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ABSTRACT 

 

 

A series of samples of undoped magnesium sulfoborate glasses and crystals 

with chemical composition of xMgO+(50‒x) SO3+50B2O3, with 10 ≤ x ≤ 30 mol% 

were prepared by melt quenching and solid state reaction method respectively. Then 

a series of glass and crystal samples doped with rare earth (RE = Dy2O3, Eu2O3 and 

Sm2O3) with the chemical compositions of 10MgO+40SO3+(50‒y) B2O3+yRE, with 

0.1≤ y ≤ 1.0 mol% were also prepared by melt quenching and solid state reaction 

method respectively. The amorphous/crystalline phases of the glass and crystal 

samples were characterized by X‒Ray diffraction (XRD), while the structural 

features of the samples were measured using Fourier transform infrared (FTIR), 

Raman and nuclear magnetic resonance (NMR) spectroscopy. The optical properties 

of glass and crystal samples were characterized via UV‒Vis‒NIR and luminescence 

spectroscopy. The amorphous phase of the glass samples was confirmed by the 

diffused broad XRD pattern, while the crystal samples showed two crystalline phases 

of H3BO3 and MgSO4(H2O)6. The infrared spectra show the coexistence of BO3, 

BO4, SO4
2

 and S‒O‒B (sulfoborate group) structural units in both glass and crystal 

samples. The Raman spectra also reveal the coexistence of BO4, SO4
2 and S‒O‒B 

(sulfoborate group) structural units in both glass and crystal samples. The NMR 

spectra show the existence BO4 structural units in both glass and crystalline samples. 

The luminescence spectra of Dy3+ doped glass and doped crystal samples exhibit 

three emission bands at around 482 nm, 575 nm and 662 nm correspond to the 
4F9/2→

6H15/2, 
4F9/2→ 6H13/2 and 4F9/2→

6H11/2 transitions respectively. As for Eu3+ 

doped glass samples, the emission spectra show peaks at 592 nm, 616 nm, 658 nm 

and 697 nm correspond to the 5D0→
7F1, 

5D0→
7F2, 

5D0→
7F3 and 5D0→

7F4 transitions 

respectively, while for crystal samples, the emission spectra show six peaks belongs 

to Eu2+ and Eu3+ ions. The emission spectra of glass and crystal samples doped with 

Sm3+ ions show dominant peaks at around 565 nm, 601 nm, 646 nm and 706 nm 

correspond to the 4G5/2→
6H5/2, 

4G5/2→
6H7/2, 

4G5/2→
6H9/2 and 4G5/2→

6H11/2 transitions 

respectively. The refractive index and quantum efficiency were calculated for all the 

studied samples. The higher value of branching ratios from 4F9/2→ 6H13/2 and 
4G5/2→

6H7/2 transitions showed that Dy3+ and Sm3+ doped magnesium sulfoborate 

glasses and crystals are good candidates for lasing and lighting device applications. 
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ABSTRAK 

 

 

