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ABSTRACT

 
Recently, explosive forming has gained much attention from researchers to 

overcome problems of conventional methods in

 

manufacturing complex geometries 

such as cone. Despite these developments, analytical studies especially on cone with 
sharp apex angle are rarely reported. Past analytical studies in explosive forming on 

cone

 

ignored the effects of friction between the blank and the die, redundant work in the 

work sheet blank and strain rate on blank material behaviour. Likewise, in finite 

element (FE) method, Arbitrary Lagrangian Eulerian (ALE) approach,

 

most frequently 
method in the past is very time consuming and costly especially for large number of 

simulation tests

.

 

An alternative to

 

ALE, Coupled Acoustic-Structural Analysis

     

(CASA) approach has been seen gradually applied to model damage on the marine 

structure subjected to under water explosion but reports on its applications in 

  

modelling of explosive forming is somehow very limited. Moreover, in the past 

 

reported works, estimation of explosive mass, deformation history and damage 
accumulation models were analysed independently which creates difficulties to predict 

all aspects of the blank behaviour simultaneously. An integrated model that addresses 
these three issues concurrently is however, not available. The main aim of this research 
is to establish a satisfactory explosive mass estimation equation for modelling cone 
forming behaviours under integrated conditions with reasonable number of trials, i.e. 

simulation and experimental. Analytical model based on the impulse method was 
adopted to estimate the explosive mass by considering the effects of deformation 
efficiency and strain rate during cone forming process. This was done prior to 

establishment of FE model. ABAQUS software was used to develop a FE model based 
on CASA approach. Both models were validated via a series of experimental tests. 

Three different circular blank materials were tested, i.e. AISI 1006, Cu-ETP and Al 
6061

-

O subjected to C

-

4 explosive forming under water. Four geometrical parameters 
were varied in the experiments. They were blank diameter (100 and 110mm), blank 

thickness (0.8, 1 and 1.2 mm), standoff distance (130, 150 and 170 mm) and half apex 
angle of cone (45 and 60 degree). Height of deformed cone

 

was measured after each test

 

and these results was used an indicator for the right explosive mass determination. An 
analytical equation was established by taking into consideration the effects of strain 
rate, friction and redundant work during forming process. Verification via experimental 

tests showed that the error of explosive mass required for forming all blank materials 

into a complete cone is about 20% 

 

2.91.  The developed FE model was also able to 
predict concurrently the deformation history, thickness distribution and damage 
accumulation in a good agreement with experiments. In conclusion, this study provides 

very encouraging evidences that both impulse method and CASA approach can be used 

together for predicting material behaviours during explosive forming process.
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ABSTRAK

 

baru ini, pembentukan letupan

 

telah mendapat perhatian

 

meluas daripada 

penyelidik untuk

 

mengatasi masalah kaedah konvensional

 

untauk menghasilkan komponen 

bergeometri rumit seperit kon.

 

Disebalik perkembangan ini, kajian beranalitikal khususnya 

ke atas kon dengansudut puncak tajam jarang dilaporkan.

 

Kajian analitikal

 

yang lalu dalam 

pembentukan letupan

 

pada kon mengabaikan kesan geseran antara plat kosong dan dai, 

kerja lebihan dalam kepingan plat kosong dan kadar terikan ke atas kelakuan bahan plat 

kosong. Begitu juga, dalam kaedah unsur terhingga (FE), pendekatan Sebarangan 

Lagrangian Eulerian (ALE) kaedah yang sering digunakan dalam kajian lepas mengambil 

masa yang panjang dan kos yang

 

besar terutama sekali untuk cubaan simulasi yang 

banyak.

 

Sebagai alternatif kepada ALE, pendekatan Analisis Gabungan

 

Akustik

-

Struktur

 

(CASA) telah dilihat beransur-ansur digunakan untuk memodelkan

 

kerosakan pada 

struktur marin yang dikenakan letupan bawah

 

air, tetapi, laporan mengenai aplikasi ini 

dalam pemodelan pembentukan letupan didapati sangat terhad. Selain itu, dalam kerja-

kerja yang lepas juga, anggaran jisim bahan letupan, sejarah ubah bentuk dan model 

pengumpulan kerosakan telah dianalisis secara

 

berasingan yang mana mewujudkan 

kesukaran untuk meramal semua aspek tingkah laku plat kosong secara serentak.

