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ABSTRACT 

 

 

 The approach of the bioprocess system engineering (BPSE) serves as a 

systematic methodology to better understand the overall performance of complex 

biological system through optimisation process and development of a compatible 

macroscopic kinetic model. Based on the BPSE approach, the production of 5-

aminolevulinic acids (ALA) by Rhodopseudomonas palustris (Rp) via solid state 

fermentation (SSF), using the palm empty fruit bunch as solid state medium was 

studied. Optimisation studies were carried out using a full-factorial design and the 

response surface methodology approach. A maximum ALA yield of 43.72 mg/kg 

was achieved under the following optimum conditions: moisture content of 63.13 %, 

incubation temperature of 30.3 °C, pH 7, inoculums density of 40 % (v/w), 3.64 mM 

glycine and 23.03 mM succinic acid for 48 hours via SSF. Three mathematical 

models including the Logistic, Gompertz and Luedeking-Piret models were proposed 

and compared based on their goodness of curve-fitting to the SSF experimental data. 

The Logistic model incorporated with Luedeking-Piret model was developed and 

best represented (R
2
 >0.95) the underlying kinetic behaviour of the growth of Rp, the 

formation of ALA and the consumption of substrates for the production of ALA by 

Rp in SSF at the optimum condition. The computed kinetic parameters including the 

maximum specific growth rate (µm= 0.232 h
-1

) with the maximum Rp biomass 

concentration (Xmax= 316.4 x 10
-9

 CFU.g
-1

) for the modelling of Rp growth; the 

growth-associated (α= 8.249 mg.kg
-1

.h
-1

) and non-growth associated (β = -1.660 

mg.kg
-1

.h
-1

) coefficients for the modelling of ALA formation, and the Rp growth 

associated and the ALA formation associated on substrate consumption coefficient 

(YX/S = 0.132 and YP/S = 0.141) for the modelling of substrate consumption were 

evaluated. These values were then validated between the predicted data and the 

experimental data using the least square curve fitting analysis and the ordinary 

differential equation solver (ODE45) using the Matlab software. 
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ABSTRAK 

 

 

 Sistem kejuruteraan bioproses (BPSE) menyediakan metodologi yang 

sistematik untuk lebih memahami prestasi keseluruhan dalam sistem biologi yang 

kompleks melalui pengoptimuman dan pembentukan model kinetik makroskopik 

yang sesuai. Berdasarkan kaedah sistem BPSE, penghasilan asid aminolevulinik 

(ALA) daripada Rhodopseudomonas palustris (Rp) melalui proses fermentasi pepejal 

(SSF) dengan menggunakan tandan kosong kelapa sawit sebagai bahan medium 

pertumbuhan telah dikaji. Kajian pengoptimuman telah dilakukan dengan 

menggunakan reka bentuk penuh faktorial dan pendekatan metodologi permukaan 

gerak balas. Jumlah maksimum ALA sebanyak 43.72 mg/kg telah dicapai dalam 

keadaan optimum seperti berikut: kandungan kelembapan 63.13 %, suhu inkubator 

30.3 °C, pH 7, ketumpatan inokulum 40 % (v/w), glisina 3.64 mM dan asid suksinik 

23.03 mM selama 48 jam melalui SSF. Tiga model matematik iaitu Logistik, 

Gompertz dan Luedeking-Piret telah digunakan dan dibandingkan berdasarkan 

kepada kepadanan lengkung data eksperimen SSF yang terbaik. Model Logistik 

bergabung dengan model Luedeking-Piret telah dibentuk (R
2
 >0.95) untuk 

menerangkan pertumbuhan mikrob Rp, penghasilan ALA dan penggunaan substrat 

untuk menghasilkan ALA oleh Rp melalui SSF dalam keadaan yang optimum. 