Satu siri sampel kaca dan kristal magnesium sulfoborate tak berdop dengan 

komposisi kimia xMgO+(50‒x) SO3+50B2O3, dengan 10 ≤ x ≤ 30 mol% telah 

disediakan masing‒masing melalui kaedah sepuhlindap leburan dan tindak balas 

keadaan pepejal. Kemudian satu siri sampel kaca dan kristal berdop dengan nadir 

bumi (RE = Dy2O3, Eu2O3 dan Sm2O3) dengan komposisi kimia 

10MgO+40SO3+(50‒y) B2O3+yRE, dengan 0.1≤ y ≤ 1.0 mol% juga telah disediakan 

masing‒masing melalui kaedah sepuhlindap leburan dan tindak balas keadaan 

pepejal. Fasa amorfus/ kristal sampel kaca dan kristal telah dicirikan oleh 

pembelauan sinar‒X (XRD), sementara ciri struktur sampel telah diukur 

menggunakan spektroskopi inframerah transformasi Fourier (FTIR), Raman dan 

resonans magnet nuklear (NMR). Sifat optik sampel kaca dan kristal dicirikan 

melalui spektroskopi UV‒Vis‒NIR dan luminesens. Fasa amorfus sampel kaca telah 

disahkan oleh corak belauan XRD yang melebar, sementara sampel kristal 

menunjukkan dua fasa kristal H3BO3 dan MgSO4(H2O)6. Spektrum inframerah 

menunjukkan ujud sama dan struktur unit bagi BO3, BO4, SO4
2 dan S‒O‒B 

(kumpulan sulfoborate) dalam kedua‒dua sampel kaca dan kristal. Spektrum Raman 

juga mendedahkan ujud sama struktur unit BO4, SO4
2 dan  S‒O‒B (kumpulan 

sulfoborate) dalam kedua‒dua sampel kaca dan kristal. Spektrum NMR 

menunjukkan kewujudan struktur unit BO4 dalam kedua‒dua sampel kaca dan 

kristal. Spektrum luminesens sampel kaca dan kristal berdop Dy3+ mempamerkan 

tiga jalur pancaran pada sekitar 482 nm, 575 nm dan 662 nm, masing‒masing 

berpadanan dengan peralihan 4F9/2→
6H15/2, 

4F9/2→ 6H13/2 dan 4F9/2→
6H11/2. Bagi 

sampel kaca berdop Eu3+, spektrum pancaran menunjukkan puncak pada 592 nm, 

616 nm, 658 nm dan 697 nm, masing‒masing berpadanan dengan peralihan 
5D0→

7F1, 
5D0→

7F2, 
5D0→

7F3 dan 5D0→
7F4, manakala bagi sampel kristal, spektrum 

pancaran menunjukkan enam puncak kepunyaan ion Eu2+ dan Eu3+. Spektrum 

pancaran bagi sampel kaca dan kristal berdop Sm3+ menunjukkan puncak dominan 

pada sekitar 565 nm, 601 nm, 646 nm dan 706 nm, masing‒masing berpadanan 

dengan peralihan dari 4G5/2→
6H5/2, 

4G5/2→
6H7/2, 

4G5/2→
6H9/2 dan 4G5/2→

6H11/2. Indek 

biasan dan kecekapan kuantum telah dikira untuk semua sampel yang dikaji. Nilai 

nisbah cabang yang agak tinggi bagi peralihan 4F9/2→ 6H13/2 dan 4G5/2→
6H7/2 

menyarankan bahawa sampel kaca dan kristal magnesium sulfoborate berdop ion 

Dy3+ dan Sm3+ berpotensi untuk digunakan sebagai bahan laser dan peranti 

pencahayaan. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 Background of the Research 

 

A Glass is solid that has an amorphous structure, short range order of atomic 

arrangement, lack of uniformity, and have no long range periodically which yielded 

fairly random structure unlike crystal with a well‒defined structure and atoms 

arranged in three dimensional periodic and long range order. Therefore, instead of 

crystalline sharp peaks, a glass has broad hump is seen in the X‒ray diffraction 

pattern of a glass. A glass has significance role both scientifically and 

technologically due to its good transparency, chemical durability, electrical and 

thermal features (Alajerami et al., 2012). Hence, glass has wide range of application, 

such as television screen, containers, chemical laboratory equipment, fiber optics, 

lasers (Mhareb et al., 2014a). Therefore, the difference between glass and  crystal are 

the presence of long range arrangement, symmetric and uniformity in the crystal 

structure (Sahar, 1998). Crystal is playing  significant role, due to their potential 

applications in various field, such as phosphor for plasma display panels, nonlinear 

optical (NLO), luminescent materials and optical communication components 

(Pavani et al., 2011).  

