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ABSTRACT 

 

 

 

 

The deterioration of water quality has raised serious safety concerns due to the 

discharge of chlorinated industrial wastes such as 1,2-dichlorobenzene (DCB) and 

polychlorinated biphenyls (PCBs) which are highly toxic and cause dangerous effects 

on human health. The polluted water is usually treated using adsorption method, 

Fenton, ozonation and photocatalysis. Among these methods, photocatalysis is the 

most promising technique for the easy decomposition of pollutants in the presence of 

suitable photocatalyst. Hence, in this research, a series of titania based photocatalysts 

have been prepared and were utilized to investigate its efficiency in the photocatalytic 

degradation of DCB in aqueous solution. The influence of catalyst preparation 

methods (sol-gel, sol-immobilization and mechanical mixing) were explored under 

different calcination temperatures, ratios and a light source. Further, the potential 

photocatalyst was then investigated by hydrothermal and hydrogenation techniques. 

Relatively, trimetallic oxide SnO2/WO3/TiO2 (10:10:80) prepared by mechanical 

mixing of hydrothermal SnO2, WO3, TiO2 calcined at 850°C, 850°C and 950°C 

respectively, exhibited the highest degradation of 98.43% under visible light 

irradiation at the DCB concentration of 100 ppm. The high activity of mechanically 

mixed hydrothermal trimetallic oxide Sn850/W850/T950 (10:10:80)HY was 

associated with the exposed surface with edges as observed in the field emission 

scanning electron microscope (FESEM) morphologies, and also the presence of Ti
3+

 

analyzed by X-ray photoelectron spectroscopy (XPS). The existence of surface defects 

was further confirmed by photoluminescence (PL) spectroscopy. The reduction in the 

band gap energy of the trimetallic oxide and the absorption shift towards the visible 

light region was observed in the absorption band edge using diffuse reflectance-

ultraviolet visible (DRUV) spectroscopy. Meanwhile, transmission electron 

microscope (TEM) images confirmed the absence of an interface gap between the 

metal oxides which is beneficial for the occurrence of charge transfer and 

enhancement of the activity. The effectiveness of this photocatalyst when immobilized 

on polyvinyl chloride (PVC) film, nevertheless decreased the photocatalytic activity to 

93.67%. Eventually, the degradation activity of DCB was improved to 95.70% upon 

increasing the photocatalyst loading on PVC film of up to 0.25 g and under neutral 

pH. The optimization utilizing response surface methodology with Box-Behnken 

design was in good agreement with the obtained experimental result. The degradation 

of DCB in water was justified by the identification of two intermediates using gas 

chromatography-mass spectrometry (GCMS) analysis. Consequently, the investigation 

on removal of PCBs from green mussels using polyethylene glycol (PEG), and 

subsequent degradation of PCBs in aqueous phase utilizing immobilized 

photocatalysts, capable to degrade 83% of the total PCBs content under the optimized 

conditions.  
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ABSTRAK 

 

 

 

 

Kemorosotan kualiti air telah menimbulkan kesedaran yang tinggi terhadap 

kepentingan keselamatan disebabkan oleh pelepasan bahan sisa industri berklorin 

seperti 1,2-diklorobenzena (DCB) dan bifenil poliklorinat (PCBs) yang sangat toksik 

dan mengakibatkan kesan yang berbahaya kepada kesihatan manusia. Air tercemar 

biasanya dirawat dengan menggunakan kaedah penjerapan, Fenton, pengozonan dan 

fotopemangkinan. Antara kaedah-kaedah ini, fotopemangkinan merupakan teknik 

yang paling menjanjikan penguraian mudah bahan pencemar dengan kehadiran 

fotomangkin yang sesuai. Maka, dalam penyelidikan ini, satu siri fotomangkin 

berasaskan titania telah disediakan dan digunakan untuk mengkaji keberkesanan 

degradasi fotopemangkinan sebatian DCB di dalam air. Pengaruh kaedah penyediaan 

mangkin (sol-gel, pemegunan-sol dan pencampuran secara mekanikal) telah diteroka 

pada suhu kalsin, nisbah dan sumber cahaya yang berbeza. Seterusnya, fotomangkin 

yang berpotensi kemudiannya dikaji menggunakan teknik hidroterma dan 

penghidrogenan. Secara relatif, trilogam oksida SnO2/WO3/TiO2 (10:10:80) yang 

disediakan melalui pencampuran mekanikal SnO2, WO3, TiO2 hidroterma yang 

dikalsin pada suhu 850°C, 850°C dan 950°C masing-masing, mempamerkan degradasi 

yang tertinggi iaitu 98.43% di bawah penyinaran cahaya nampak pada kepekatan DCB 

100 ppm. Aktiviti tinggi trilogam oksida hidroterma yang disediakan secara 

pencampuran mekanikal Sn850/W850/T950 (10:10:80)HY mempunyai kaitan dengan 

morfologi permukaan yang terdedah dengan bucu, yang dicerap menggunakan 

mikroskop imbasan elektron pancaran medan (FESEM) dan juga kehadiran Ti
3+ 

yang 

dianalisis menggunakan spektroskopi fotoelekton sinar-X (XPS). Kewujudan cacat 

permukaan selanjutnya telah disahkan dengan spektroskopi fotopendarcahaya (PL). 