Parameter kinetik yang terlibat termasuklah kadar nilai maksimum tertentu (µm= 

0.232 h
-1

) dengan kepekatan biojisim maksimum Rp (Xmax= 316.4 x 10
-9

 CFU.g
-1

) 

untuk model pertumbuhan Rp; nilai pekali berkaitan dengan pertumbuhan (α= 8.249 

mg.kg
-1

.h
-1

) dan nilai pekali yang tidak berkaitan dengan pertumbuhan (β = -1.660 

mg.kg
-1

.h
-1

) untuk penghasilan ALA; pekali penggunaan substrat untuk pertumbuhan 

Rp dan pekali penggunaan substrak untuk penghasilan ALA (YX/S = 0.132 and YP/S = 

0.141) bagi model penggunaan substrat juga dinilai. Nilai-nilai ini ditentusahkan di 

antara model yang diramalkan dengan data dari eksperimen menggunakan analisis 

kepadanan lengkung kuasa dua terkecil dan penyelesai persamaan kebezaan biasa 

(ODE45) dengan menggunakan perisian Matlab. 
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CHAPTER I 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

In the 21
st
 century, agricultural technology has rapidly developed in order to 

promote the agricultural activity and satisfy the worldwide food demand for growing 

population in both developing and developed countries. Even though traditional 

chemical fertiliser has been long applied to increase the crop yield and shorten the 

ripening time of the crop, it could still lead to serious environmental problems. 

Beneficial microbial inoculant has raised the attention of the researchers in order to 

produce high effective and efficiency of compost or fertiliser as an alternative to 

chemical fertilisers [1]. The application of beneficial microbial inoculants to produce 

biofertiliser or compost not only helps to stimulate the decomposition of organic 

waste and residues, detoxify the pathogen, suppress plant diseases, enhance the 

nutrient uptake of plant but also produce bioactive substrates to promote the plant 

growth, crop yield and maintain the sustainability of environmental [2]. 

 

 

Among the well-known beneficial microbial inoculants, Rhodopseudomonas 

palustris (Rp) is one of the predominant beneficial microorganisms that shows high 

potential to increase the plant uptake of nutrients, stimulate the plant growth and 
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directly enhancing the crop growth and crop productivity [3,4]. Many studies have 

reported that the inoculation of Rp as biofertiliser or soil inoculants could promote 

the high yield of fruits and crops, enhance the acids tolerance in plant, able to fix the 

atmospheric nitrogen as their nitrogen source, directly reduce the use of chemical 

fertilizers and lead to more eco-friendly and sustainable agricultural practices [5]. 

Additionally, Rp is also well-known to produce potentially useful bioactive 

substrates like 5-aminolevulinic acid (ALA). ALA gained much attention as an 

effective, harmless, natural herbicide and insecticide under normal or stress condition, 

it has also been used to regulate, promoting the photosynthetic rate of plant growth 

for high crop yields [6-8].  

 

 

For the purpose of these advantages given by microbial inoculants like Rp, a 

number of studies and research works have been carried out to study the effects of 

the application of microbial inoculants, plant growth and crops yield extensively [5]. 

In the market today, a variety of microbial biofertilisers are available that claim to 

stimulate plant growth and crop productivity. Many products are still lack of the 

scientific point of view due to several reasons:  

 

 

(i) often the microbial inoculant involves mixed culture that is not 

specified in detail  

 

(ii) the difficulties to reproduce their beneficial effect consistently  

 

(iii) The complexity of the interactions effects among the microbial 

inoculants in the bio-system, thus, difficult to evaluate the product and 

its underlying behaviour or process in the compost [1,2].  

 

 

Therefore, there is a need to carefully coordinate the standard methodology 

and devise a suitable technique to identify and better understanding the roles of each 

microbial and its interaction in the potential environmental, this will indirectly help 

in producing highly effective and efficient biofertiliser. 
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Bioprocess systems engineering (BPSE) has long been developed and 

recognised as a high promising methodology to better understanding the complexity 

of the biological process and the whole bio-system for over the past 20 years. BPSE 

offers a strategy to the living microorganism to enhance the cell growth, maximise 

the productivity of the target product and help in the production yield, while 

minimising the overall operation costs and reduce the environmental impact [9]. 

