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ABSTRACT 

 

 Proton exchange membrane fuel cell (PEMFC) is one of the most promising green 

technologies for providing clean and efficient energy and operating above 100 °C is highly 

desired to enhance the electrodes kinetics and increase tolerance to carbon monoxide 

impurities from reformed hydrogen. However, the commercially available membranes for 

fuel cell such as Nafion® are expensive and have limited operational temperature (< 80 °C). 

This work aims to develop alternative phosphoric acid (PA) doped membranes using basic 

radiation grafted precursor films for PEMFC operating at temperatures 120 °C. Particularly, 

the main objective of this study was to develop three PA doped membranes by radiation 

induced grafting of mixture of 4-vinylpyridine (4-VP) with glycidyl methacrylate (GMA), 

1-vinylimidazole (1-VIm) or triallyl cyanurate (TAC) onto poly(ethylene-co-tetrafluoroethylene) 

(ETFE) films followed by doping with PA. A membrane obtained by grafting of 4-VP alone 

onto ETFE film and acid doping was used as a reference. The degree of grafting (DG) was 

controlled by optimization of the reaction parameters such as absorbed dose, composition 

of monomer mixture, temperature and reaction time whereas the acid doping level (DL) was 

manipulated by variation of PA concentration, reaction temperature and time. The properties 

of the PA doped membranes denoted as ETFE-g-P(4-VP)/PA, ETFE-g-P(4-VP/GMA)/PA, 

ETFE-g-P(4-VP/1-VIm)/PA, ETFE-g-P(4-VP/TAC)/PA together with the corresponding 

grafted and pristine ETFE films were evaluated in correlation with type and concentration 

of second monomer added to 4-VP (comonomer) using Fourier transform infrared, field 

emission scanning electron microscope, thermal gravimetric analysis  and x-ray diffraction. 

The membranes were also subjected to elemental as well as mechanical analysis and their 

proton conductivity together with fuel cell test were investigated at 120 °C. The DG was 

found to be strongly dependent upon grafting parameters. The obtained membranes attained 

high DL which reached 97 %, 115 %, 119 % and 113 % for membranes grafted with 4-VP, 

4-VP/GMA, 4-VP/1-VIm and 4-VP/TAC, respectively. All the membranes displayed well-

defined structures, good thermal stability, reasonable mechanical strength and high proton 

conductivity in the range of 33-44 mS/cm (at 120 °C and 0 % RH). The mechanical properties 

of ETFE-g-P(4-VP/TAC)/PA membrane was significantly improved by introducing TAC 

as a comonomer during grafting, which crosslinked the PA doped grafted chains compared 

to the other two membranes. ETFE-g-P(4-VP/1-VIm)/PA membrane showed the best fuel 

cell performance (226 mW/cm2) at 120 °C and 20 % RH conditions compared to the other 

two membranes and this is due to the increase of number of protonated pyridine and 

imidazole rings that could host more PA. The sequence of the membranes’ performance in 

PEMFC represented by power density was ETFE-g-P(4-VP/TAC)/PA (84 mW/cm2) > 

ETFE-g-P(4-VP/GMA)/PA (76 mW/cm2) > ETFE-g-P(4-VP/1-VIm)/PA (70 mW/cm2) >  

ETFE-g-P(4-VP)/PA (53 mW/cm2) under dry conditions. Thus, it can be concluded that 

grafting of comonomers is an effective method to enhance the conductivity of PA doped 

membranes in way making them more suitable for fuel cell operation above 100 °C.  
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ABSTRAK 

 

 Sel bahan api membran penukaran proton (PEMFC) adalah salah satu teknologi hijau 

yang paling berpotensi untuk menyediakan tenaga yang bersih dan cekap dan operasi lebih 

daripada 100 °C sangat dikehendaki untuk meningkatkan kinetik elektrod dan meningkatkan 

toleransi terhadap bendasing karbon monoksida yang terhasil daripada hidrogen diperbaharui. 