 

The glass composition is very significant for the formation of glass. The basic 

condition for glass formation is the existence of strongly bonded large networks or 

long chains of atoms in the liquid, and showed that a good glass must contain many 

bonds or linkages of the types that have high bond strengths such as B‒O‒B, Si‒O, 
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Ge‒O and P‒O as glass formers. However, some oxides are defined as glass formers 

such as borate (B2O3), Phosphate (P2O5), silicate (SiO2) and Germinate (GeO2), 

because they have glass‒forming ability under normal quenching conditions by 

themselves, but act like glass formers when combined with others such as ZnO, PbO, 

MgO CaO, BaO (Gautam et al., 2012). 

 

For the formation of crystal, generally, the glass compositions are decided for 

crystal. The formation of Bi3B5O12 and Bi4B2O9 crystalline phase by heat treatment 

from the composition of glass 3Bi2O3–5B2O3 (Bajaj et al., 2009; Burianek et al., 

2006; Muehlberg et al., 2002). Bi3B5O12  and  Bi4B2O9 crystals also could be formed 

in the glasses with composition of xBi2O3–(100‒x)B2O3 (x = 20 to 66 mol%) (Bajaj 

et al., 2009). According to Lin et al., 2007 the composition La2O3–3B2O3–

0.06Eu2O3 formed both. 

 

Currently, much more attention has been paid to borate glass and crystal due 

their applications in technological such as solid state lasers, nonlinear optics and 

solar (Alajerami et al., 2012). Borate glass are known to have important properties 

which include low melting point, good thermal stability, good solubility of rare‒earth 

ions (Guana et al., 2013). Borate acts as the glass former, because of its high bond 

strength, lower cation size and smaller heat of fusion and is incorporated into various 

glass systems as a flux material to attain materials of high technological application 

(Sumalatha et al., 2011). Borate constitute an interesting system, which the network 

building unit can be either borate triangles (BO3) with non‒bridging atoms or borate 

tetrahedral (BO4) with all bridging oxygen atoms. Borate glass can easily be melted, 

owning smaller mass compare to other glass network former, thermal stable and 

chemical durable. In addition, they are high transparency and acted as a good host for 

transition metal ions and rare earth ions making them suitable for optical materials. 

Therefore, hydroscopic properties and the high phonon energy of B2O3 are 

considered as a drawback to the glass industry (Vijayakumar et al., 2015). 

 

The use of sulfate as a intermediate in to the borate network influence the 

structure of the borate units and the boron in the system retain of four coordinate 

from interaction between sulfate and borate units, as observed from Raman, IR and 

NMR spectroscopy (Ganguli and Rao, 1999). The sulfate have lower operating 
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temperature of 700‒1000 oC  (Pitha et al., 1947). Sulfate have studied because of 

good properties such as good transparency and low melting temperature which are 

material for good UV and IR transmission. However, sulfate is an attractive 

compound and important for a range of many applications (Gedam et al., 2006). 

Unfortunately, poor chemical durability and hygroscopic nature of sulfate discourage 

their limit practical applications. Therefore, addition of alkali earth metals has proven 

to enhance their chemical stability (Vyatchina et al., 2005). 

 

However, to overcome the individual limitations of borate and sulfate, the 

two are combined to form a new material called “Sulfoborate” which offers greater 

advantage as they show different properties (Vyatchina et al., 2005). The presence of 

SO3 in the borate glass can enhance the glass quality when modified with alkali earth 

metals (Vyatchina et al., 2009).  Vyatchina et al. (2005) reported that sulfoborate 

glass have acceptable chemical durability compared to pure borate and has drawn 

attention of researchers because of their good stability. 

