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ABSTRACT 

Mixing is the key component of polymer processing to achieve homogeneity 

of final product. Previous researchers have reported poor mixing performance of 

internal batch mixer (IBM) and twin screw extruder (TSE) due to improper 

distributive and dispersive mixings. This leads to poor product properties. Hence to 

overcome the problem, this research aims to design a rotor and mixing element to 

improve mixing performance of IBM and TSE. The basic rotor design for IBM was 

developed on the concept of Banbury and roller rotors and this design was then 

optimized to attain secondary flow. Distributive mixing performance of the 

optimized rotor was compared with commercial rotors using ANSYS Polyflow, with 

results showing the new rotor was found to be better than commercial rotors. Based 

on these results, a prototype of optimized design rotor was developed using 

Computer Numerical Control machine. Using this prototype rotor, nano calcium 

carbonate was dispersed in high density polyethylene and its morphology was 

analysed via scanning electron microscopy (SEM). SEM results showed improved 

dispersive mixing performance of prototype rotor compared to that of commercial 

rotor. This prototype rotor design was later modified into two mixing elements 

namely, Bean-UTM for intermeshing co-rotating TSE and Blade-UTM for 

intermeshing counter-rotating TSE. The Bean-UTM and Blade-UTM were examined 

for dispersive mixing (mixing index) and distributive mixing (logarithm of length of 

stretch, instantaneous efficiency and time average efficiency) and then were 

compared with commercial TSE mixing elements. The results showed Bean-UTM 

has better mixing performance than kneader mixing element of Dr. Collin TSE and 

the Blade-UTM has better mixing performance than screw mixing element of 

Coperian TSE. The findings of this research will hopefully solve the issue of poor 

mixing in IBM and TSE. 
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ABSTRAK 

Pencampuran adalah komponen utama pemprosesan polimer untuk mencapai 

kehomogenan produk akhir. Penyelidik terdahulu telah melaporkan prestasi 

pencampuran yang tidak memuaskan bagi pencampur kelompok dalaman (IBM) dan 

penyemperit skru berkembar (TSE) disebabkan oleh campuran taburan dan serakan 

yang tidak sempurna. Ini menghasilkan sifat-sifat produk yang bermutu rendah. 

Untuk mengatasi masalah ini, kajian dijalankan bertujuan untuk mereka bentuk rotor 

dan elemen pencampuran bagi meningkatkan prestasi campuran IBM dan TSE. Reka 

bentuk asas rotor untuk IBM telah dibangunkan berdasarkan konsep rotor Banbury 

dan penggelek dan seterusnya reka bentuk ini dioptimumkan untuk mencapai aliran 

sekunder. Prestasi taburan pencampuran rotor yang telah dioptimumkan 

dibandingkan dengan rotor komersial menggunakan ANSYS Polyflow, dengan 

keputusan menunjukkan rotor baharu lebih baik daripada rotor komersial. 

Berdasarkan keputusan ini, reka bentuk prototaip rotor yang telah dioptimumkan 

dibangunkan menggunakan mesin Kawalan Berangka Komputer. Dengan 

menggunakan prototaip rotor ini, kalsium karbonat nano telah diserakkan ke dalam 

polietilena ketumpatan tinggi dan morfologinya dianalisis menggunakan mikroskop 

elektron pengimbas (SEM). Keputusan SEM menunjukkan peningkatan prestasi 

serakan campuran prototaip rotor berbanding rotor komersial. Reka bentuk prototaip 

rotor kemudiannya telah diubahsuai kepada dua elemen campuran iaitu Bean-UTM 

untuk putaran searus antara jejaring TSE dan Blade-UTM untuk putaran berlawanan 

antara jejaring TSE. Bean-UTM dan Blade-UTM telah diperiksa untuk campuran 

serakan (indeks campuran) dan campuran taburan (logaritma daripada panjang 

regangan, kecekapan serta-merta dan purata kecekapan masa) dan kemudian 

dibandingkan dengan elemen campuran komersial TSE. Hasil kajian menunjukkan 

Bean-UTM mempunyai prestasi pencampuran yang lebih baik daripada elemen 

pencampuran kneader Dr. Collin TSE dan Blade-UTM mempunyai prestasi 

pencampuran yang lebih baik daripada elemen pencampuran skru Coperian TSE. 