Bagaimanapun, membran komersial untuk sel bahan api seperti Nafion® adalah mahal dan 

mempunyai suhu operasi terhad (< 80 °C).  Kerja ini bertujuan untuk menghasilkan membran 

alternatif terdop asid fosforik (PA) dengan menggunakan filem prapenanda cantuman radiasi 

asas untuk PEMFC beroperasi pada suhu 120 °C. Khususnya, objektif utama kajian ini adalah 

untuk menghasilkan tiga membran terdop PA melalui cantuman teraruh radiasi yang 

mengandungi campuran 4-vinylpiridin (4-VP) dengan glycidyl metakrilat (GMA), 1-

vinilimidazol (1-VIm) atau triallyl cyanurate (TAC) terhadap filem poli(etilena-ko-

tetrafloroetilena) (ETFE) diikuti pengdopan PA. Membran terhasil melalui cantuman 4-VP 

sahaja terhadap filem ETFE dan pengdopan asid dijadikan sebagai rujukan. Tahap cantuman 

(DG) dikawal dengan pengoptimuman parameter tindak balas seperti dos terserap, campuran 

komposisi monomer, suhu dan masa tindak balas manakala tahap pengdopan asid (DL) telah 

dimanipulasi oleh perubahan kepekatan PA, suhu tindak balas dan masa. Sifat-sifat membran 

terdop PA dilabelkan sebagai ETFE-g-P(4-VP)/PA, ETFE-g-P(4-VP-co-GMA)/PA, ETFE-g-

P(4-VP-co-1-VIm)/PA dan ETFE-g-P(4-VP-co-TAC)/PA dinilai bersama dengan filem-filem 

tercantum dan ETFE asal berdasarkan jenis dan kepekatan monomer kedua yang ditambah 

kepada 4-VP (komonomer) menggunakan spektroskopi infra-merah transformasi Fourier, 

medan pemancaran mikroskopi pengimbas elektron, analisis gravimetrik haba dan pembelauan 

sinar-X. Analisis berunsur serta mekanikal dan kekonduksian proton membran berserta ujian sel 

bahan api telah diuji pada 120 °C. DG didapati sangat bergantung kepada parameter cantuman. 

Membran dengan DL yang tinggi masing-masing diperolehi sampai 97 %, 115 %, 119 % dan 

113 % untuk membran 4-VP, 4-VP/GMA, 4-VP/1-VIm dan 4-VP/TAC. Semua membran 

menunjukkan struktur yang baik, kestabilan terma baik, kekuatan mekanikal yang munasabah 

dan kekonduksian proton tinggi dalam lingkungan 33-44 mS/cm (pada 120 °C dan 0 % RH). 

Sifat mekanikal membran ETFE-g-P(4-VP/TAC)/PA telah bertambah baik dengan 

memperkenalkan TAC sebagai komonomer ketika cantuman menyebabkan rantai cantuman 

yang terdop PA tersilang berbanding dengan dua membran lain. Membran ETFE-g-P(4-VP/1-

VIm)/PA telah menunjukkan prestasi sel bahan api terbaik (226 mW/cm2) pada 120 °C dan 20 

% RH berbanding dengan dua membran lain yang disebabkan oleh peningkatan bilangan piridin 

proton dan gelang imidazol yang boleh menampung lebih PA. Prestasi membran dalam 

PEMFC disenaraikan mengikut urutan ketumpatan kuasa adalah ETFE-g-P(4-VP/TAC)/PA 

(84 mW/cm2) > ETFE-g-P(4-VP/GMA)/PA (76 mW/cm2) > ETFE-g-P(4-VP/1-VIm)/PA (70 

mW/cm2) > ETFE-g-P(4-VP)/PA (53 mW/cm2) dalam keadaan kering. Kesimpulannya, 

cantuman komonomer adalah satu kaedah berkesan untuk meningkatkan kekonduksian 

membran yang terdop dengan PA untuk lebih sesuai beroperasi dalam sel bahan api pada suhu 

lebih daripada 100 °C. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

 

   Energy has become the currency of political and economic power, the 

determinant of the hierarchy of nations, a new marker, even, for success and material 

advancement. Rising demand for energy and the global economy’s dependence for 

the continuous availability and affordability of energy necessitates research into 

alternate renewable sources. Currently, the most abundant energy sources are fossil 

fuels: coal, natural gas and crude oil. Although these fossil fuels are rather cheap and 

are of high energy density, reserves are limited and supply can be interrupted as 

result of conflicts in production areas. Moreover, the combustion of fossil fuels emits 

carbon dioxide (CO2), which acts like a planet-sized greenhouse that traps the sun’s 

heat and increases global temperatures (Dincer, 1998). The CO2 emissions contribute 

to climate change and profoundly affects every life on Earth. One solution to 

mitigate the problems and to satisfy growing energy demands is by employing 

renewable energy technologies on a large scale. Alternative energy sources such as 

wind power, geothermal, solar biomass are fast growing. However, they have low 

efficiency and it is difficult to find suitable means for energy storage due to the 

intermittent nature of these primary energies (Ibrahim et al., 2008).  