Pengurangan tenaga luang jalur bagi trilogam oksida dan penganjakan serapan kepada 

kawasan cahaya nampak telah diperhatikan dalam penyerapan pinggir jalur 

menggunakan spektroskopi pantulan serakan ultralembayung-cahaya nampak 

(DRUV). Manakala, imej daripada mikroskop penghantaran elektron (TEM) 

mengesahkan bahawa tiada luang antara muka di antara logam oksida yang 

bermanfaat bagi berlakunya pemindahan cas dan peningkatan aktiviti. Keberkesanan 

fotomangkin ini yang dipegunkan di atas filem polivinil klorida (PVC) bagaimanapun, 

telah menurunkan aktiviti fotopemangkin kepada 93.67%. Akhirnya, aktiviti degradasi 

DCB telah meningkat kepada 95.70% dengan pertambahan muatan fotomangkin pada 

filem PVC kepada 0.25 g pada pH neutral. Pengoptimum menggunakan kaedah respon 

permukaan (RSM) dengan reka bentuk Box-Behnken (BBD) didapati bertepatan 

dengan keputusan eksperimen. Degradasi DCB di dalam air telah dibuktikan dengan 

pengenalpastian dua bahan perantaraan dengan menggunakan analisa gas 

kromatografi-spektrometri jisim (GCMS). Oleh yang demikian, kajian terhadap 

penyingkiran PCBs dari kupang dengan menggunakan polietilina glikol (PEG) dan 

seterusnya degradasi PCBs di dalam fasa akueus dengan menggunakan fotomangkin 

pegun, mampu mendegradasikan 83% daripada jumlah kandungan keseluruhan PCBs 

pada keadaan optimum. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Over the past decades, mankind has observed an unprecedented and 

remarkable growth in industry, resulting in generation of organic toxic wastes. Toxic 

waste has been relentlessly released into air and water leading to serious and 

devastating environmental and health problem (Anpo and Kamat, 2010). Some of the 

organochlorine compounds used in industrials have been detected to bioaccumulate in 

the environment and living organisms and cause many toxic actions. Such compounds 

have been identified as persistent organic pollutants (POP). Polychlorinated biphenyls 

(PCBs) and dichlorobenzene (DCB) are among the identified toxic organochlorine 

pollutants (OCP) under this category. Figure 1.1 shows the chemical structure of DCB 

and PCB.  

 

 

Cl

Cl (Cl)n (Cl)n
(a) (b)

 
 

Figure 1.1 Chemical structure of (a) 1,2-dichlorobenzene (DCB) and (b) 

polychlorinated biphenyl (PCB) 

 

 

PCB with chlorine attached to 2 benzene rings and DCB with chlorine attached 

to one benzene ring, are man-made organic compounds for wide application in 

industries as dielectric fluids or transformers and capacitors, in paints, inks and 
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pesticides. The number of chlorine at different positions in PCB leads to 209 different 

isomers and toxicity. DCB having three isomers with chlorine atom either at ortho, 

meta or para position is less toxic compared to PCB. These contaminants have very 

low solubility in water and thus are highly lipophilic and have long biological half-

lives. Moreover, PCBs are extremely stable compounds under environmental 

conditions (WHO, 1998). 

 

 

Organochlorine pollutants (OCP) can enter the aquatic system in a variety of 

ways, run-off from run-point sources, discharge of industrial and sewerage wastewater 

and wet/dry disposition. Due to their high persistence, these pollutants tend to 

bioaccumulate in fatty tissue of aquatic lives and subsequently into the food chain. 

Despite of the low concentrations (ppb to ppt), PCBs and DCB have high toxicity, 

carcinogenicity and mutagenicity. Toxic actions to humans include reproductive and 

developmental effects, neurological and behavioural effects, dermal toxicity, 

immunomodulatory and carcinogenic effects (Costopoulou et al., 2016; ATSDR, 

2002). Due to their potential detrimental effects on both environment and human 

health, PCBs and DCB have been listed as priority pollutants by United States 

Environmental Protection Agency (EPA, 2001) and Environmental Quality Standards 

Directive 2008/105/EC (Directive 2008; Directive 2013). In 2004, Stockholm 

Convention has urged many countries to reduce and eliminate POP. Nevertheless, 

despite the ban and restriction on the use of these chemicals, their contamination in 

air, sediment, water, biota and humans are still being reported.  