Hasil kajian ini diharapkan akan dapat menyelesaikan isu pencampuran yang kurang 

baik di dalam IBM dan TSE. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Study 

Mixing is the most important step in polymer processing industries and it 

determines the homogeneity of the final end product (Rauwendaal, 2001; Tatterson 

et al., 1991). A mixing process involves two mechanisms, dispersive and distributive 

mixing.  In general, mixing begins with a „distributive‟ step (drops are deformed 

passively), followed by a „dispersive' one (drops break up into smaller droplets), and 

finally by the distribution of the droplets in the flow (Osswald and Hernandez-Ortiz, 

2006). 

The break-up of agglomerates or liquid cluster into small particles or droplets 

is termed as dispersive mixing. This has been studied by many researchers using 

shear and elongation stresses (Manas-zloczower and Tadmor, 1994; Rauwendaal, 

1999). The distribution of compounds such as small particles or droplets into the 

polymer melt matrix is termed as distributive mixing (Ottino, 1989). This has been 

studied by many researchers using logarithm of length of stretch (Cheng and Manas-

zloczower, 2004; Connelly and Kokini, 2004, 2007). 

There are two types of polymeric mixers, batch mixer (internal batch mixer) 

and continuous mixers (single screw and twin screw extruder). Internal batch mixer 

is again of two types, intermeshing rotors and non-intermeshing rotors. Intermeshing 

rotors work in synchronizing style with similar rotational speed. While, non-

intermeshing rotors work with both similar or at different rotational speeds.  
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However, most of the polymer industries use different rotational non-intermeshing 

type (Dick and Annicelli, 2001). Therefore, for batch mixer, this research work will 

focus on the use of non-intermeshing type internal batch mixer with different 

rotational speeds.  

Numerous experimental and numerical research studies have been published 

related to internal batch mixer (Bai et al., 2011; Flaherty, 1988; Hutchinson et al., 

1999; Jongen, 2000; Salahudeen et al., 2011). Notably, Salahudeen et al.(2011) 

studied the batch mixer using numerical simulation and verified the data 

experimentally. Salahudeen et al. (2011) identified the poor mixing region in 

commercial mixer such as cam, banbury and roller batch mixer.  They explained that 

this poor mixing region decreased the overall distributive mixing efficiency of 

internal batch mixer. Also they reported the generation of secondary flow between 

the rotor edge and mixing chamber by banbury rotor. They predicted that this 

secondary flow was created due to some design features of banbury rotor. 

Interestingly, overall dispersive mixing performance of banbury rotor was better than 

cam rotor and roller rotor. As for distributive mixing, roller rotor performance was 

considered better than cam rotor and banbury rotor.  

Therefore, in order to improve the distributive and dispersive mixing 

performance of internal batch mixer, this study will focus on developing a new rotor 

design with the features of banbury rotor and roller rotor for internal batch mixer. 

Additionally, the reason for generation of secondary flow will be analyzed in this 

research. 

As for continuous mixer, single screw extruder is not considered for this 

research work. The mixing capacity of a single screw extruder is considered weak. 

On industrial scale; twin screw extruders (TSE) are used for compounding and 

mixing purpose (Clextral, 2015; Connelly and Kokini, 2007; Rathod and Kokini, 

2013). Therefore, twin screw extruders were used for this research. Similar to batch 

mixer, TSE has two types, intermeshing and non-intermeshing.  Based on screw 

rotation it has two types, co-rotating and counter rotating TSE. On industrial scale; 

intermeshing co-rotating TSE and intermeshing counter-rotating TSE are commonly 
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used (Manas-Zloczower, 2009). As for TSE, this research work covered 

intermeshing co-rotating TSE and intermeshing counter-rotating TSE. 