 

 One of the emerging sources which have received an increasing attention in 

the last two decades is fuel cell technology. Fuel cells are known as an 

electrochemical energy conversion device that can replace fossil fuel extraction and 
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processing activities and its use which emits harmful greenhouse gases. The 

chemical energy stored in hydrogen can be converted to electrical energy by fuel 

cells to generate pollution-free power. The production of hydrogen as a source of 

energy can reduce fossil fuel dependency because a wide range of feedstocks can be 

used to produce hydrogen. The relative ease and inexpensive of producing hydrogen 

could improve access to energy around the world. Moreover, if fuel cell technology 

is implemented, the widespread use of this clean green energy technology since its 

by-product of vaporised water does not harm the environment. In summary, fuel cells 

have a number of advantages compared to internal combustion engine such as higher 

efficiency and power density, low emission, silent operation in addition of absence of 

dependency on conventional fuels such as oil or gas and can therefore reduce 

economic reliance on fossil fuel and creating greater energy security for the user 

nation. This suggests that fuel cells are a sustainable energy supply and can help to 

avert energy shortage crisis. The global fuel cell market is expanding vastly, and 

several automobile makers have already started to market green cars at affordable 

prices which are aimed at the middle-income population. Figure 1.1 shows the 

progress of the fuel cell cost and the costs have significantly reduced and are 

approaching the U.S. Department of Energy (DOE)’s goal for 2020 which is targeted 

at $40/kW (Guerrero Moreno et al., 2015). Based on Figure 1.1, while reducing the 

membrane electrode assembly (MEA) cost up to 27%, the target cost can be 

achieved, corresponding to a total reduction on catalyst cost of about $10/kW and 

$2.5/kW on membrane cost. The MEA cost refers to the sum of catalyst, membrane, 

and other MEA cost such as gas diffusion layer and gaskets. Meanwhile, the cost for 

other systems includes bipolar plates, humidifier, gas supply, fuel cell stack and so 

on. 
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Figure 1.1 Fuel cell system cost with cost reduction in MEA for 500,000 units/year 

(Guerrero Moreno et al., 2015). 

 

 Fuel cells are available in different types, which can be classified based on 

the type of electrolyte used or operating temperature requirements of different 

manufacturers and systems. Fuel cells that are currently under investigation include 

polymer electrolyte or proton exchange membrane fuel cells (PEMFCs), alkaline fuel 

cells (AFCs), solid oxide cells (SOFCs), phosphoric acid fuel cells (PAFCs) and 

molten carbonate fuel cells (MCFCs) (Steele and Heinzel, 2001). Of all, PEMFC 

have a number of advantages such as compact construction, large current density, 

solid electrolyte, low working temperature and fast start-up that made them more 

suitable not only for stationary applications, but also for mobile (transportation) and 

portable applications (Sharaf and Orhan, 2014).   

 

 PEM fuel cells have been tested widely with Nafion® membranes (DuPont) as 

PEM that is operated under full hydration to low temperature up to 80 °C (to 

maintain high relative humidity, RH).  However, at this temperature, the 

accompanied heat and water required appropriate management systems making the 

fuel cell complex. Moreover, the platinum (Pt) catalyst on the electrodes can be 

easily contaminated by CO and SO2 originated from hydrogen obtained from 

reformate hydrocarbon. However, these limitations can be overcome by increasing 
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the operating temperature above 100 °C (Li et al., 2014; Liu et al., 2016b). Although 

Nafion® membranes possess superior chemical and mechanical stabilities along with 

long term durability, it has number of limitations such as dehydration at temperatures 

above 80 °C and increase of gas crossover in addition to high cost (Li et al., 2003; 

Mahreni et al., 2009; Markova et al., 2009). 

 

 To tackle the high cost of fuel cells, which is mainly caused by the high cost 

of PEM (e.g. Nafion® membrane) and expensive electrode materials (platinum), 

various research efforts have been made to speed the commercialization of PEMFC 

especially for transportation applications (Gubler, 2014; Nasef et al., 2016b). This 

led to a progress towards significant reduction in fuel cells in a way approaching the 

U.S. Department of Energy (DOE)’s goal for 2020 which is targeted at $40/kW 

(Bakangura et al., 2016). In the search for PEM with reduced cost,  radiation induced 

grafting (RIG) has been found to be a cost effective method for preparation of PEMs 

for fuel cell applications and can be tailor made to exhibit wide range of properties to 

prepare membranes (Gubler et al., 2005; Gubler et al., 2006; Nasef et al., 2016b; 

Nasef and Güven, 2012).   

