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ABSTRACT 

The model updating method is one popular method in vibration-based 

damage detection. However, the conventional model updating method requires a 

finite element (FE) model for sensitive computation during the iteration process, 

which leads to the problem of slow convergence and high time consumption. 

Therefore, the response surface methodology (RSM) has emerged as an alternative 

tool in FE model updating due to easy implementation and time-efficient processing 

where the computationally expensive analytical FE model is replaced by the simple 

and inexpensive response surface (RS) model. A recent RSM application in 

structural damage detection employs frequency as the sole response feature, limiting 

its ability to localise the existence of damage due to the inability of the frequency to 

ascertain damage in a symmetric structure. Therefore, a better RSM employing 

frequency and mode shapes as the response features is proposed in this study, as both 

parameters are proven sensitive to damage location. The implementation of the 

proposed method involves a three-phase procedure; (i) sampling, (ii) RS modelling 

and (iii) model updating. In order to develop the best RS model, two major 

parameters in the sampling stage, design of experiments (DOEs) and design spaces 

are carefully assessed through a series of sensitivity studies based on their damage 

detectability. The applicability of the technique is applied to detect simulated damage 

in numerical models of simply supported beam and steel frame structures as well as a 

laboratory tested steel portal frame. The results from sensitivity studies show that 

central composite design (CCD) with more sampling points in a small design space 

has better performance in detecting damages due to dense population of data which 

adequately represents the design space. The results from numerical study 

demonstrated that the proposed RSM method has a good ability to detect damage due 

to noise free data while results from experimental study depicted some false 

detections. It is concluded that the proposed method is reliable in damage detection 

provided that the data has good precision. Nevertheless, the presence of noise and 

errors in real practice are inevitable, thus pollute the measured data. Therefore, it is 

suggested to incorporate the effect of uncertainties in the proposed RSM to improve 

its applicability in real practice.  



vi 

 

ABSTRAK 

Kaedah mengemaskini model merupakan salah satu kaedah yang popular 

dalam mengesan kerosakan berasaskan getaran. Walau bagaimanapun, kaedah 

konvensional mengemaskini model memerlukan model unsur terhingga (finite 

element, FE) bagi pengiraan sensitif semasa proses lelaran yang menyebabkan 

masalah penumpuan perlahan dan penggunaan masa yang tinggi. Oleh itu, kaedah 

permukaan tindak balas (response surface methodology, RSM) telah muncul sebagai 

alternatif dalam mengemaskini model FE kerana pelaksanaan yang mudah dan 

proses yang efisyen di mana pengiraan analisis model FE yang mahal digantikan 

dengan permukaan tindak balas (response surface, RS) yang mudah dan murah. 

Applikasi terbaru RSM dalam mengesan kerosakan struktur menggunakan frekuensi 

sebagai ciri tindak balas tunggal, telah menghadkan keupayaannya dalam 

mengenalpasti lokasi kerosakan disebabkan ketidakupayaan frekuensi dalam 

mengenalpasti kerosakan dalam struktur yang simetri. Oleh itu, RSM yang lebih baik 

dengan menggunakan frequensi dan mod bentuk sebagai ciri tindak balas 

dicadangkan dalam kajian ini kerana kedua-dua parameter ini terbukti sensitif 

terhadap lokasi kerosakan. Pelaksanaan kaedah yang dicadangkan melibatkan 

prosedur tiga fasa; (i) persampelan, (ii) permodelan RS dan (iii) mengemaskini 

model. Bagi membina model RS terbaik, dua parameter utama di fasa persampelan 

iaitu rekabentuk eksperimen (design of experiments, DOEs) dan ruang rekabentuk, 

dinilai dengan teliti melalui satu siri kajian sensitiviti berdasarkan keupayan 

mengesan kerosakan. Kebolehgunaan teknik ini diaplikasikan untuk mengesan 

kerosakan simulasi dalam model berangka bagi struktur rasuk sokong mudah dan 

kerangka keluli serta kerangka portal keluli yang diuji di makmal. Hasil kajian 

sensitiviti menunjukkan bahawa rekabentuk komposit pusat (central composite 

design, CCD) dengan titik persampelan yang lebih banyak dalam ruang rekabentuk 

yang kecil mempunyai prestasi yang lebih baik dalam mengesan kerosakan 

disebabkan oleh populasi data yang padat yang mewakili ruang rekabentuk 

secukupnya. Hasil kajian berangka menunjukkan bahawa kaedah RSM yang 

dicadangkan mempunyai keupayaan yang baik untuk mengesan kerosakan yang 

disebabkan oleh data bebas gangguan manakala hasil kajian eksperimen 

menunjukkan beberapa pengesanan palsu. Disimpulkan bahawa kaedah yang 

dicadangkan boleh dipercayai untuk mengesan kerosakan dengan syarat bahawa data 

yang digunakan mempunyai ketepatan yang baik. Walau bagaimanapun, kewujudan 

gangguan dan ralat dalam amalan sebenar tidak dapat dielakkan, lantas mencemarkan 

data diukur. Oleh itu, adalah dicadangkan untuk menggabungkan kesan 

ketidakpastian dalam RSM yang dicadangkan untuk meningkatkan kebolehgunaan 

dalam amalan sebenar. 
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CHAPTER 1  

