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ABSTRACT 

Accurate prediction of the friction factor and consequently the pressure drop 

in small two-phase flow channels are still lacking with large disagreements.  In 

addition, the environmental concerns associated with industrial refrigerants currently 

used have further posed a challenge to find thermally and hydrodynamically 

compatible and environmentally friendly alternatives.  The goal of this study is to 

determine the optimal friction factor and frictional pressure drop using single-

objective and multi-objective genetic algorithms.  A total of 53 friction factor 

models/correlations have been reviewed from which eight were utilized to address 

discrepancies.  Then, minimization of the frictional pressure drop by implementing 

single-objective genetic algorithm (SOGA) was carried out.  In the multi-objective 

genetic algorithm (MOGA), the conflicting objectives of friction factor and pressure 

drop have been minimized simultaneously.  Finally, the analysis was carried out on a 

small horizontal tube of 7.6 mm inner diameter utilizing experimental data for the 

refrigerant R-22 and the natural refrigerant R-290.  It has been shown that the 

disagreements occur due to (i) the use of fluid data from different sources, (ii) 

utilization of different correlations on viscosity, and consequently on predicting the 

friction factor, and (iii) the applications of different friction factor correlations on 

predicting the frictional pressure drop.  It has been proven that the Blasius friction 

factor correlation for turbulent flow in smooth pipe can be used by experimental 

researchers to determine their frictional pressure drop or/and matching of data and 

predicted values due to the coincidentally good agreement obtained.  The optimal 

outcomes using MOGA are found to be closest to the experimental data.  The 

percentage difference between the predicted and experimental frictional pressure 

drop is up to 1.93% and 0.25% when the Blasius friction factor equation is used with 

the McAdams and Dukler viscosity equations for R-22 and R-290 respectively.   
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ABSTRAK 

Ramalan tepat tentang faktor geseran dan akibatnya penurunan tekanan dalam 

saluran kecil aliran dua fasa masih kurang dengan pencanggahan yang tinggi. 

Kebimbangan terhadap alam sekitar terus menjadi cabaran kepada industri 

penyejukan untuk mencari pengganti kepada bahan penyejuk yang mempunyai ciri-

ciri haba dan hidrodinamik yang bersesuaian. Objektif kajian ini adalah untuk 

menentukan faktor geseran dan kejatuhan tekanan geseran optimum menggunakan 

algoritma genetik objektif tunggal dan berbilang objektif. Sejumlah 53 

model/korelasi faktor geseran telah dikaji semula, lapan daripadanya digunakan 

untuk menganalisa percanggahan. Seterusnya, pengurangan faktor geseran dan 

penurunan tekanan geseran menggunakan algoritma genetik objektif tunggal 

(SOGA) dilakukan. Dalam algoritma genetik berbilang objektif (MOGA), ojektif 

yang bercanggah iaitu faktor geseran dan penurunan tekanan telah diminimumkan 

serentak. Analisis  ini diakhiri dengan data eksperimen tiub mendatar kecil bergaris 

pusat 7.6 mm dengan penyejuk R-22 dan penyejuk semula jadi R-290. Analisis 

menunjukkan terdapat percanggahan adalah disebabkan (i) penggunaan data bendalir 

daripada sumber yang berlainan, (ii) penggunaan korelasi kelikatan yang berbeza dan 

penggunaannya terhadap anggaran faktor geseran, dan (iii) penggunaan faktor 

geseran yang berbeza untuk mendapatkan penurunan tekanan geseran. Kajian 

membuktikan korelasi faktor geseran Blasius untuk aliran gelora dalam paip licin 

boleh digunakan untuk penyelidik eksperimen dalam menentukan penurunan tekanan 

geseran atau/dan padanan data dengan nilai ramalan berdasarkan keputusan baik 

yang diperolehi. Hasil pengoptimuman menggunakan algoritma genetik didapati 

hampir dengan data eksperimen. Peratusan perbezaan antara penurunan tekanan 

geseran yang diramalkan dan eksperimen adalah 1.93% dan 0.25% apabila 

persamaan faktor geseran Blasius digunakan dengan persamaan kelikatan McAdams 

dan Dukler untuk R-22 dan R-290 masing-masing. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Two-phase flow phenomenon has gotten increased interest in recent years, 

attracting researchers to conduct more studies due to their higher heat transfer 

coefficient in comparison with single-phase flow (Jacopo, 2010).  In general, the rate 

of the heat transfer rate during phase change can be higher than four to twenty-five 

times compared to the single-phase equivalent convection (Incropera et al., 2007).  