 

1.2 Problem Statement 

 

 PEMFC is widely tested with perfluorosulfonic acid (PFSA) membranes such 

as Nafion® which showed good chemical stability and high conductivity about 100 

mS/cm under fully hydrated conditions at 80 °C. However, Nafion® membranes have 

some limitations that need to be overcome to boost the commercialization of 

PEMFC. This includes the low proton conductivity at temperatures above 80 °C and 

relative humidity (RH) below 50% as a result of instant water evaporation (Mishra et 

al., 2012; Nasef, 2014; Yin et al., 2016). In an attempt to substitute Nafion®, 

researchers also tried to develop a combination of acid base polymers such as 

phosphoric acid doped polybenzimidazole (PBI). These membranes were found to 

have excellent properties operating at elevated temperature of up to 200 °C under 

anhydrous conditions due to the low volatility of phosphoric acid that acts as the 
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proton carrier. However, PBI membranes have some drawbacks, such as insufficient 

proton conductivity, acid leaching problem, and the decrease in mechanical property 

under HT-PEMFC operation conditions, which limited the performance of such 

membranes in HT-PEMFC (Araya et al., 2016). More details on PA membranes 

based on PBI can be found in the reviews by Li et al. (2009), Subianto (2014), Zeis 

(2015),  Zhang and Shen (2012a) and Zhang and Shen (2012b).   

 

 In order to increase the proton conductivity, the acid doping level of the PBI 

membrane needs to be enhanced, but such move is likely to weaken the membrane 

mechanical properties. Significant efforts have been made to modify PBI membranes 

for HT-PEMFC application by converting them into composite membrane by 

incorporating of phosphotungstic acid (Staiti et al., 2000), silica (Ghosh et al., 2011a; 

Pu et al., 2009), clay (Ghosh et al., 2011b; Plackett et al., 2011) and sulfonated 

mesoporous organosilicate (Tominaga and Maki, 2014). However, a major 

improvement to PBI based composite membranes could not be made leaving their 

fabrication technology far from commercialization. This is obviously due to the poor 

fuel cell performance caused by the transport limitation of the reactants (H2/O2) 

resulting from the leaching of phosphoric acid (Liang et al., 2015). Therefore, one of 

the most critical challenges in developing new HT-PEMFC membranes is to have 

membranes capable of enhancing the fuel cell performance at temperature above 100 

°C. 

 

Of all attempted alternative fuel cell membranes, radiation grafted 

membranes showed the potential to substitute conventional counterparts on basis of 

the ease of preparation and cost effectiveness. These membranes are prepared by 

radiation induced grafting (RIG) of vinylic monomers like styrene onto fully 

fluorinated or partially fluorinated films followed by functionalization reactions such 

as sulfonation (Nasef, 2014). Among fluorinated polymer films, poly(ethylene-co-

tetrafluoroethylene) ETFE was reported to have high resistance to high-energy 

radiation (gamma rays or electron beam) and common solvents. ETFE also has 

excellent thermal stability, which made its films suitable substrates for preparation of 

proton exchange membranes.  
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RIG method is well known to be versatile graft copolymerization method 

because the grafted membranes compositions can be accurately tuned and the 

properties can be tailored to suit particular applications. Therefore, this method was 

found to be suitable for preparation of large number of functional materials and 

membranes for various energy, environmental and separation applications. More 

details on various preparation routes for radiation membranes and their potential 

application can be found in the reviews by Nasef and Hegazy (2004), Nasef and 

Güven (2012) and Nasef et al. (2016b).  

 

 Few studies reported the preparation of alternative radiation grafted 

membrane doped with PA obtained by RIG of nitrogenous monomers such as 4-

vinylpyridine (4-VP) onto ETFE films followed by PA doping (Nasef et al., 2013a; 

Nasef et al., 2013c; Sanli and Gursel, 2011). The 4-VP monomer was selected 

because the nitrogen present in its pyridine ring has the tendency to establish positive 

site prompting basic character to the grafted film when it is protonated. In addition, 

RIG of 4-VP was proven to be advantageous because it has a minimal radiation 

damage on ETFE structure due to the fast grafting reaction caused by the high 

reactivity of 4-VP monomer and thus high grafting levels can be easily obtained at 

lower absorbed dose (Sanli and Gursel, 2011).  In the previous studies conducted at 

Centre of Hydrogen Energy (CHE) by Nasef et al. (2013a); (Nasef et al., 2013c), 

preparation of PEM membranes was carried out by RIG of 4-VP onto ETFE films 

followed by acid doping and the work was extended by replacing 4-VP with 1-

vinylimidazole (1-VIm) as a grafting monomer with different partially fluorinated 

polymers including poly(vinylidene fluoride) and ETFE films. The obtained 

membranes showed reasonable proton conductivity with less water dependent 

behaviour. However, these membranes did not have sufficient stability and proton 

conductivity to sustain operation in PEMFC at 120 °C. This is due to leaching of PA 

which could be increased to high levels with higher temperatures. 