 

 

In view of its toxicity, many studies were conducted worldwide monitoring the 

level of PCBs in marine/river water, fish, shellfish and also in human (from breast 

milk). Relatively very few data concerning the occurrence of DCB in water and fish 

has been reported, which is not surprising as the partitioning and accumulation 

characteristics of highly toxic PCBs makes it more attractive for study. Nevertheless, 

the contamination effect of those compounds should not be ruled out since, even at 

low doses, a long term exposure to it could bring various problems to humans. Some 

of the studies have shown that DCB has been detected in drinking water (Abdullah et 

al., 2011; Dwiyitno et al., 2016). Consequently, a detailed comparative account of 

DCB and PCBs worldwide has been summarized in Table 1.1 which delineates wide 

variations between different regions. 
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Table 1.1 Concentration level of PCBs in water, fish, mussels and human while 

DCB in water 
 

Country 

PCBs DCB in 

water 

(ppb) 
Water 

(ppt) 

Fish 

(ppb) 

Mussel 

(ppb) 

Human 

(ppb) 

Malaysia 

1.4 - 14 

(Huang et 

al., 2014) 

0.2 - 2.6 

(Mohamad 

et al., 2015) 

5 - 250 

(Yap, 

2014) 

80 

(Tanabe & 

Kunisue, 

2007) 

0.01 - 64.1 

(Abdullah 

et al., 2011) 

Indonesia 

0.5 - 420 

(Ilyas et al., 

2011) 

10 - 2700 

(Sudaryanto 

et al., 2007) 

6.7 - 250 

(Bayen et 

al., 2003) 

6.7 - 250 

(Sudaryanto 

et al., 2006) 

10 - 20 

(Dwiyitno 

et al., 2016) 

India 

2 - 779 

(Kumar et 

al., 2012) 

9 - 90 

(Ahmed et 

al., 2016) 

10 - 2200 

(Bayen et 

al., 2003) 

3.1 - 5400 

(Devanathan 

et al., 2012) 

N.A. 

China 

0.2 - 2473 

(Xing et al., 

2005) 

6.3 - 199 

(Sun et al., 

2014) 

2.8 - 2480 

(Xing et 

al., 2005) 

26 - 130 

(Haraguchi 

et al., 2009) 

1 - 138 

(Huang et 

al., 2015) 

Japan 

9.6 - 133 

(Yamamoto

, 2014) 

61.6 - 85.2 

(Matsumoto 

et al., 2014) 

20 - 3100 

(Ueno et 

al., 2010) 

14 - 360 

(Haraguchi 

et al., 2009) 

N.A. 

Korea 

2.9 - 3.1 

(Hong et 

al., 2011) 

2.9 - 96.6 

(Yim et al., 

2005) 

17 - 1000 

(Ramu et 

al., 2007) 

20 - 128 

(Haraguchi 

et al., 2009) 

N.A. 

Hong 

Kong 
N.A. 

40 - 710 

(Bayen et 

al., 2003) 

170 - 1000 

(So et al. 

,2005) 

0.3 - 87 

(Qin et al., 

2011) 

N.A. 

United 

State 
N.A. 

28 - 1337 

(Greenfield 

& Allen, 

2013) 

576 - 1220 

(Subedi et 

al., 2014) 

76 - 856 

(Subedi et 

al., 2014) 

N.A. 

Europe 

1.4 - 264 

(Montuori 

et al., 2014) 

1 - 1672 

(Bettinetti 

et al., 2016) 

0.6 - 107.5 

(Carro et 

al., 2010) 

N.A. N.A. 

    Note : N.A. – Literature not available 

 

 

Higher contaminant level of PCBs in fish was observed at industrialized and 

developed countries as Japan, China, United States and Korea. Although the usage of 

PCBs has been banned in those countries, the important sources such as older PCB-

containing equipment, landfill, and incineration of e-waste are continuing to release 
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PCBs to the environment (Breivik et al., 2007). A recent study suggested that large 

quantities of e-waste have been exported to Malaysia (Robinson, 2009). Due to PCBs 

lipophilicity, lipid containing food products such as meat and meat products, milk and 

dairy products, fish and seafood are responsible for at least 90% of human exposure to 

these toxic compounds (Bordajandi et al., 2006). Among the 209 PCB isomers, PCB 

28, 52, 101, 118, 138, 153 and 180 (Appendix A) were commonly detected at higher 

concentration in fish and shellfish. Nevertheless, research by Yap et al. (2014) only 

reported total PCBs in mussels at Malaysia and until now no report has been published 

on individual PCBs concentration.   

 

 

The occurrence of these contaminants worldwide and its high risk on human 

health has caused several authorities to propose safety limits for PCBs and DCB in 

water and food products which vary according to the authorities. Most countries 

including Malaysia follow the standard by US Environmental Protection Agency 

(EPA) and European Commission Regulation (EC) which has stringent limitation for 

the concentration of DCB and PCB in drinking water and fishery product as shown in 

Table 1.2.  