 

Meanwhile, according to Mansour, (2012) addition of  network modifier 

(magnesium oxide) into borate glass could create the conversion of the triangular 

BO3 structural units to BO4 tetrahedral, and also alter the structure and improve the 

glass and crystal properties (Reduan et al., 2014). Alkali or alkaline oxides were 

frequently applied as modifiers; Therefore, this modifier shift up the boroxyl rings, 

and the active groups in the mixture, to form tri‒and tetra‒bond on the host 

(Alajerami et al., 2012). The alkaline earth ions based borates have been used in 

various applications such as vacuum ultraviolet (VUV) optics, radiation dosimetry 

and solar energy converters (Lim et al., 2014a). Addition of magnesium as modifier 

into sulfoborate can enhance the release of electrons and to reduce the hygroscopic 

nature of sulfoborate (Mhareb et al., 2014a). 

 

Furthermore, glass and crystal activated with activator. Such activator is 

either rare earth or transition metals ion which have been identified as a good 

luminescence host material which convert an incident energy input into emission of 

electromagnetic waves in the ultraviolet (UV), visible (Vis), or infrared (IR) regions 

of the spectrum (You et al., 2011). Rare earth (RE) doped glasses and crystal 

materials have potential application in the fields such as laser material, fiber, 



4 

information display, optoelectronic (Rajesh et al., 2012a). Rare earth (RE) doped 

materials correspond to the 4f–4f and 4f–5d electronic transitions which is due to the 

shielding effect from the outer orbital (5s and 5p) on the 4f electrons. The rare earth 

doped materials have potential applications for instance in lasers, security, 

decoration, semiconductor and medication. Some of the products for example 

fluorescence lamp, escape routes, television monitor, warning signs, light emitting 

diodes, laser detection, luminous paints and so on. The sulfoborate glass host doped 

with rare earth ion are known to have important properties such as lower melting 

point, good solubility of rare earth ion  and good thermal stability  (Lim et al., 2014). 

 

In addition, intensity trivalent rare earth ions, some host media were 

describing and estimated quantitatively via Judd‒Ofelt theory (Agarwal et al., 2009). 

In the Judd‒Ofelt theory the transition probability between any pair of stark 

sublevels of the rare earth (RE) ion activator in 4fN configuration can be written in 

terms of three phenomenological parameters called Ωλ (λ = 2, 4, 6), which are called 

Judd‒Ofelt parameters. These parameters are determined experimentally by means of 

an adjustment intensities of the lines with corresponding theoretical and experimental 

lines registered in the absorption spectrum. Most of the study have conducted to 

describe the behaviour of these parameters, for instance, according to Kindrat et al., 

(2015b) the intensity parameter Ω2 shows the dependence on the covalence between 

rare earth ions (RE) and ligands an ions, since the parameter Ω2 reflects the 

asymmetry of the local environment at the rare earth ion (RE) site, and therefore Ω2 

is very small for ionic materials, and quite large for covalent materials, while the 

parameters Ω4 and Ω6 are related to the rigidity of the matrix. These parameters are 

used to evaluate the radiative properties such as radiative transition probability (Arad, 

s‒1), radiative lifetime (τrad, sec) and an important parameter called fluorescence 

branching ratio (βr) that characterizes the lasing power transition (Agarwal et al., 

2009).  

 

Over the past few decades, much attention has been focused towards 

dysprosium, europium and samarium ions doped glass or crystal materials for the 

development of optical devices such as lighting devices and solid state laser (Li et 

al., 2010). To date, these material become an interesting topic in the field of material 

science and hence need to be further investigate. 
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 Problem Statement 

 

Currently, a great deal of research has been focused on rare earth doped 

magnesium borate glasses due to their potential applications (Reduan et al., 2014b; 

Alajerami et al., 2012). But, the investigation on the luminescence properties of rare 

earth doped sulfoborate glass and crystal is not many. However, there was limited 

structural information regarding effect in the sulfo‒borate as the host that can be 

reasoned to find a good luminescence material. Meanwhile, the study on the 

luminescence properties of rare earth doped sulfo‒borate glass and crystal are not 

fully understood. In addition, the Judd‒Ofelt analysis on the Dy3+, Eu3+ and Sm3+ 

ions doped in sulfoborate glass and crystal is very less reported. Therefore, in this 

study, magnesium sulfoborate doped Dy3+, Eu3+ and Sm3+ ions present to synthesis 

the glass and crystal materials by using melt quenching and solid state reaction 

method respectively. The investigation of structural features was important in order 

to study the structures changes in the doped and un‒doped samples. Also, to 

investigate the influence of vary concentration of Dy3+, Eu3+ and Sm3+ ions on the 

optical properties. 