 

 The use of comonomers i.e. a second monomer added to the main monomer 

forming a mixture of two monomers is an appealing approach to improve the 

properties of these membranes which is capable of boosting the basic characters 

when grafted onto ETFE films with RIG method. Particularly, grafting of 4-VP as 

the primary monomer with comonomers such as glycidyl methacrylate (GMA), 1-



7 
 

 

vinylimidazole (1-VIm) and triallyl cyanurate (TAC) is likely to improve the 

properties of the membranes. The addition of GMA to grafting monomer mixture 

introduces epoxy rings to the grafted chains that can be functionalized in a post 

grafting mild reaction with various ionic groups such as sulfonic acid (Abdel-Hady et 

al., 2013; Kim and Saito, 2000), amines (Choi et al., 2004; Yang et al., 2009), 

phosphoric acid (Choi and Nho, 1999; Tsuneda et al., 1991), and others (Kim et al., 

1991a; Kim et al., 1991b). Particularly, phosphonation of epoxy ring is of high 

interest to enhance proton conductivity of the membranes obtained by grafting 

mixture of GMA with nitrogenous monomer. On the other hand, the incorporation of 

1-VIm, which is a nitrogenous monomer, is capable of imparting more basic moiety 

to the grafted films when it is combined with 4-VP during grafting reaction (Nasef et 

al., 2013a; Nasef et al., 2013b; Schmidt and Schmidt-Naake, 2007a, b). The presence 

of two basic nitrogen atoms originated from the grafted pyridine and imidazole rings 

per repeating unit resembles PBI and provides more basic centres for PA 

complexation suitable for proton conduction at temperatures above 100 °C. On the 

other hand, the incorporation of TAC, which is polyfunctional nitrogenous monomer 

acting as a crosslinker, is likely to improve the mechanical properties of membranes 

(Alkan Gürsel et al., 2008; Gubler et al., 2005; Gubler and Scherer, 2010). The 

advantages of TAC is in the presence of three ether linkages in the allyl side chains 

that imparts flexibility to the crosslinked grafted chains allowing reasonable 

molecular chain motions (Chen et al., 2006b; Gupta et al., 1994; Nasef, 2000). 

However, the content of TAC has to be optimized to avoid formation of highly 

crosslinked dense structure that reduces the membrane swelling  (Gubler et al., 

2005). 

 

 It is noteworthy stating that, the knowledge about the suggested comonomers 

and their properties prompt their consideration for the development of new proton 

exchange membranes for HT-PEMFC with improved properties including acid 

doping level, proton conductivity, stability and less-water dependency. Specifically, 

preparation of three membrane precursors with grafting of comonomers mixtures 

such as 4-VP/GMA, 4-VP/1-VIm or 4-VP/TAC followed by PA doping is appealing 

for improving the properties of 4-VP grafted membrane obtained in the previous 

work. Moreover, the approach implemented in this study was not reported in 

literature before.  
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1.3 Objectives 

 

 The aim of this study is to develop new phosphoric acid (PA) containing 

membranes with improved properties based on three different basic grafted films 

obtained by radiation induced grafting of 4-vinylpyridine (4-VP) and its mixtures 

with glycidyl methacrylate (GMA), 1-vinylimidazole (1-VIm) or triallyl cyanurate 

(TAC) onto poly(ethylene-co-tetrafluoroethylene) (ETFE) films followed by PA 

doping suitable for high temperature PEMFC.   

 

The objectives can be stated as follow: 

 

i. To establish membranes preparation procedures by optimization of the 

reaction parameters affecting the degree of grafting and acid doping level for 

the three grafting systems in addition kinetic behaviour. 

ii. To evaluate the various physical and chemical properties of the newly 

synthesized membranes.  

iii. To evaluate the performance of the developed membranes in terms of 

polarization characteristics and power density in proton exchange membrane 

fuel cell (PEMFC) operating above 100 °C. 