 

Satu 

model yang bersepadu untuk menangani tiga isu ini secara serentak masih belum ada. 

Tujuan utama kajian ini adalah untuk menghasilkan satu persamaan anggaran jisim bahan 
letupan yang memuaskan bagi pemodelan kelakuan pembentukan kon di bawah keadaan 

bersepadu dengan bilangan ujian yang munasabah, iaitu secara simulasi dan juga 

eksperimen. Model beranalisis berdasarkan kepada kaedah dedenyut telah diguna-pakai 

untuk menganggar jisim bahan letupan dengan mengambilkira kesan kecekapan ubah 

bentuk dan kadar terikan semasa proses pembentukan kon. Ini dilakukan sebelum 

penghasilan model FE. Perisian ABAQUS telah digunakan untuk membangunkan model 

FE berdasarkan kepada pendekatan CASA. Kedua

-

dua model telah disahkan melalui satu 

siri ujian eksperimen. Tiga bahan plat kosong bulat yang berbeza telah diuji, iaitu AISI 

1006, Cu-ETP dan Al 6061-O tertakluk kepada pembentukan letupan C-4 di dalam air. 

Empat parameter bergeometri telah diubah dalam eksperimen. Mereka adalah diameter plat 

kosong (100 dan 110 mm), ketebalan plat kosong (0.8, 1 dan 1.2 mm), jarak tempuh (130, 

150 dan 170 mm) dan separuh sudut puncak kon (45 dan 60 darjah). Ketinggian kon yang 

terubah bentuk diukur selepas setiap percubaan dan keputusan ini telah digunakan sebagai 

petunjuk bagi penentuan jisim letupan yang betul. Persamaan analisis yang terhasil 

mengambil kira kesan kadar terikan, geseran dan kerja lebihan semasa proses 

pembentukan. Pengesahan melalui ujian eksperimen menunjukkan bahawa ralat jisim 

bahan letupan yang diperlukan untuk membentuk semua bahan plat kosong menjadi kon 

lengkap adalah kira

-

kira 20% 

 

2.91. Model FE yang dibangunkan juga dapat meramal 

secara serentak sejarah

 

ubah bentuk, taburan ketebalan dan pengumpulan kerosakan yang 

mana keputusannya sepadan dengan eksperimen. Kesimpulannya, kajian ini menyediakan 

bukti-bukti yang amat menggalakkan bahawa kedua-dua kaedah dedenyut dan pendekatan 

CASA boleh digunakan secara

 

bersama untuk meramal tingkah laku bahan semasa proses 

pembentukan letupan.
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CHAPTER 1 

 

1 INTRODUCTION 

1.1 Background of Research 

Sheet metal forming techniques have been increasingly used to produce the 

strategic components such as pressure vessels in petroleum industry (Ishikawa et al., 

2014), fuel tanks for rockets in military application (Lee et al., 2016), metallic bent 

tubular parts for aerospace (Yang et al., 2012) and engine cradles in vehicles 

(Alaswad et al., 2012). Due to improvement in mechanical properties such as 

strength, possibility of grain orientation and good dimensional accuracy of sheet 

metal formed parts (Hosford and Caddell, 2011), this method is gaining momentum 

to be used for producing precise, complex and variety shapes of metal parts. Despite 

improving mechanical properties, this method is more sustainable than that of any 

other known conventional machining processes since the amount of wastage 

materials is far less.  

Generally, sheet metal forming can be categorized into low and high rate 

loading operations (Cristescu, 2007). Low rate forming generally refers to near 

quasi-static loading where the load is applied gradually to the sheet metal blank such 

as using press (Choomlucksana et al., 2015), punch (Gutiérrez Regueras et al., 2014) 

or oil pressure pump (Paul, 2015).  With the increase in sheet metal part size, more 

costly and bigger exerting load equipment are required. The main drawback of this 

low rate forming is time consuming with more wastage materials when part 
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geometry is getting more complex such as in the form of corrugated, deep sharp apex 

angle cone or complete spherical components (Altan et al., 2012). 