Contrasted with the flow inside traditional channels, the flow of the refrigerants 

during boiling in smaller channels has distinct characteristics as a result of the 

chemical and physical properties of the refrigerants and the measurements of the 

channels.  Therefore, the accuracy of the pressure drop prediction is of a great 

importance and occupies the forefront place in design and improvement of the 

systems for its close association with the power required to drive fluid inside 

channels.  

 

The 1950s were marked by the fact that air conditioners were available to 

almost every family, especially in developed countries.  The makers of these gadgets 

supplanted poisonous refrigerant gasses with manufactured refrigerants called 

chlorofluorocarbons (CFCs).  The 1970s were marked by the terrible discovery that 

CFCs, used in refrigeration units as well as various devices, were one of the factors 

leading to the depletion of the ozone layer responsible for reducing the harmful 

effects of solar radiation.  The Montreal Protocol signed by most countries in 1987, a 

global agreement, attempts to replace the Chlorofluorocarbons (CFCs) products with 

other products such as Hydrofluorocarbons (HFCs) like R-410A and R-134a 
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(Mironov, 1968), that are environmentally friendly, natural, and have low or zero 

ozone depleting potential (ODP) and global warming potential (GWP).  Currently, 

there are still inadequate studies on environmentally friendly natural refrigerants in 

small channels available in the literature.  Preliminary results from these studies 

provided viable options but there is insufficient data on the properties of these 

refrigerants, especially with regard to heat transfer and pressure drop. 

 

Appearance and disappearance of the phases during the two-phase flow 

makes the analysis of the flow systems very complex because of the characteristics 

of the intermittent fluids at the phase boundary, as well as the relative movement of 

the phases, mass and energy and the transfer of momentum between phases.  

Besides, void distribution in a two-phase channel has special importance.  The flow 

patterns get more complex in small channels due to the increased frictional losses 

between the fluid layers as well as between the fluid and channel walls.   

 

The advantages that can be found using small channels is the high heat 

transfer coefficient due to the high ratio between heat transfer surface and fluid flow 

volume.  Also, their small size makes the need for less material and reduces the 

weight, fluid stock, installation costs and power reserve.  However, despite these 

advantages, they are also characterized by an increase in wall friction which leads to 

increased pressure drop.  Therefore, there is a need to understand the basic aspects of 

flow in two phases with regard to pressure reduction and heat transfer for accurate 

prediction leading to better design of compact heat exchangers and greater efficiency 

in industrial processes. 

 

 

1.2 Flow Patterns and Flow Pattern Maps  

 

The flow pattern in two-phase flow can be influenced by various parameters 

such as density and viscosity of the gas and liquid phases, surface tension, mass flow 

rate of each phase, and geometrical measurements of the flow channel.  In addition, 

competition between forces such as inertia force, viscosity force, gravitational force, 

and surface tension force controls the order of specific flow patterns in the channel.  

It is, therefore, a necessary to predict these flow regimes as the basis for performing 
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arithmetic operations on two-phase flow.  The usual procedure is to draw data in the 

form of a flow pattern map. 

 

Thus, flow pattern maps can be defined as an operation of separating space 

into areas on a two-dimensional graph corresponding to the different flow patterns.  

They are a construct of two coordinates, where the liquid superficial velocity is 

plotted against the gas superficial velocity.  The boundaries between the flow 

patterns are plotted by lines.  Using these maps for predicting the local flow regime 

in both horizontal and vertical pipes are very useful.  Additionally, most of the flow 

pattern maps have been developed for adiabatic two-phase flows, which may not 

yield reliable results when used in the case of diabatic. 

1.3 Pressure Drop in Two-Phase Flow  

   

The pressure drop is defined as the difference in pressure between two 

interesting points in the flow system.  Total pressure drop usually occurs owing to 

friction because of the viscosity of the liquid and gas in motion. Where in the case of 

the laminar flow pressure loss occurs as a result of the momentum transfer between 

the particles, while in the turbulent flow occurs when the individual particles move at 

different velocities between the adjacent fluid layers.  In addition, pressure losses 

also can be caused by the local pressure loss due to sudden changes in flow area, 

shape, and flow direction; and pressure losses due to acceleration, caused by changes 

in elevation (gravity effect), flow area or by changes in the fluid density. 