Numerous experimental and numerical research studies have been published 

related to twin screw extruders (Bakalis and Karwe, 1999; Barrera et al., 2008; 

Bertrand et al., 2003; Bigio and Wang, 1996; Cheng and Manas-zloczower, 2004; 

Connelly and Kokini, 2007; Fard and Anderson, 2013b; Fard et al., 2012; Ishikawa et 

al., 2000; Sämann, 2008; Vyakaranam et al., 2012a; Zhang et al., 2009). Notably, 

Fard et al. (2012) and Fard and Anderson (2013) studied the mixing in twin screw 

extruders using kneader mixing element (co-rotating TSE) and Screw mixing 

element (SME) (counter rotating TSE). Fard et al. (2012) identified the poor mixing 

zones in the twin screw extruders. Fard and Anderson (2013) provided solution for 

poor mixing with an increase in the gap size between the mixing elements and 

between the mixing element and the barrel. The radial mixing (cross-sectional 

mixing) was improved due to the increase in amount of back flow. However, it 

decreased the axial mixing due to decrease in positive transport. In order to improve 

the axial mixing and overall mixing performance of TSE, this study focused on to 

develop new mixing element to replace kneader mixing element and SME for TSE. 

In this research, base design of new mixing element was adopted from the new rotor 

design of internal batch mixer. Similar approach was used to develop kneader mixing 

element for TSE from the base design of cam roller geometry of internal batch mixer 

by  Kiani and Burbank (2000). 

1.2 Problem Statement  

This research covered two important pieces of polymer mixing equipment i.e. 

internal batch mixer and twin screw extruders. In internal batch mixer, Salahudeen et 

al. (2011) identified the poor mixing region in commercial mixers such as cam, 

banbury and roller batch mixer.  This poor mixing region overall decreased the 

distributive mixing efficiency of internal batch mixer.  Comparatively, they 

identified roller rotor has better distributive mixing performance than cam rotor and 

banbury rotor. They identifed that banbury rotor has better dispersive mixing 
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performance compared to cam and roller rotor. Interestingly, they noticed secondary 

flow at the rotor edge of banbury rotor and it helped to improve the dispersive 

mixing performance of banabury rotor. They predicted that improved dispersive 

mixing was due to this secondary flow as shown in Figure 1.1.  

 

Figure 1.1  Schematic illustration of secondary flow (Eddy flow) in the velocity 

profile (Avitzur, 1983). 

In order to improve the distributive and dispersive mixing performance of 

internal batch mixer (Salahudeen et al., 2011), this study considered to develop new 

rotor design with the combined features of roller rotor (distributive mixing) and 

banbury rotor (dispersive mixing) for internal batch mixer. The reason behind the 

generation of secondary flow in banbury rotor was unknown. In order to unveil the 

secret, design procedure to develop secondary flow between rotor edge and mixing 

chamber was studied.  The result of the secondary flow study was implemented 

directly on the new rotor as well as in further studies on twin screw extruders. Design 

procedure to develop secondary flow in internal batch mixer and twin screw extruder 

is an one of the major contribution of this research. This design procedure can be 

used in any types of polymer mixing equipments. 
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In twin screw extruder, Fard et al. (2012) and Fard and Anderson (2013) 

studied the mixing in twin screw extruders using kneader mixing element (co-

rotating TSE) and Screw mixing element (SME) (counter rotating TSE). Fard et al. 

(2012) identified the poor mixing zones and Fard and Anderson (2013) provided 

solution to remove the poor mixing regions. However, this solution increased the 

radial mixing, but decreased the axial mixing. In order to improve the axial mixing, 

the focus of this research was to develop a new mixing element for TSE. In this 

research, new rotor design of internal batch mixer was adopted as a basic design for 

new mixing element of intermeshing co-rotating TSE and intermeshing counter 

rotating TSE. Please note that results of the design procedure to develop secondary 

flow was implemented on new mixing elements.  