High rate forming (HRF) delivers energy over a very short time to the sheet 

blank (Mamutov et al., 2015). Since this process occurs too rapidly, desired metal for 

HRF needs to be ductile at high deformation speeds. Due to high impulse delivered 

to the sheet metal, HRF techniques are occasionally called impulsive sheet metal 

forming processes. Instead of press, punch or any other physical facilities, the load 

required for forming is supplied by a source of energy. There are three categories of 

HRF; electro-hydraulic forming (EHF), electromagnetic forming (EMF) and 

explosive forming (Mynors et al., 2002). Among these three methods, explosive 

forming attracts more researchers’ attentions because of low costs and yet able to 

manufacture huge, precise and complex components (Blazynski, 2012). Some 

manufacturers choose explosive forming method for various reasons such as 

(Ghizdavu et al., 2010): 

i. To decrease manufacturing lead times 

ii. To enhance material exploitation and prevent waste 

iii. To grow the manufacturing competitiveness  

iv. To operate with integrity in a high temperature environment 

v. To maximize part stiffness while detracting weight  

vi. To design by considering aerodynamic efficiency 

There have been many studies on explosive forming for shaping various parts 

into stepped disc (Balasubramaniam et al., 1984), semi-sphere (Fengman et al., 

2000) sphere (Tong et al., 2008), cone (Darvizeh et al., 2009), tubular shell (Hadavi 

et al., 2009) and torispherical head (Jabalamelian and Ali, 2012) shapes. Focuses of 

these studies were mainly on the development analytical and finite element (FE) 

models to estimate explosive mass, blank forming mechanism, improve qualitative 

forming parameters and design an optimum explosive forming facilities (Iyama et 

al., 2014). 
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In most explosive forming processes, the analytical methods are generally 

developed to predict the amount of explosive mass applied to the sheet metal during 

the underwater explosion (UNDEX) to avoid any damage or rupture (Zhang and 

Wang, 2015). They used this strategy to estimate the load or energy required for 

forming process (Schiffer et al., 2015). There are three common categories of 

approximate analytical methods based on the empirical surveys, i.e. energy, 

geometrical and impulse methods (Akbari Mousavi et al., 2007). Due to the 

complexity of energy transfer phenomenon in the UNDEX, many researchers 

simplify the computation of load required for forming method by ignoring some 

mechanical and geometrical aspects of material and forming process. For instance, in 

(Fengman, et al., 2000) study, they used energy method for estimating explosive 

mass on spherical shape but ignoring the effects of strain rate and strain hardening. 

Similarly, energy method was employed to predict explosive mass required for 

cylindrical shell forming nonetheless ignoring the effects of strain rate and redundant 

work (Hadavi et al., 2012). These simplifications and assumptions have resulted 

large range of errors in their analysis from 25 to 95%. Therefore, a more accurate 

analytical model is required to estimate the explosive mass closer to reality. 

Due to the inherent complexity of the explosive forming process, especially 

underwater, FE models have been seen used a lot to simulate various forming aspects 

such as strain and/or thickness distribution (Wijayathunga et al., 2006), deformation 

history and mechanism (Ghizdavu et al., 2011), and damage accumulation 

(Kowsarinia et al., 2012). It is noticed that most of these models were based on 

Arbitrary Eulerian Lagrangian (ALE) approach (Barras et al., 2012; Ibrahim et al., 

2014) and their investigations always considered one forming aspect at a time. An 

alternative to ALE, Coupled Acoustic Structural Analysis (CASA) approach is 

another way that can have high precision prediction of the pressure gradient at the 

explosion shockwave forehead (Peng, 2009; Woyak, 2002). This approach has been 

reported more on the marine structure damage subjected to UNDEX (Jen, 2009;  

Wang et al., 2014; Zhang et al., 2015) but reports on its applications in modelling of 

sheet metal behaviour under explosive loading is somehow very limited (Fathallah et 

al., 2014). 
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Forming of cone attracts considerable attentions than other shapes owing to 

its strategic usage in various applications such as nozzles of compressor in gas 

turbines (Nkoi et al., 2013), projectiles and warheads (Sen et al., 2013)  and aircraft 

nose (Liu et al., 2014). Sharp cone forming in fact, is one of the sophisticated and 

difficult areas in sheet metal forming process. In traditional drawing method, failure 

is very likely to occur in the middle of the blank because of low-contact area of the 

sheet with a punch especially in the first step of forming (Dhaiban et al., 2014). 