 

In view of the design and operational issues caused due to the simultaneous 

flow of liquid and vapor and forming various two-phase flow patterns, makes the 

calculation of the pressure drop in these conditions a crucial in order to assist the 

piping designer to succeed in achieving the optimal line size and better design of the 

piping system.  Most of the studies on pressure drop proved that the frictional 

component was dominant and the contribution of the accelerational and gravitational 

component is small (Saitoh et al., 2005).  Frictional pressure drop commonly comes 

from the friction between the flowing fluid and pipe wall.  In two-phase flows, there 
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is an additional frictional pressure loss comes from the interphase friction between 

phases.   

 

In general, calculation of the frictional pressure drop requires knowing either 

the two-phase friction factor or the two-phase frictional multiplier.  Where, 

calculating friction factors can be done using implicit Colebrook equation which 

requires iterative procedure, an inconvenience and needs time for computation.  

Therefore, many explicit equations were developed to rid of the iterations.  The main 

disadvantage of these explicit approximations is the relatively high percentage of 

error compared to the solution to the implicit Colebrook equation (Brkić, 2012). 

 

In the past, five methods have been utilized in solving the Colebrook equation 

(Colebrook, 1939): (i) graphical method by finding the solution from the Rouse or 

Moody diagrams (Rouse, 1943; Moody and Princeton, 1944), (ii) implementing 

iterative process by using spreadsheet solvers, which gives accurate solutions to the 

Colebrook equation but requires long time (Excel is most suitable tool), (iii) using 

developed explicit equations of the Colebrook equation which requires less 

calculation but have higher error percentage (Genić et al., 2011), (iv) make use of the 

Lambert W function to avoid the iterative calculations with less percentage error 

(Boyd, 1998; Barry et al., 2000), and (v) applying trial – and – error method which is 

no longer used.   

 

Today, Colebrook equations can be solved easily and accurately using the 

Newton-Raphson iterative procedure and common software tools such as Microsoft 

Excel and MATLAB.      

1.4 Background and Rational of the Research 

At present, the need for small channels in a variety of compact applications is 

widespread.  Unfortunately, published reports indicate the significant increment in 

pressure drop to the detriment of heat transfer coefficient increment.  Consequently, 
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there is a requirement for a dependable model with a high degree of accuracy for 

predicting two-phase flow frictional pressure drop in small channels. 

 

To date, researchers have modified available correlations on pressure drop 

developed based on conventional systems.  Meanwhile, other researchers have 

invested much time and funds in developing new correlations in search of better 

agreements across refrigerants, channel diameter, and flow regimes.  The issue 

remains with the many different predicted friction factor correlations used in the 

determination of the frictional pressure drop.  Besides, the different approaches in 

modelling the flow (homogeneous or separated) introduced further variations in the 

outcomes.  Global concerns for natural and more environmentally friendly 

refrigerants in practical applications have added a new challenge to the study and 

investigation of the two-phase flow in small channels. 

 

Experimental studies that have been conducted on boiling heat transfer and 

pressure drop of refrigerants during two-phase flow in small channels are few in 

comparison with those in conventional channels.  Even less is the focus on optimized 

conditions for minimal pressure drop.  The difficulty of effectively dealing with 

turbulent flow issues in pipes originates from the truth that friction factor is an 

intricate function of roughness and Reynolds number.  With various 

correlations/models applicable and performance on alternative refrigerants, there is a 

need for a study and analyze available correlations/models proposed or modified 

(many) to identify and address causes of discrepancies.  Optimized conditions such 

as inlet temperature, mass flux, heat flux, and vapor quality in small channels 

whereby the frictional pressure drop is minimized have to be investigated, with 

comparisons of the performance between current and environmentally friendly 

refrigerants as potential alternatives. 

1.5 Problem Statement 

 

Two-phase flow pressure drop is a major parameter in designing two-phase 

flow systems and takes precedence over any other consideration.  Past empirical 
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correlations come with various degrees of disagreements with experimental data, up 

to and above 100% (Xu and Fang, 2012; Xu et al., 2012; Xu and Fang, 2013).  The 

use of data from different sources and various equations in calculating the viscosity 

value had a clear effect on the viscosity value estimation.  This effect is clearly 

shown in the calculation of the value of the number of Reynolds, which is a critical 

element in estimating the friction factor.  In addition, the use of various equations for 

calculation of the friction factor has had a considerable effect on the accuracy of the 

predicted value of the friction factor and consequently on predicting frictional 

pressure drop.   