 

 

Table 1.2 The health problem and tolerable limit of DCB and PCB in drinking water 

and fishery product 
 

Contaminant Health problem 
Drinking 

water 

Fish and fishery 

products 

1,2-DCB 
Liver, kidney, or circulatory 

system problems. 
0.6 ppm NA 

PCB 

Skin problems, thymus gland 

problems, immune deficiencies, 

reproductive or nervous system 

difficulties, increased risk of 

cancer. 

zero 2.5 ppt 

Reference EPA, 2001 EPA, 2001 Directive 2013 

 

 

It has to be noted that the tolerable limit of PCBs in fish and fishery product 

has been narrowed from 6.5 ppt in EC 1881/2006 to 2.50 ppt on year 2013 which 

clearly shows the concern rose due to its adverse effect on human from daily intake.  
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Therefore, the concentration of this contaminant in water and seafood should be kept 

at recommended level to reduce its effect on human health. 

 

 

 

 

1.2  Various Remediation Techniques 

 

 

Numerous efforts have been made to remediate the contamination sources 

including soil, sediments and surface/ground water in order to improve the drinking 

water quality and reduce the contamination level into the aquatic biota. There are few 

remediation techniques which have been explored for the removal of DCB and PCBs 

from water source that involves biodegradation, physical adsorption, reductive 

dechlorination and advanced oxidation process. Although these methods are effective 

for the removal/degradation of DCB and PCBs, each has its advantages and 

limitations. 

 

 

Biodegradation is a widely used method to treat organic pollutants that leads to 

a complete mineralization. Aerobic and anaerobic microbial conversions of 

chlorinated contaminant into nontoxic hydrocarbons have been studied for the 

potential application of in-situ treatment over the last few decades. The slower 

degradation rate associated with biodegradation limits large-scale application, and 

high concentrations of chlorinated solvents could have adverse effects on the 

microorganisms in the biodegradation media, resulting in a reduction in the efficiency 

of contaminant removal by this method (Huang et al., 2014). 

 

 

Physical adsorption method has high reliability due to a robust operating 

configuration and hence is widely used for the treatment of drinking water supplies 

and industrial wastewaters. Several adsorbents such as activated carbons (Sotelo et al., 

2002), multi-walled carbon nanotubes (Beless et al., 2014), graphene (Wang et al., 

2013), cyclodextrin (Shao et al., 2010) have been utilized for the removal of DCB and 

PCBs in aqueous medium. Adsorption using activated carbon has been recommended 

in EU directive 2001 for drinking water treatment (EPA, 2001). Compared to 

biodegradation, this process is considered a non-destructive method as this technique 

only transfers the contaminants from one phase to another. Therefore post-treatment 
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for the decomposition of the pollutants are necessary which leads to higher operating 

cost.  

 

 

Reductive dechlorination has been intensively used for the remediation of 

DCB and PCBs due to the electronegative nature of chlorine. In reductive 

dechlorination, the chlorine ion is removed, forming non-toxic hydrocarbons. Most 

studies used zerovalent iron for the dechlorination of PCBs and DCB. The 

incorporation of noble metals (e.g. Cu, Pd, Ag, Ni) are often used in bimetallic 

system. Another reductive method is known as catalytic hydrodechlorination whereby 

external hydrogen source is employed as reducing agent. Palladium is found to be the 

best hydrodechlorination catalyst among other noble and transition metals. An 

obvious drawback of this technology is the relatively slow reaction rate as degradation 

process requires a couple of days to reach the desired level of completion. Besides, the 

reductive dechlorination also faces challenges such as corrosion of metals and 

passivation of catalyst surface as well as higher processing cost with the use of noble 

metals and hydrogen source (Ghosh et al., 2012).  

 

 

Advanced oxidation processes (AOPs) has been suggested as one of the most 

promising technology for the abatement of chlorinated compounds which includes 

ozonation, Fenton oxidation and photocatalysis techniques. These methods principally 

take advantage of the strong oxidation capacity of hydroxyl radical (·OH) to 

decompose the chlorinated compounds and even complete mineralize of the 

contaminants to carbon dioxide and water.  

 

 

The use of ozone in conjunction with UV light has been reported to completely 

remove chlorinated compounds in water. However, the low solubility of ozone in 

water is the major limitation in the ozonation process, besides the presence of CO2 in 

environment restricts its efficiency in practical application (Kasprzyk-Hordern et al., 

2003). 