Besides, since most of the sheet surface in the area between the punch tips and blank 

holder is given free rein to form, wrinkles may occur on the flange or product wall 

(Jalil et al., 2016; Shafaat et al., 2011b). Although, conical parts can be produced by 

the other forming process such as spinning (Sekiguchi et al., 2012), hydroforming 

(Gorji et al., 2011), or multi-stage deep drawing (Liuru, 2011) but they are limited to 

open tolerance components due to the difficulties to control wall thickness 

distribution and height of the cone. In addition, the overall quality of the final 

product is mostly dependent on the operator's experiences. Therefore, HRF methods 

are still preferable for manufacture cones due to the increase the formability of 

metals through the high rate loading phenomenon (Li et al., 2016). Among all three 

HRF methods, explosive forming has been more used to cone forming due reasons 

mentioned earlier. 

 Tardif (1958) was the first person who explored the possibility of 

manufacture copper cone by using explosive forming process through some 

experimental trials. Thereafter, Travis and Johnson (1962) implemented a series of 

experiments on the aluminum and steel sheets to investigate the extensibility of  

(Tardif, 1958) research for different geometries and materials. These works followed 

by Nurick et al. (1989) who experimentally studied the deformation mechanism of a 

fully clamped circular blank subjected to the explosive loading into cone. In a other 

study, Darvizeh, et al. (2009) investigated wrinkling defect in the cone during 

explosive forming with and without blank holder. It was realized that an apex angle 

with less than 30 degree is almost impossible to form a wrinkleless cone in the 

absence of blank holder. Experimental studies above revealed several unresolved 

issues such as wrinkle, rupture and uneven wall thickness distribution.  
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Similar studies but in a theoretical point of view, an investigation was 

conducted by Ashani and co-workers (Ashani et al., 2008) to determine the 

maximum midpoint displacement of a fully clamped circular blanks to make a cone. 

They also ignored the effect of strain hardening in their works and thus the 

theoretical model was not able to predict the deformation history of cone forming 

accurately. Liaghat and his research team (Liaghat et al., 2011) conducted numerical 

studies and verified by experimental on the hoop strain profile of explosive formed 

cones. Their results demonstrated that the maximum hoop strain occurs in the nose 

section and thus concluded the rupture in the apex area is obviously expected. An 

analytical equation was developed by Javabvar et al. (2012) based on energy method 

to estimate the explosive mass required for forming steel and aluminium circular 

blanks into the cones. They took into account the effect of reloading phenomenon 

during forming process but ignored the effect of deformation efficiency and strain 

rate. Apart from explosive mass estimation, there was also study on the effect of wall 

thickness variation of an explosive formed copper cone as a warhead (Sen and 

Aksoy, 2013). This study was mainly utilized ALE approach and the forming aspects 

were analyzed individually. 

1.2 Problem Statement  

Conventional sheet forming processes have been used extensively for 

manufacturing sheet metal parts like cone shapes. It has been reported that these 

processes face several severe defects such as premature tearing (Jalil, et al., 2016), 

wrinkling (Zhan et al., 2015) and excessive uneven wall thickness (Sekiguchi and 

Arai, 2012). Recently, explosive forming method attracts more attentions for 

manufacture complex sheet metal part geometry. It has been reported that this 

method able to reduce the earlier common defects in conventional forming processes 

(Hassannejadasl et al., 2014). However, analytical studies especially on cone with 

sharp apex angle are rarely reported in the literature. It is observed that past 

analytical studies in explosive forming especially on cone, they ignored the effects of 
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friction between the blank and the die, redundant work in the work sheet blank and 

strain rate on blank material behaviour (Darvizeh, et al., 2009; Javabvar and 

Habibpour, 2012; Liaghat et al., 2003). Likewise, in FE methods, most of the 

previous research works on explosive forming were based on ALE approach 

(Ghizdavu and Pricop, 2011; Iyama, et al., 2014; Jabalamelian and Ali, 2012; 

Mehrasa et al., 2012) in which, changing the geometry or amount of explosive mass, 

all Eulerian parts in the model need to be redefined. This has resulted in massive 

computation time and cost, hence it becomes impractical especially for large number 

of simulation trials. The latest literature using this approach for modelling cone under 

explosive forming was reported by (Emami and Alavini, 2010). An alternative to 

ALE, Coupled Acoustic-Structural Analysis (CASA) approach  has been seen 

gradually applied to model damage on the marine structure subjected to under water 

explosion (Jen, 2009; Ming et al., 2016; Zhang, et al., 2015; Zong et al., 2013) but 

reports on its applications in modelling of explosive sheet metal forming is somehow 

very limited.  Damage accumulation of conical cup was studied by El-Mokadem et 

al., (2009) using CASA. However, this model did not consider the effect of transfer 

medium-die-sheet interaction. Fathallah and his team used this method to investigate 

the behaviour of sheet metal under blast loading but it was done on flat shape 

(Fathallah, et al., 2014). Moreover, in the past reported works on FE, estimation of 

explosive mass (Liaghat, et al., 2011), deformation history (Darvizeh, et al., 2009; 