 

1.4 Scope of Study 

 

 The scope of the present study is outlined as follows: 

 

i. Preparation of three membrane precursors (basic grafted films) by RIG of 

monomer mixtures consisting of 4-VP/GMA, 4-VP/1-VIm or 4-VP/TAC onto 

ETFE films. The effects of grafting parameters on degree of grafting was 

investigated including absorbed dose (20-100 kGy), monomer concentration 

(30-70 vol%, 20-100 vol% and 10-60 vol %), reaction temperature (50-70 °C, 
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40-80 °C, 40-80 °C) and reaction time (0.5-2.5 h, 8-24 h and 0.5-5 h)  for 4-

VP/GMA, 4-VP/1-VIm and 4-VP/TAC grafting systems respectively. 

 

ii. Determination of the reactivity ratios of 4-VP/GMA and 4-VP/1-VIm 

mixtures during the graft copolymerization reaction. 

 

iii. Functionalization of the membrane precursors by doping with PA and 

optimization of the reaction parameters affecting the acid doping level such 

as PA concentration (40 -85 wt%), reaction temperature (30 -80°C) and 

reaction time, (1-5 days). Functionalization of membrane precursor from 4-

VP/GMA grafting systems was conducted with additional step under reaction 

conditions at PA concentration of 85 wt% under variation of reaction 

temperatures (30, 80 and 100 °C) and reaction time was varied in the range of 

(1-6 h).  

 

iv. Determination of the chemical, morphological, structural, thermal stability 

and mechanical properties of the obtained membranes in comparison with 

grafted and pristine counterparts using Fourier transfom infrared (FTIR), field 

emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), 

thermogravimetric analysis (TGA) and universal mechanical tester, 

respectively. Measuring the proton conductivity using the impedance 

spectroscopy. Evaluation of the membrane chemical stability in terms of acid 

loss was tested by measuring the weight loss after placing the acid doped 

membranes in an oven at a desired period of time.  

 

v. Fabrication of membrane electrode assembly (MEA) by hot pressing of the 

obtained membrane between the electrodes and the developed membranes.  

 

vi. Testing the membrane’s performance using the prepared MEA at 

temperatures higher than 100°C by measuring the cell polarization 

characteristics (voltage and current density) and power density.  
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1.5 Contribution of the Study 

 

The following contributions are made from the present study: 

i. Three new simplified routes to prepare basic membrane precursors using 

RIG that can be converted to proton conducting membrane by doping 

with PA. The obtained membranes acquired higher acid doping level and 

stability previously developed 4-VP based membranes with respect of 

proton conductivity and fuel cell performance.  

 

ii. Three grafting systems involving grafting of unprecedented comonomers 

mixtures of GMA, 1-VIm or TAC with 4-VP onto ETFE films using RIG 

were kinetically established and reported for the first time. 

 

iii. A method for increasing the acid doping level of these composite 

(acid/base) membranes by incorporating mixtures of nitrogen-containing 

monomers and the versatile GMA in the grafting step was established.  

 

iv. A method for determination of the reactivity ratios of monomers involved 

in RIG of 4-VP/GMA or 4-VP/1-VIm mixtures onto ETFE films was 

established for the first time which is useful in understanding the 

copolymerization behaviour of the comonomers and its mechanism.  

 

v. New three types of proton exchange membranes with improved properties 

and suitable for application in PEMFC at high temperature were 

established.  
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1.6 Thesis Outline 

 

This thesis is divided into five chapters. In chapter 1, the background of the research 

is presented with the emphasis on the growing renewable energy demands and 

current status of PEMFC as renewable energy power source together with problem 

statement, objectives of the study, scope of work and the contribution of this study. 

Chapter 2 contains the necessary information needed to support the study included a 

comprehensive literature review on various aspects of fuel cells, current status of 

commercial PEM and fundamentals of RIG techniques. The effect of reaction 

parameters on the degree of grafting and the use of RIG techniques for preparation of 

PEMs together with the progress took place in preparation of various PEMs were 

also reviewed. Chapter 3 reports on the methodology adopted in this study including 

the materials, equipment and experimental procedure used to prepare, characterize 

and test the developed membranes with respect to fuel cell applications. In chapter 4 

the results of the preparation and characterization of three membranes with the 

reference membranes involving the grafting of monomer mixtures of GMA, 1-VIm 

or crosslinker TAC with 4-VP are discussed. The conclusions and recommendations 

to improve the work in future studies are discussed in Chapter 5.   
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