 

In addition, the enormous ecological harm that has happened because of the 

utilization of halogens pushed the researchers to look for and examine natural 

refrigerants as replacements to the current used.  Thus, in this study the propane (R-

290) has been examined simultaneously with HCFC (R-22) as an alternative natural 

environmentally friendly refrigerant.   

 

Current research investigated the effect of using data from various sources 

and various viscosity and friction factor equations on estimating viscosity and 

friction factor values.  As well as, this research inspects the effect of the predicted 

viscosity and friction factor values on predicting frictional pressure drop.  

Examination has been performed utilizing the genetic algorithm (GA) as a 

convenient optimization method.  The optimal outcomes were compared with 

experimental data collected from the experiments conducted at the Universitas 

Indonesia.  

 

 

 

1.6 Research Objectives 

 

The objectives of this study are: 

 

i. Perform a critical review of the available implicit and explicit equations for a 

wide range of Reynolds numbers and relative pipe roughness to establish the 

accuracy. 
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ii. Examine the natural environmentally friendly refrigerant R-290 

parametrically and under optimized conditions as an alternative refrigerant to 

the refrigerant R-22 using Genetic Algorithm Optimization. 

 

iii. Show the effects of using data from various sources on estimating the 

viscosity value and thus on evaluating the friction factor value. 

 

iv. Illustrate the effects of using the different equations on the viscosity value 

estimate and the effect of this on the value estimation of the friction factor. 

 

v. Demonstrate the effect of using various correlations on estimating the friction 

factor value and its impact on the accuracy of the prediction of the frictional 

pressure drop in two-phase flow. 

 

vi. Evaluate the magnitude of all the above-mentioned effects by comparing the 

results obtained with experimental data to increase the accuracy of the 

analysis. 

1.7 Scopes of the Research 

 

Theoretical and experimental approaches were involved in this research.  The 

research focuses on study and evaluation of the effect of using data from different 

sources and different equations in calculating the value of viscosity on which the 

Reynolds is dependent on.  The Reynolds number is a key element in the calculation 

of the friction factor which is a critical factor in the evaluation of the frictional 

pressure drop.  In addition, examination of the effect of using various viscosity 

equations as well as various equations on estimating the friction factor is completed.  

Consequently, the impact of all these effects on predicting the frictional pressure 

drop is analyzed.  Some of the most commonly used equations were selected to 

assess the magnitude of all these effects. 

 

An examination of a natural and environmentally friendly refrigerant as a 

replacement to the currently used refrigerants was accomplished.  Genetic algorithm 
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has been utilized as an effective and convenient optimization method with the aim to 

identify the source of inconsistency between the predicted frictional pressure drop 

and experimental results previously reported from a large number of researchers.  

Comparison of the numerical and optimal outcomes of the measured pressure drop 

and calculated experimental friction factor from the experiment conducted for this 

purpose, has made it possible to assess the selected viscosity and friction factor 

correlations and their effect on the accuracy of the predicted frictional pressure drop.  

Thus, utilizing these correlations and applying the homogeneous flow model, 

pressure drop can be more effectively predicted in the design of compact two-phase 

flow systems. 

1.8 Research Contributions 

 

i. A critical review of the implicit and explicit friction factor correlations 

due to the large number of them that can be found in literature to 

determine which of them gives results consistent with the experimental 

results and with high accuracy. 

 

ii. At the same manner, a critical review of the two-phase flow void fraction 

and viscosity models/correlations that can be found in literature to 

determine which of them gives results compatible with the experimental 

results and with high accuracy when substitute in correlation of friction 

factors. 

 

iii. Demonstrate the effect of using data from various sources and various 

viscosity correlations on calculating viscosity and friction factor and 

corresponding on prediction of the frictional pressure drop.  Where, the 

experimental data from published paper of Pamitran et al. (2010), 

experimental data from Universitas Indonesia (UI), and available data 

from the National Institute of Standards and Technology (NIST) 

chemistry webbook (Eric et al., 2013) were used. 
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iv. Examining natural environmentally friendly refrigerant as an alternative 

to the one currently in use in order to follow the instructions of the 

Montreal Conference for the Protection of the Environment. 

  

v. Utilizing genetic algorithm (GA) optimization tools as a convenient 

optimization method which has not been applied before in the field of the 

two-phase flow in small channels, to examine the effects mentioned in 

(iii) in order to reduce the large inconsistency with the experimental 

results already reported from a large number of researchers to less than 

what can be. 

1.9 Research Systematic Stages 

 

The major steps of this research can be briefed in the following: 

 

i. Critical review on the studies and research available in literature related to the 

pressure drop prediction methods and correlations in small channels. 