 

 

Fenton based oxidation process has attracted a significant amount of attention 

for the decomposition of chlorinated compound due to its simplicity and efficiency. In 

Fenton process, mixture of H2O2 and Fe2+ (Fenton reagent) is used in acidic medium 
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to generate hydroxyl radicals for the decomposition of pollutants. The generation of 

hydroxyl radicals are further enhanced by irradiation of UV light, and it is known as 

photo-Fenton process and could be used at neutral pH. The main drawbacks of this 

process are the fast consumption of Fe2+ in comparison with its regeneration rate, the 

limited pH range to operate (pH 2.5 - 3), the complications of some iron species and 

the possible waste of oxidants as well as the inadequacy of dissolved oxygen in 

aqueous limiting the efficiency of Fenton reaction (Nidheesh & Gandhimathi 2012; 

Ribeiro et al., 2015). 

 

 

Photocatalysis technique with the use of heterogeneous photocatalyst has 

gained much popularity in the degradation of organochlorine in aqueous medium. In 

photocatalytic oxidation, the hydroxyl radical is generated upon light irradiation on 

photocatalyst which then decomposes the chlorinated compounds. The choice of 

suitable photocatalyst is the main concern for selective contaminants. The main 

advantage of heterogeneous photocatalysis process is its efficiency, fast degradation 

process and the complete mineralization to CO2 and H2O. In addition, sunlight could 

also be used as one of the light source in the presence of appropriate photocatalyst. 

This method is economic and has sustainability advantages in comparison with 

processes involving ozone or oxidant which requires high operational costs. Another 

advantage is the possible disinfection of water contaminated with pathogenic 

microorganisms (Mccullagh et al., 2007). The drawback of this method is the 

recovery of catalysts used in slurry batch system and regeneration that incur additional 

cost.   

 

 

 

 

1.3  Semiconductor Photocatalysis 

 

 

Semiconductor based photocatalysis has received increasing attention because 

of its promising applications in energy generation and environmental purification. 

Usually semiconductor metal oxides including TiO2, Fe2O3, WO3, ZnO, CeO2, CdS, 

Fe2O3, ZnS, MoO3, ZrO2, and SnO2 are selected as photocatalysts due to their band 

gaps. In general, when a semiconductor metal oxide is irradiated by an input light with 

energy equal or higher than the band gap (hν > Eg), an electron (e−) from valence band 
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(VB), is excited to the conduction band (CB), leaving behind a photogenerated hole 

(h+) at the VB (Figure 1.2 and Eq. 1.1). 

 

 

Figure 1.2 Absorption of photon energy by semiconductor and formation of 

electron-hole pairs  

 

 

Consequently, the produced e−/h+ pairs migrates to the surface of the 

semiconductor leading to several reactions that generates active species as hydroxyl 

radical (·OH) and superoxide radical (·O2
−). In aqueous medium, H2O and OH− that 

adsorbed on photocatalyst surface are oxidized by photogenerated h+ to form ·OH 

radicals while dissolved oxygen is reduced by the photogenerated e− to form ·O2
− 

radical (Refer Eq. 1.2 - 1.5). Protonation of ·O2
− yields hydroperoxide radical ·OOH 

(Eq. 1.6) which is then further decomposed to produce ·OH radicals (Eq. 1.7 – 1.9). 

The ·OH, ·OOH and ·O2
− play an important role in initiating oxidation reactions, 

especially for substance that adsorb weakly on the semiconductor surface and 

facilitate the photodegradation of the pollutants (Eq. 1.10). The oxidation-reduction 

reaction that occurs at the photo-activated surface of photocatalyst has been broadly 

proposed as following (Dong et al., 2015): 

 

  Photocatalyst + hν  →  h+ + e− (1.1) 

                h+ + H2O  → ·OH + H+ (1.2) 

               h+ + OH−  → ·OH (1.3) 

          h+ + pollutant →  (pollutant)+ (1.4) 

                  e− + O2  → ·O2
− (1.5) 

                         −  + H+  → ·OOH (1.6) 

                   2·OOH  →  O2 + H2O2 (1.7) 

            H2O2 + ·O2
− → ·OH + OH− + O2 (1.8) 

             H2O2 + hν  →  2·OH (1.9) 

Pollutant + (·OH, ·OOH or ·O2
−) → degradation product (1.10) 
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It has to be noted that the separated photogenerated electrons and holes have 

characteristic lifetimes on the order of nanoseconds and could easily recombine after 

their generation in the absence of electron or hole scavengers. In this regard, the 

presence of specific scavengers or surface defects is vital in suppressing the charge 

recombination rates and in enhancing the efficiency of photocatalysis (Chong et al., 

2010). 

 

 

 

 

1.4 Photocatalyst 

 

 

The use of metal oxides as catalysts for the degradation of DCB and PCBs 

showed the increasing attraction because of their relatively low costs and high level of 

activity. TiO2 is one of the most widely used semiconductor metal oxide with lowered 

activation energy and higher oxygen uptake that has significant effect on 

photocatalytic reaction. Commercial TiO2 (Degussa P25) with mixture of anatase and 

rutile has been mostly utilized in the degradation of DCB and PCBs (Lin et al., 2002; 

Zhu et al., 2012) in gas phase and aqueous medium. However better photocatalytic 

activity was observed by the doping or coupling of titanium dioxide with other 

semiconductor metal oxides.  