INTRODUCTION 

1.0 Introduction 

Many civil structures such as buildings and bridges are built to provide 

essential welfare in communities. These valuable assets are normally designed to be 

in service for a long lifespan. However, throughout their service time, the structures 

suffer from deterioration due to usage, environmental effects and accidental events 

such as earthquake. All these factors lead to local or global damage to the structures 

such as cracks, corrosion, delamination, disintegration and others that affect the 

integrity of structures. At worst, consequences like catastrophic failure might occur, 

which results in injuries, loss of human life and long term impacts on social and 

economic factors.  

Several incidents have been reported due to loss of integrity of in-service 

structures. For example, the sudden collapse of the I-35W bridge over the 

Mississippi River in Minneapolis, Minnesota, on 01 August 2007 was due to 

improper structural design of the gusset plates used in the truss structures (Hao, 

2010). An incident involving a building was the eight-storey Rana Plaza factory 

building in Savar, Bangladesh, where the warning to evacuate the building when 

cracks appeared a day before the collapse of the building on 24 April 2013 had been 

ignored. This incident resulted in about 2500 injured people and a death toll of more 

than 1000, and is thus considered as the deadliest structural failure incident (BBC 

News, 2013). Another building collapse incident reported on 27 September 2013 in 

Mumbai, India involved a five-story residential building, killing 61 due to improper 
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renovation and illegal removal of a central wall and supporting beams (Cook, Yan 

and Udas, 2013). Recently, shoddy renovations and construction were blamed for the 

collapse of Gyeongju Mauna Resort Gymnasium in Korea (The Star, 2014) and 

Military Training Center barracks in Omsk, in the south of Russia (Steward, 2105). 

The occurrences of the aforementioned incidents have shown that an efficient 

method is vital in inspection and monitoring the safety conditions of the structures. 

This can be achieved by Structural Health Monitoring (SHM), a tool to diagnose the 

state of the structure.  The application of SHM prolongs the life of structures through 

early detection of damage, thus minimising the potential for catastrophes.   

1.1 Background of problem 

SHM can be categorised into local and global methods. In the local method, 

visual inspection or non-destructive tests (NDT) such as ultrasonic waves, magnetic 

field, radio-frequency, eddy-current, thermal field and fibre optic are applied to 

assess the structure. However, the methods are labour-intensive and require clues to 

the damaged area. Therefore, the global method, namely vibration-based damage 

detection, has been explored by civil engineers over the past three decades due to its 

ability to diagnose structures as a whole (Cawley and Adams, 1979). Unlike the NDT 

local methods, this non-destructive global method is useful for SHM because it does 

not require prior knowledge of the damage location. Vibration-based methods utilise 

the fact that the presence of damage will reduce the stiffness and mass properties of 

the structure and subsequently change its dynamic behaviour. The vibration 

parameters are categorised into time, frequency and modal domains. The modal 

domain, which includes the frequency, mode shapes and damping ratio, is commonly 

employed as damage indicator because it is easier to determine and interpret than the 

other two domains (Doebling et al., 1996). By knowing the differences in these 

parameters between the undamaged and damaged states, damage location and 

severity information can be obtained. 

Abundant research has been performed to develop vibration-based damage 

detection methods. One method that has received attention is the model updating 
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method. This method adjusts the mass, stiffness and damping parameters of 

numerical models for better agreement between the numerical model and test model. 

Model updating methods are categorised into non-iterative and iterative methods. 

Non-iterative methods directly update the stiffness and mass matrices of the 

numerical model through a closed-form direct solution. However, such methods 

leads to the loss of structural connectivity, and the suggested corrections are not 

always physically meaningful (Jaishi and Ren, 2006). On the other hand, iterative 

methods require sensitivity matrices to guide iteration in minimising the objective 

function. However, the sensitivity-based method seems not practical to be applied to 

structures with high degrees of freedom (DOFs) as it results in a time-consuming 

process due to the increase in DOFs. In addition, it also has problems of ill- 

conditioning and slow convergence due to dependency on the evaluation of the finite 

element (FE) model in every iteration process. 

Therefore, an alternative method has recently been proposed to provide a fast 

running process by replacing the computationally expensive analytical FE model 

with a metamodel or surrogate model. A statistical-based surrogate model approach 

called response surface methodology (RSM) has been used considerably in model 

updating due to simplicity, and allows fast optimisation because of smooth gradients, 

thus lessening the convergence problem. The applicability and potential of RSM in 

reducing computation time and effort in the model updating process in the structural 

dynamic field have been demonstrated in many studies (Guo and Zhang, 2004; Deng 

and Cai, 2009; Ren and Chen, 2010; Ren, Fang and Deng, 2010; Han and Luo, 

2013). Therefore, this study has made good use of the RSM merit by applying the 

RSM method for vibration-based damage detection.   