 

ii. Critical review on the studies and research available in literature related to the 

void fraction and viscosity models/correlations. 

 

iii. Critical review on the studies and research available in literature related to the 

friction factor implicit and explicit correlations for a wide range of Reynolds 

numbers and relative pipe roughness to establish the accuracy. 

 

iv. Critical review on the studies and research available in literature related to the 

pressure drop optimization methods that apply Genetic algorithms. 

 

v. Describing and analyzing the behavior and performance of the two-phase 

system in small channels through applying homogeneous flow models in 

laminar and turbulent flow regimes methodically and parametrically.  
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vi. Applying genetic algorithm optimization based on the homogeneous flow 

model for optimization the objective functions which are minimum friction 

factor and minimum frictional pressure drop in small channel of 7.6 mm inner 

diameter. 

 

vii. Conducting experiments on two-phase flow pressure drop of the refrigerant 

R-22 and R-290 which significantly added to the available data of pressure 

drop measurements taken in a horizontal pipe of 7.6 mm inner diameter and 

length of 1070 mm for two-phase flow. 

 

viii. Analyze and compare the numerical results with experimental data to 

demonstrate the effect of use different friction factor and viscosity 

correlations/models as well as data from different sources on prediction of the 

two-phase flow frictional pressure drop. 

 

ix. Examining the refrigerant R-290 as an alternative natural environmentally 

friendly refrigerant simultaneously with refrigerant R-22 in laminar and 

turbulent flow regimes, parametrically and under optimized conditions. 

 

The steps of this research are shown in Figure 1.1. 
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Figure 1.1 Methodical stages of the current study 
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1.10 Research Significance 

 

The importance of the research lies in the critical review of the huge number 

of the void fraction, viscosity, and friction factor correlations available in the 

literature used for laminar and turbulent flow regimes.  In addition to that, the effect 

of using data from different sources on the viscosity value, the effect of using 

different viscosity equations in calculating the viscosity value and the subsequent 

effect on the predicted friction factor has been demonstrated.  Furthermore, genetic 

algorithm optimization tool to optimize the friction factor and frictional pressure 

drop in a small channel that has not been used previously has been utilized.  Thus, 

the research significance can be summarized in the following points: 

 

i. This research is an effort to comprehend the effect of the frictional pressure 

drop on two-phase flow boiling in small channels including experiments and 

applying of different friction factor and viscosity equations. 

 

ii. Demonstrate the effect of using data from various sources in evaluating 

friction pressure drop and correspondingly on predicting pressure drop.   

 

iii. The critical review discovered some correlations that have not been 

mentioned before, in addition to the presence of some of the misconceptions 

about the original developers of these correlations. 

 

iv. Applying genetic algorithms optimization gave a methodical optimization 

program with less limiting conditions, and can be used by the designers 

without difficulty or effort. 

 

v. Examination of a natural environmentally friendly refrigerant as a 

replacement to the currently HCFC used in order to protect the environment, 

preserve the ozone layer and avoid global warming. 
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1.11 Thesis Organization 

 

The manuscript is arranged in a systematic way as follows: 

 

Chapter 1 – Introduction: Presents a brief description of two-phase flow and 

pressure drop issues in small channels and the background of the problem.  In 

addition, offers the objectives, scopes, as well the significance of this study. 

 

Chapter 2 – Review of the Literature: Provides a critical review of the related 

studies on the two-phase viscosity, void fraction, friction factor, and frictional 

pressure drop.  The review includes correlations, geometries, refrigerants, materials 

as well the employed genetic algorithms optimization techniques. 

 

Chapter 3 – Methodology: Displays the viscosity and friction factor correlations 

applied in the study. Offers parametric and genetic algorithms optimization analysis 

with the assumption of liquid-gas flow into pipes.  Homogeneous flow model has 

been applied using the selected correlations.  Genetic Algorithm Optimization and 

the procedures of implementation of the single and multi-objective genetic 

algorithms optimization in the present study were discussed and explained. 

 

Chapter 4 – Results and Discussions: displays the outcomes of the parametric 

analysis and optimization operations, comparisons between the outcomes 

themselves, and comparisons with experimental data.  All outcomes of the 

comparisons were discussed and explained.  

 

Chapter 5 – Conclusions and Recommendations: Gives the conclusion depending 

on the analysis and discussion of the comparisons outcomes as well proposes the 

recommendations. 
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