 

 

In this context, a series of transition metal oxides (Cr2O3, V2O5, MoO3, Fe2O3 

and Co3O4) supported on TiO2 have been tested in catalytic oxidation of DCB by 

Krishnamoorthy (2000), and among them Cr2O3 and V2O5 supported TiO2 catalyst 

showed the best activity in gas phase. However these metal oxides are highly toxic. 

Considerable catalytic activity was reported with the utilization of TiO2/WO3 and 

TiO2/SnO2 in gas phase (Bertinchamps et al., 2006). Noble metals based catalysts such 

as Pd, Pt, Rh or Au, on the other hand could be easily poisoned by chloride ion during 

the decomposition process (Krishnamoorthy et al., 1998). Thus, the type of 

semiconductor material used for coupling/doping with titanium dioxide is particularly 

important in term of the redox reaction which determines the overall efficiency of the 

photocatalyst. Extensive studies on the catalysts focused on the dispersion, surface 

structure and oxidation state of the supported catalyst and these properties have been 

correlated with the oxidation reactions. 
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Recently, surface modifications to the electronic structure of titanium dioxide 

in order to shift the absorption into the visible range and to reduce the charge 

recombination are under intense study in the photocatalysis field. The most common 

type of alteration involves structural defects with exposed facets and surface defects, 

which could be achieved by modifying the preparation method and calcination 

temperature. On this basis, the most studied metal oxides with exposed facets and 

surface defects are TiO2, WO3, SnO2, and ZnO which have contributed to high 

catalytic activity by improved charge carrier separation. Wang et al. (2015a) reported 

that the presence of Ti3+ in anatase TiO2 with (001) exposed facet demonstrated higher 

degradation of 4-chlorophenol under visible light irradiation. The efficient 

photocatalytic degradation of methylene blue by utilizing ZnO nanorods with higher 

aspect ratio and surface defects was reported by Zhang et al. (2014). Wang et al. 

(2015b) revealed that the enhanced photocatalytic performance of SnO2 on 

photodegradation of Rhodamine B was attributed to the presence of high oxygen 

vacancies as surface defect. 

 

 

Even though the toxicity of DCB and PCBs is of great concern and 

photocatalysis been known as an effective decomposition technique, yet research on 

these pollutants in aqueous medium is still in scarce. Most of the research works 

conducted on DCB was in gas phase using catalytic oxidation method while PCBs 

decomposition in soil and sediment was of higher interest. In view of this, 

semiconductor metal oxide TiO2, WO3, SnO2 and ZnO have been explored for their 

efficiency in the degradation of DCB and PCBs in aqueous medium with the 

appliance of bimetallic and trimetallic systems.  

 

 

Tungsten with narrow band gap is widely known to absorb visible light and its 

high surface acidity would enhance the adsorption of water molecule and organic 

pollutant (Grabowska et al., 2012). Meanwhile SnO2 was reported to be active under 

visible light when doped with TiO2 and the most important is that it could avoid the 

poisoning of chloride ion (Sasikala et al., 2009; Li et al., 2014). On the other hand, 

doping of TiO2 with ZnO has been widely used in photocatalytic study yet has not 

been reported for the degradation of DCB. Besides, this would be the first instance of 

trimetallic oxide been investigated for the photodegradation of DCB and PCB in 

aqueous medium. In addition the influence of the preparation method used to 
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synthesize the bimetallic and trimetallic oxides photocatalysts indicates the effects on 

the structure and active phase. 

 

 

 

 

1.5 Response Surface Methodology 

 

 

Response surface methodology (RSM) is a widely accepted statistical-based 

method for designing experiments, evaluating the individual and interaction effects of 

independent variables, and optimizing the process parameters with limited number of 

experiments. Chemometric techniques such as central composite design (CCD) and 

Box-Behnken design (BBD) have been proven to be useful techniques to evaluate 

optimal conditions in the photocatalysis process, as reported by Hamed et al. (2014) 

and Chaibakhsh et al. (2015). With the aid of this experimental design, results are 

quantitatively correlated to several experimental factors, and optimum conditions are 

achievable with savings of time and cost, since few distinctly varied experiments are 

carried out. In comparison, BBD was preferred due to the lesser number of 

experiments involved, yet provides good evaluation analysis. However most of the 

photocatalytic optimization was done on slurry mode using powder photocatalyst. 

Consequently, in this study, BBD was employed for optimization of DCB degradation 

in aqueous medium with immobilized photocatalyst. 

