventer, J. S. J. (2000). The Geopolymerisation of Alumino-Silicate Minerals. *International Journal of Mineral Processing* 59(3), pp. 247-266.
- Yong M., Liu J., Chua C.P., Alengaram U.J., Jumaat M.Z. (2014). Utilization of Palm Oil Fuel Ash as Binder in Lightweight Oil Palm Shell Geopolymer Concrete. *Advances in Materials Science and Technology*, 2014(12), pp.1-6.
- Zhu H., Zhang Z., Zhu Y., Tian L. (2014). Durability of alkali-activated fly ash concrete: Chloride penetration in pastes and mortars. *Construction and Building Materials*. 65(1), pp.51-59.