The questions that needed to be answered in this research are: 

i. What is the general design parameter to develop secondary flow in internal 

batch mixer and TSE? 

ii. What is the best feasible rotor design for internal batch mixer based on 

distributive and dispersive mixing performance? 

iii. What is the effect of new TSE mixing element, developed based on the 

design of new rotor for internal batch mixer with kneader mixing element in 

intermeshing co-rotating TSE. 

iv. What is the effect of new TSE mixing element, developed based on the 

design of new rotor for internal batch mixer with screw mixing element in 

intermeshing counter rotating TSE. 

1.3 Objectives of Study 

The objective of this research was to develop a suitable rotor design for 

internal batch mixer with improved dispersive and distributive mixing performance 

than commercial rotor such as cam rotor, roller rotor and banbury rotor. Additionally, 

mixing elements for intermeshing co-rotating TSE and intermeshing counter-rotating 
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TSE was developed using new rotor design of internal batch mixer. Therefore, the 

specific objectives can further be classified as: 

i. To develop the general design procedure for secondary flow in internal batch 

mixer and TSE. 

ii. To determine the best feasible rotor design for internal batch mixer based on 

distributive and dispersive mixing performance experimentally and 

numerically. 

iii. To simulate the effect of new TSE mixing element developed based on the 

design of new rotor for internal batch mixer with Kneader mixing element in 

intermeshing co-rotating TSE using ANSYS Polyflow. 

iv. To simulate the effect of new TSE mixing element developed based on the 

design of new rotor for internal batch mixer with screw mixing element in 

intermeshing counter rotating TSE using ANSYS Polyflow. 

1.4 Scope of Study 

Materials used for this work are High density polyethylene (HDPE- injection 

molding grade), red master batch (Injection molding grade) and Nano Calcium 

carbonate ( approximately 20 nm). 

The following equipment and softwares were used for the model design 

purpose. Equipments such as internal batch mixer (Haake Polylab, Germany) with 

different rotors; cam, banbury and roller rotors, kneader mixing element for 

intermeshing co-rotating TSE from COLLIN Twin-screw Extruder, Germany, Screw 

mixing element (SME) for Intermeshing counter-rotating TSE from COPERION 

Twin-screw Extruder, Germany were used. Softwares such as- ANSYS POLYFLOW 

and supportive applications - ANSYS DESIGN MODELER, ANSYS MESHING, 

ANSYS POLYDATA, ANSYS POLYMAT, ANSYS POLYSTAT, ANSYS CFX 

and ANSYS POLYCURVE were used. ANSYS DESIGN MODELER was used to 

create a base geometry for the simulation. ANSYS MESHING was used to create 



7 

 

meshes on the geometry. ANSYS POLYDATA was used to perform simulation task 

on the meshed geometry. ANSYS POLYMAT was used to generate material data 

from the experimental rheological data. ANSYS POLYCURVE was used to draw 

XY curve plots. ANSYS POLYSTAT was used to generate raw data and curves from 

the result files of POLYDATA. ANSYS CFX was used to graphically visualize the 

result files of POLYDATA. 

The rheological data was generated experimentally using AR-G2 Rheometer 

(TA Instrument).  For simulation, this shear –viscosity data was used as a polymer 

(melt domain) material data. 

Experimental methods - Injection molding grade HDPE was melted in 

internal batch mixer, followed by injection of red master batch for specific period of 

time at 20 sec and 60 sec. The constant temperature of 190° C was maintained. The 

result was recorded via digital camera.  

Experimental methods – Injection molding grade HDPE was melted in 

internal batch mixer, followed by injection of 2% of nano calcium carbonate for 5 

min.  The result was analyzed using scanning electron microscopy (SEM).  

Simulation methods – For internal batch mixer, constant speed ratio of 9 rpm 

(left rotor) / 6 rpm (right rotor) and constant temperature of 190° C were used. As for 

intermeshing co-rotating TSE and intermeshing counter-rotating TSE, constant speed 

of 9 rpm was maintained. ANSYS supporting software‟s such as ANSYS 

POLYMAT, ANSYS POLYCURVE and ANSYS CFX were used for result analysis. 
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