 

 

 

 

1.6 Mechanistic Study 

 

 

In semiconductor photocatalysis, there are three main path of reactions that 

occur during the reaction; adsorption of pollutant on the catalyst surface, desorption of 

the pollutant and diffusion of the by-products. These are the fundamental steps which 

are in accordance to Langmuir-Hinshelwood (LH) mechanism. It has to be noted that 

the catalysts has different surface properties which would lead to different reaction 

pathways. Therefore the study of the detailed processes of reaction mechanisms is 

important, including in understanding the reaction pathways as well as validation of 

the overall process. Several mechanistic studies have been conducted on catalytic 

oxidation of DCB in gas phase (Krishnamoorthy, 1999; Wang et al., 2015). The 
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photocatalytic degradation mechanism of DCB in aqueous utilizing supported 

photocatalyst has not been reported. Thus, this present study might provide an 

underlying insight on the mechanism of DCB decomposition on immobilized 

photocatalyst. 

 

 

 

 

1.7 Statement of Problem 

 

 

Environmental pollutant has raised much concern towards its remediation 

techniques. Organochlorine pollutants such as DCB and PCBs are highly lipophilic, 

stable and persistence which facilitate their accumulation in the environment and 

aquatic ecosystem. As shown in Table 1.1, studies have reported the occurrence of 

DCB and PCBs contaminant in drinking water, fish and mussels which led to the 

detection of these compounds in human body. Despite of their low concentration, 

these contaminants have raised substantial health effect which emphasizes the 

necessity for further research on the removal and degradation of trace contaminants in 

water and fishery products to minimize their detection according to the EC standards.  

 

 

Photocatalysis has been considered as sustainable and green chemistry 

technique for water treatment which leads to total mineralization of the pollutants. 

Nevertheless, up to now few research studies were done on the removal of DCB and 

PCBs from water using photocatalysis technique. One of the reasons could be due to 

the deactivation of the catalyst by chloride ion released during the reaction. As such, 

the selection of catalyst is crucial to avoid deactivation by the released chloride ion 

during the reaction. From the previous reports, high catalytic activity was not achieved 

by using TiO2 alone. However, coupling with other semiconductor improved its 

performance. Besides, most of these studies utilized UV light source in the 

photocatalytic reaction which consume large amount of energy. Therefore, the 

development of visible light active photocatalyst with high efficiency and stability is 

desired. The synergistic effect by formation of heterojunction through coupling of two 

or more metal oxides has been shown to enhance the catalytic activity. This inspired 

the utilization of multi component semiconductor metal such as WO3, SnO2 and ZnO 

in this study which leads to the formation of multi-heterostructure SnO2/WO3/TiO2 



13 

and ZnO/WO3/TiO2 photocatalyst which are active under visible light. These 

photocatalysts have not been reported yet elsewhere and therefore they were studied in 

this research as based on previous studies, this type of co-catalyst have capability to 

mineralize the pollutants into harmless species such as H2O and CO2. In addition, the 

development of supported photocatalyst is crucial in this study for practical 

application. Several support materials have been reported, among which 

immobilization on glass plate, chitosan bead and PVC film has increased the 

photocatalytic activity. Thus this support material is employed with slight 

modification in the immobilization technique. 

 

 

Meanwhile until now, there is no literature published on the removal of PCBs 

from the dietary intake as shellfish and fishery products. Instead study on PCBs 

remediation was done on sediments in order to reduce the accumulation of these 

contaminants in the aquatic life. However, the large area coverage incurs high cost 

and might not be efficient. The detection of toxic PCBs in fishery products not only 

cause health problem but also affect seafood business. Due to the high contaminant in 

fishery product, European United (EU) had banned the import of fishery product from 

Malaysia on year 2008 to year 2009 which had resulted in a huge loss of business for 

Malaysian seafood processors (Retnam et al., 2013; EC No 1252/2008). Due to 

inadequate risk measurement on the contaminant levels, the Malaysian seafood 

industry is facing another challenge as the EU has withdrawn its generalised system of 

preferences for Malaysian seafood exporters in January 2014 (David, 2013). In view 

of this, research on in-situ removal and degradation of PCBs from fishery product is 

essential on the effort to minimize the contaminant in food intake. In this regard, 

photocatalysis technique which is known as environmental friendly and sustainable 

treatment technology has been explored by employing immobilized photocatalyst and 

visible light.  
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1.8 Objectives of the Study 

 

 

Based on the problem statement, the main goal of this research was to develop 

a potential visible light active photocatalyst for the decomposition of DCB and PCB in 

aqueous medium. Thus, the objectives of this research are:- 

 

i.  To study the effect of calcination temperature on structural defects and 

towards the degradation of 1,2-dichlorobenzene (DCB) using 

monometallic oxides (TiO2, WO3, SnO2 and ZnO), bimetallic oxides 

(WO3/TiO2, SnO2/TiO2, ZnO/TiO2) and trimetallic oxides 

(SnO2/WO3/TiO2 and ZnO/WO3/TiO2) under UV light.  

ii.  To investigate the influence of preparation methods (sol-gel, sol-

immobilization, mechanical mixing) of bimetallic and trimetallic oxides; 

with further evaluation on potential photocatalysts using hydrothermal and 

hydrogenation method. 

iii.  To determine the optimum working conditions for the degradation of DCB 

in aqueous phase over the best immobilized photocatalyst under visible 

light and to optimize the photocatalytic degradation by using Response 

Surface Methodology (RSM) via Box-Behnken Design (BBD). 

iv.  To propose mechanism for the decomposition of DCB in aqueous using 

the best immobilized photocatalyst under visible light. 

v.  To apply the photocatalytic technology for in-situ removal and 

degradation of PCBs from green mussels by employing the best 

immobilized photocatalyst and visible light. 