 

 

  Objectives of the Study 

 

The following are the objectives of this study 

i. To determine the influence of doped and undoped magnesium sulfoborate 

glasses in terms of structure features and to compare with the similar 

composition of the crystalline. 

ii. To determine the impact of concentration and types of dopants such as Dy3+, 

Eu3+ and Sm3+ ions in terms of enhancement of luminescence characteristic 

between glass and crystal. 

iii. To analyse and compare the absorption and emission data of sulfoborate glass 

and crystal doped Dy3+, Eu3+ and Sm3+ ions in terms of radiative properties 

by using Judd‒Ofelt analysis. 
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 Scope of the Research 

 

In this study, the samples undoped magnesium sulfoborate glasses and 

crystals with chemical composition xMgO+(50‒x) SO3+50B2O3 with 10 ≤ x ≤ 30 

mol % were prepared by conventional melt quenching and solid state reaction 

method respectively. The series of glass and crystal samples doped with rare earth 

(RE= Dy2O3, Eu2O3 and Sm2O3) with the chemical compositions of 

10MgO+40SO3+(50‒y) B2O3+yRE with 0.1≤ y ≤ 1.0 mol% were also been prepared 

by conventional melt quenching and solid state reaction method respectively. Sulpur 

oxide was incorporate into borate as intermediate to enhance the host network 

whereas magnesium oxide was used as modifier to reduce the hygroscopic 

properties.  Dy3+, Eu3+ and Sm3+ ions were chosen to be dopant ions in order to 

investigate the impact of the dopant on the structural, luminescence properties and 

Judd‒Ofelt analysis. Different types of measurements were used. The phase of the 

prepared samples was determined by the X‒Ray Diffraction measurement. The 

structural features for doped and un‒doped samples were determined by Infrared, 

Raman and Nuclear magnetic resonance spectrometer. As for luminescence 

properties was determined by photoluminescence spectrometer. The optical 

properties in the glass and crystal samples was determined using UV‒Visible‒NIR 

spectrometer, meanwhile, band gap, refractive index, Judd‒Ofelt parameters was 

calculated from UV‒Visible‒NIR spectra and radiative properties was calculated 

from emission spectra. 

 

 

 Significance of the study 

 

This study has been done to understand more on the structural features, 

luminescence properties and Judd‒Ofelt analysis of glass and crystal. However, 

doping the samples with Dy3+, Eu3+ and Sm3+ may develop new luminescence 

materials. In addition, the study on optical and luminescence properties in this work 

is important in providing a baseline data that can be used for further research and 

development of luminescence host material for solid state lighting devices. 
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 Outline of Study 

 

There are six chapters in this study. The background, problem statement, 

objectives, Scope, Significance and outline of study are described related to 

magnesium sulfoborate glass and crystal, and magnesium sulfoborate doped with 

Dy3+, Eu3+ and Sm3+ ions are presented in chapter 1. Chapter 2 covered the general 

review on magnesium sulfoborate glass and crystal with more emphasis on its 

structural features, luminescence properties and Judd‒Ofelt analysis. Chapter 3 

presents the experimental procedures which including their method of preparation, 

types of spectroscopy being used and the principles of X‒Ray Diffraction (XRD), 

FTIR, Raman and NMR spectroscopy, luminescence and UV‒Visible‒NIR 

spectrometer. The results and discussion of glass along with the Tables and figures 

are stated in chapter 4. Chapter 5 covered the crystal results and discussion together 

with tables and figures. Lastly, chapter 6 presents conclusion, and recommendation 

for future work. 
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