1.2 Problem statements 

As mentioned previously, the common method used in model updating-based 

damage detection based on sensitivity matrices is prone to ill-conditioning and is 

time-consuming due to dependency on the computationally expensive FE model. An 

alternative has been initiated to replace the complex FE model with simple and 
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inexpensive surrogate models to reduce the computational complexity via RSM. 

Many studies have proven the efficiency of RSM in model updating. However, the 

applications are limited to updating the baseline of the FE model only while studies 

pertaining to RSM in the application of vibration-based damage detection are 

somewhat scarce and limited to the employment of modal frequency as the sole 

response feature. As frequency is a global parameter that is insensitive to spatial 

information, the frequency-based RSM is less reliable in providing information about 

damage location. Due to the limitations above, this study proposed a new RSM 

method for damage detection by considering both frequency and mode shapes for 

better damage localisation.  

1.3 Research objectives 

With the aim of developing a new model updating-based method damage 

detection, this study is undertaken with the following objectives: 

i. To investigate the applicability of RSM for damage detection based on modal 

data. 

ii. To study the behaviour of RSM parameters in vibration-based damage 

detection.  

iii. To validate the proposed RSM numerically and experimentally. 

1.4 Significance of study 

The motivation for this study is the drawbacks of the traditional FE model 

updating-based damage detection, which as mentioned earlier features convergence 

difficulty and long computation time, especially for complex structures. During 

iteration in the model updating process, the updated parameters will be sent to the FE 

software such as ANSYS to run the FE model with new updated parameters. This 

back and forth process limits the applications of the model updating-based approach 
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in real practice of damage detection. By having a new and practical method using 

RSM, mathematical functions that explain the input-response relationship in 

structural systems can be expressed explicitly. These explicit functions, called the 

response surface (RS) model are beneficial as they can be employed to provide an 

efficient updating process to detect damage. Given that the application of model 

updating-based RSM in vibration-based damage detection particularly with the use 

of mode shapes is not yet discovered, the existing RSM-based damage detection is 

improved by considering combined frequencies and mode shapes as the response 

features. With this improvement, the accuracy of the output of damage detection can 

be increased.  

1.5 Research scope and limitations 

This study is focused on the use of RSM in the application of structural 

damage detection considering frequency and mode shapes data for better damage 

localisation. However, the scope of this study is limited as follows:  

i. The comparison between RSM-based and traditional model updating methods 

is conducted through literature study only since this study focused primarily 

on the applicability of RSM in damage detection by considering both 

frequency and mode shapes data. 

ii. The structural damage in this study is solely presented by the changes of 

stiffness and thus, no alteration is made to the mass property. Another 

assumption applied in this study is that the stiffness is reflected in the elastic 

modulus of the structure, hence selected as the RSM updating parameters.  

iii. In the context of vibration data, the modal domain, especially the modal 

frequencies and mode shapes, are the focus of this study and are subsequently 

utilised in the RSM method for damage detection. To show the superiority of 

the proposed RSM method, the method is compared to the existing 

frequency-based RSM in terms of damage detectability.  

iv. Since a proper sampling is crucial in achieving an adequate representation of 

the relationship between the selected input parameters and response features 
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to serve as a surrogate model, a series of sensitivity studies on two sampling 

parameters are conducted. The purpose of conducting sensitivity studies is to 

investigate the effect of DOE and design space parameters on the ability of 

RSM to detect structural damage. Since the quadratic response surface (RS) 

model is mainly used in this study, only three DOEs comprising CCD, Box–

Behnken design (BBD) and D-optimal design are considered due to the their 

wide usage in deriving quadratic RS models. 

v. The applicability of the proposed method is demonstrated through numerical 

models of a simply supported beam and a portal frame and further verified 

using a lab tested steel frame. The experiment is conducted within the control 

condition in a laboratory.   

1.6 Outline of thesis 

This thesis consists of six chapters and is organised as follows: 

Chapter 1 presents the background, problem statements, research objectives, 

significance, scope of the study and outline of the thesis.  

Chapter 2 reviews the studies related to SHM, basic theory of vibration-based 

damage detection as well as various damage detection methods. The advantages and 

disadvantages of each method are discussed and the applicability of RSM in model 

updating and damage detection is also reviewed in the chapter. 

Chapter 3 outlines the proposed RSM method employing frequencies and 

mode shapes through a three-phase procedure: sampling, RS modelling and model 

updating. The description of numerical models, experimental models and sensitivity 

studies are also given in the chapter.  

Chapter 4 demonstrates the applicability of the proposed method through 

numerical study using a simply supported beam and a steel frame. Sensitivity study 
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on the DOEs, design bounds and type of response features to the damage 

detectability are conducted.  

Chapter 5 provides the details of experimental model, modal testing 

procedures, damage scenarios and damage detection procedures that consist of a two-

stage process comprising model updating of the reference state and damaged state.  

Chapter 6 summarises the methodology and findings from numerical and 

experimental studies and finally proposes recommendations for future research 

related to the subject of the study. 
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