 

 

 

 

1.9 Scope of the Study 

 

 

 This research was aimed at developing a potential visible light photocatalyst 

for application in aqueous medium. A comprehensive study was conducted on 

degradation of 1,2-dichlorobenzene (DCB) and was then opted for study on 

polychlorinated biphenyl (PCBs) removal and decomposition in aqueous medium. In 

line with this, the efficiency of TiO2, WO3, SnO2 and ZnO photocatalyst prepared by 

sol-gel method were explored under monometallic, bimetallic and trimetallic oxide 
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system for the degradation of DCB under UV light. The percent degradation of DCB 

was determined from the absorbance obtained using UV spectrophotometer. The 

effect of calcination temperature was exploited throughout the study while deviation 

in ratios was investigated on bimetallic and trimetallic oxides. As preparation method 

was known to cause physical modification on the catalyst, several preparation 

techniques (sol-gel, surface immobilization and mechanical mixing) were examined 

on bimetallic and trimetallic oxides. The effect of hydrothermal method was 

scrutinized on the potential photocatalysts. Stimulation of surface defects by 

hydrogenation and its effect on photocatalytic activity was inspected. Efficiency of the 

potential photocatalysts was then tested under visible light. The best photocatalyst 

subsequently was immobilized on several support materials (PVC film, chitosan beads 

and glass plate) to determine the suitable support material. The immobilized 

photocatalyst was then utilized for optimization study by the aid of response surface 

methodology technique. The reusability of the immobilized photocatalyst was also 

evaluated.  

 

 

 In order to study the physical properties of the photocatalysts, characterization 

analysis were carried out using Field Emission Scanning Electron Microscopy 

(FESEM), Energy Dispersive X-ray (EDX), X-ray Diffraction (XRD), Nitrogen 

Adsorption (NA), UV-Vis Diffuse Reflectance (DRUV), Photoluminescence (PL), X-

ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM) 

and Atomic Force Microscopy (AFM). The by-products obtained from DCB 

degradation were determined using gas chromatograph with mass spectrometer (GC-

MS). A mechanism for DCB degradation in aqueous using immobilized photocatalyst 

was then proposed by using information from Fourier Transform Infra-Red (FTIR) 

spectroscopy. In the final stage of the study, the aptness of photocatalysis technique 

for in-situ removal and degradation of PCBs were conducted using green mussels 

collected from Sungai Melayu. The removal of PCB from mussels was done using 

food grade polyethylene glycol (PEG) and simultaneous decomposition with the 

presence of photocatalyst and visible light. The decomposition of five PCBs (PCB 15, 

28, 52, 138 and 153) that are usually detected in fishery products according to EU 

directive was monitored using gas chromatograph with electron capture detector (GC-

ECD). 

 



16 

1.10 Significance of the Study 

 

 

Most of the water treatment plant uses biodegradation and adsorption method 

to remove/reduce the pollutants; however these methods are time consuming and not 

cost effective. Furthermore, organochlorine pollutants that exist in water are not easily 

degraded. In view of that, a simple photocatalysis technique with suitable catalyst was 

employed which leads to the degradation of chlorinated compound. The reactions 

could be conducted with a potential photocatalyst which is immobilized on suitable 

support material, under visible light and at ambient temperature and pressure. In 

addition, in this reaction other materials as oxidant or ozone are not necessary since 

they are not cost effective. The photocatalyst could be easily prepared using cheap 

metal oxides that are highly stable in aqueous and not easily poisoned. This potential 

technology was also explored on fishery product, which in fact is the first attempt in 

this field and has proven to be viable in removal of toxic compound as PCB. 

Accordingly, the novelties of this research study could be listed as following: 

 

1. The development of new hybrid trimetallic oxide photocatalyst SnO2/WO3/TiO2 

in the ratio of 10:10:80 which are active in visible light region. 

2. The significant appliance of immobilized photocatalyst on PVC in 

photodegradation of DCB in aqueous under visible light. 

3.  The proposed mechanism of DCB decomposition in aqueous under visible light 

using immobilized photocatalyst.  

4.  The application of photocatalytic technique for in-situ removal and degradation of 

PCB from green mussels which is environmental friendly method. 
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