Additionally, BPSE has also implemented mathematical modelling as an essential 

tool to facilitate the fundamental understanding and provide insights into how the 

various behaviour within the complex bio-system from the engineering point of view 

[10]. Limited studies have investigated the production of ALA in the complex system 

like composting using the systematic methodology of BPSE. Hence, leveraging on 

the concept of BPSE one can better understand the underlying behaviour of ALA 

production by Rp in a complex system using series of the systematic methodology of 

BPSE. 

 

 

 

 

1.2 Problem Statement 

 

 

Malaysia has long been recognised as the world second top oil palm producer 

with 5.39 million hectares of oil palm planted area and a total of 423 palm oil mills 

operators [11]. Due to the large scale of oil palm production, the oil palm mills 

process have generated approximately 53 million tonnes (MT) of residues waste 

every year. Empty fruit bunch (EFB) is the main residues from the fresh fruit bunch 

after the palm oil extraction process and it is contributing an average of 23.8 MT 

among the generated solid residues waste from oil palm industries [11]. Improper 

discharged of the large amount of EFB to the environmental might create negative 

impact to the environment [11,12]. Composting has been proposed as one of the 

preferable and eco-friendly options to convert EFB into an inexpensive organic 

fertiliser for solid waste recycling, replacement of chemical fertiliser use, reducing 

EFB waste’s volume and helps to enhance the palm oil productivity in the plantation 

to achieve sustainable economic growth [13].  
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 The promising characteristic of 5-aminolevulinic acid (ALA) to regulate and 

enhance the plant growth effectively has created the demand for ALA in agricultural 

practice [14]. Cultivation of photosynthetic bacteria like Rhodopseudomonas 

palustris (Rp) in submerged fermentation (SmF) are the widely studied fermentation 

process for ALA production but involved considerable high operation cost, there is a 

need to suggest a cheaper and economical approach to producing the desirable 

amount of ALA especially for the agricultural application. Solid state fermentation 

(SSF) is one of the microbial fermentation techniques which involve the microbial 

cultivation process on near absence of a free water solid medium. It involves low 

capital and operating cost expenses are the attractive reason to be chosen for ALA 

production [15].  

 

 

The replacement of the solid medium by industrial residues like EFB not only 

provides a suggestion to handle EFB from oil palm industrial but also increases the 

economic value for EFB and making the ALA production process more cost 

effective. The primary concern of this research work is to better understand the roles 

of Rp and its respective interaction in the natural environment and indirectly help to 

produce highly effective and efficient compost. EFB can be considered as fibrous 

material that consists of less chemicals or mineral additives if compared to others oil 

palm residues like palm oil mill effluents [16]. The suggestion of ALA production by 

Rp on the EFB via SSF process could serve as one well-controlled system that 

mimics the composting process to further investigate the overall performance of Rp 

to produce ALA in compost.  

 

 

There is a knowledge gap for the production of ALA by Rp in the solid state 

habitat with regard to the key factors promoting the ALA production. Inoculation of 

a beneficial microorganism to compost is expected to be beneficial by providing the 

suitable and optimum condition for the optimum metabolism of the microbes 

including the available water content of the environment, pH of the medium, 

temperature of the surrounding environment and available substrates uptake [1]. The 

environmental condition and supplementary substrate requirements for Rp in EFB to 

produce ALA have yet to be demonstrated. 
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The kinetic model commonly aims to describe the overall performance of a 

complex biological system, the interaction behaviour between the microbial and its 

respective metabolites quantitatively [17]. Kinetic models have been studied 

extensively in submerged fermentation (SmF) to produce ALA, relatively there is 

still a lack of kinetic studies to better understand the ALA production via SSF [8]. It 

is also a challenge to find the most appropriate model to give a better description of 

the observation in the experimental results. Therefore, it is more reasonable to 

compare different models to evaluate the well-fitted model to describe the overall 

performance of the particular process. 