Emami and Nia, 2010) and damage accumulation models (El Mokadem et al., 2009) 

were analysed independently which creates difficulties to predict all aspects of the 

blank behaviour simultaneously. In other word, the previous reports of CASA model 

were restricted to only single aspect of cone behaviour subjected to explosive 

forming. An integrated CASA model that addresses these three issues concurrently is 

highly needed, however, not being observed thus far. 

1.3 Objectives of Research 

The objectives of research were as follows: 
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i. To establish an equation of explosive mass estimation for forming a metal 

cone based on impulse method that consider the effects of strain rate, 

friction and redundant work during forming process. 

ii. To develop a FE model based on CASA approach for explosive forming of 

cones that can predict the deformation history, wall thickness distribution 

and damage accumulation concurrently. 

iii. To validate the analytical and FE results through a series of experiments. 

1.4 Scopes of research 

The scopes of this study covered the following limits: 

i. Three different types of material were used as a blank for explosive forming 

into cone, i.e. Aluminum (6061-O), Copper (Cu-ET) and steel (AISI 1006). 

ii. Explosive material used in the forming process was limited to Composition (C-

4) only. 

iii. Water was used as the transfer medium during forming process for transmitting 

the explosion wave to the blank.  

iv. Independent geometrical explosive forming variables were limited to die 

geometry (half apex angles 45, 60 degree), blank diameter (100 and 110 mm) 

with blank thickness (0.8, 1.0 and 1.2 mm) and standoff (130, 150 and 170 

mm).  

v. Cone forming dies were made of ASSAB 709 (AISI 4140) material and 

fabricated in house. 

vi. Impulse method was employed through analytical model for estimating the 

explosive mass. 
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vii. ABAQUS software V6.12 was used to perform FE simulation of explosive 

forming process based on Coupled Acoustic Structural Analysis (CASA). 

1.5 Significance of Research 

Explosive forming offers great advantages over traditional forming processes 

in many ways such as short processing time within microsecond to milliseconds 

range, relatively cheap for manufacturing large part at low volume and more suitable 

in terms of conservation materials. Despite these remarkable benefits, current 

modeling technique consumes huge researcher’s efforts to remodel the updated 

parameters on cone forming processes which lead to extremely high computing time. 

This study employs a combination of analytical and finite element techniques that 

has great potential to avoid these weaknesses. It is expected that the developed 

technique can reduce modeling time by more than half of the present methods and 

thus it will shorten the overall manufacturing lead time. The accuracy of the model 

produced from the proposed technique is predicted to be improved by at least 80-

90% which means less waste on material and energy consumption during actual 

forming process. This study also contributes to the knowledge enhancement in the 

understanding of explosive forming process which is rarely reported in the public 

domain.     

 

1.6 Organization of Thesis 

This thesis includes of six chapters. The first chapter is introduction. It 

overviews the background of HRF in general application, importance of explosive 
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forming in manufacturing process application of FE modeling to solve complex 

UNDEX problems, problem statements, research objectives, scope, significance of 

the research. 

     The rest of the report is arranged as follows. Chapter 2 is concentrated on 

the literature reviews. This chapter highlights the background knowledge on the 

metal forming principles, HRF methods, employment of the explosion wave in sheet 

metal forming, critical reviews on the metal cone forming methods and FE studies in 

the explosive forming field. Methodologies used in establishing of the analytical 

equation to estimate explosive mass for cone forming, development of FE model for 

cone explosive forming and detail procedure to run experimental trials are described 

in Chapter 3. Chapter 4 focuses on the analytical study and its results validating by 

experiments. This chapter provides an estimation of explosive mass which is used as 

the input by the FE model. Chapter 5 presents FE modelling results which comprise 

of the investigation of deformation history of cone explosive forming, thickness 

distribution in cone wall and damage accumulation in the product during the forming 

process. The results of FE model are validated against the experiments as same as 

analytical study. Chapter 6 summarizes the conclusions, outlines the significant 

contributions from the findings and finally suggests recommendation for future 

works. 
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