 

 

 

 

1.3  Objectives of the Study 

 

 

 This study aims to study the production of 5-aminolevulinic acid (ALA) by 

Rhodopseudomonas palustris (Rp) via solid state fermentation (SSF) using empty 

fruit bunch (EFB) as the solid support medium. The sub-objectives of this study 

include: 

 

a) To optimise the physiochemical parameters and the concentration of 

supplementary substrate for the production of 5-aminolevulinic acid (ALA) 

by Rhodopseudomonas palustris (Rp) in solid state fermentation (SSF) 

 

b) To develop the most plausible kinetic model to best describe the kinetic 

behaviours of Rp to produce the ALA in SSF process under the resulted 

optimised condition. 
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1.4  Scopes of the Study 

 

 

The scopes of the study include: 

 

a) To investigate the initial estimation of the parameter value ranges for the 

production of 5-aminolevulinic acid (ALA) in the solid state fermentation 

(SSF) using empty fruit bunch (EFB) as the solid support medium by 

Rhodopseudomonas palustris (Rp) using the classical one-factor-at-a-time 

method. 

 

b) To determine the initial value range of the physiochemical parameters 

including the concentration of the impregnating nutrient medium (1-5 folds 

concentration), incubation temperature (25-45ºC), inoculum density of Rp 

(20-60 %(v/w)), initial moisture content level (40-80%), initial pH (3-9), and 

the incubation period (1-5 days) to produce high yield of ALA by Rp in SSF 

using one-factor-at-a-time method. 

 

c) To characterise the most significant physiochemical parameters among the 

selected parameters and further optimise the resulted significant 

physiochemical parameters (i.e.: moisture content, temperature, glycine, 

levulinic acid) to achieve a high yield of ALA using full-factorial method, 

Plackett-Burman design and Response Surface Methodology (RSM), Box-

Behnken design. 

 

d) To determine the optimum concentration of the supplementary substrates 

including glycine, succinic acid and levulinic acid to obtain a high yield of 

ALA via SSF under the resulted optimised fermentation condition.  

 

e) To investigate the kinetic profiles of ALA synthesis, substrate uptake and Rp 

growth rate versus a time course under the optimised condition and 

characterise the total amount of ALA, substrates and Rp population 

quantitatively by using the colorimetric method, high-performance liquid 

chromatography (HPLC) and cell-plate counting method, respectively. 
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f) To select the most compatible kinetic model and estimate the kinetic 

parameters constant in the model to best describe the kinetic behaviour for 

the growth of Rp, substrate consumption and ALA formation for the 

production of ALA by Rp in SSF process.  

 

g) To compare the experimental data from different studies to validate the 

robustness of the proposed model for the production of ALA by Rp in SSF. 

 

 

 

 

1.5 Significant of the study 

 

 

 This research work contributes to improve the fundamental knowledge and 

understanding about the 5-aminolevulinic acid (ALA) production by 

Rhodopseudomonas palustris (Rp) via solid state fermentation (SSF) using empty 

fruit bunch (EFB) as solid support medium from the theoretical and practical 

perspectives. Comprehensive bioprocess, optimisation and modelling tools are highly 

recommended to make the process economically viable. 

 

 

Firstly, there is a limited study to produce ALA by Rp via SSF using EFB as 

the solid support medium. Though there are studies considering the production of 

ALA via submerged fermentation (SmF), over the last few decades, there is an 

increasing trend to produce the value-added metabolites via SSF due to its 

advantages such as simpler process, less energy consumption, low capital cost using 

industrial agro-waste and less downstream processing. Based on the optimised result, 

the production of ALA by Rp in EFB can be applied for industrial large-scale 

production.  
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Secondly, the kinetic models are developed with important engineering 

characteristic to provide fundamental knowledge of the complex biological system. 

There is limited report conducted as a benchmark to further investigate the 

underlying kinetic performance for the production of ALA by Rp via SSF process 

using the engineering approaches. With increasing datasets of different metabolites 

production and more advanced mathematical description, the developed model could 

serve as a basic model to predict the performance of ALA production by Rp when 

there are changes in the rate and composition of the substrates. 
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