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ABSTRACT 

 

 

 

 

 This study investigated the soil matric suction distribution in a field covered 

by grass Axonopus Compressus and free from the effect of the tree. The research 

employed several approaches such as field monitoring, laboratory experimental, 

model proposal, coding program and slope stability. A field monitoring program was 

carried out from August to December 2015 to collect the data of matric suction by 

jet-filled tensiometer, accounting for less than 10 times of continuous drying of 

longer than 5 days over 5 months of measurement. The suction profiles show that the 

variation was greater in the root zone (< 30 cm) and less effect in deeper depth. The 

grass field failed to retain the soil suction, which dropped to a minimum magnitude 

at all depths after some rainfall event. Besides, the rate of evapotranspiration of grass 

was investigated by measuring the daily total weight loss of grass samples. The water 

loss from soil continuously even on full cloud rainy day. Generally, the water lost 

from soil to air every day even during the rainy day with the lower evaporation of 

0.4-0.9 mm/day. The rate of evapotranspiration could reach almost 8.0 mm/day and 

around 5-6 mm/day on normal sunny day. A mathematical equation was proposed as 

the suction model by considered rooting depth and evapotranspiration to estimate the 

suction profile of soil after specific drying period. Proposed suction model and some 

existing water uptake models have been coded into a program by MATLAB 

graphical user interface. The code in the program was verified with a set of test plan 

to ensure the program works as planned and designed. The suction model has been 

validated with the site measurement data. The shallow slope stability was analysed 

by program SLIP4EX in saturated and unsaturated conditions. The enhancement due 

to the influence of grass induced suction and root tensile strength were provided in 

this research. The factor of safety against slope failure has improved 0.6-4.8% at 

various depths when the effect of suction included. The comparison between the 

effect of induced suction and root tensile strength showed better enhancement from 

mechanical effect since suction was not high. The contribution of suction was not 

affected by changes of soil cohesion, however, the effect is higher when friction 

angle of soil is high and angle of slope is low. This research developed mathematical 

equation for soil water uptake to deliver a better understanding of grass suction 

distribution and effect to the slope stability. 
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ABSTRAK 

 

 

 

 

Kajian ini membuat penyiasatan tentang pengedaran sedutan matrik tanah di 

kawasan lapang yang diliputi oleh rumput parit dan tidak dipengaruhi oleh pokok. 

Penyelidikan ini merangkumi beberapa pendekatan iaitu data pemantauan, ujikaji 

makmal, cadangan model, kod program dan kestabilan cerun. Pemantauan data di 

kawasan kajian dijalankan dari Ogos sehingga Disember 2015 untuk mengumpulkan 

data sedutan matrik degan menggunakan alat “jet-filled tensiometer”. Data yang 

dikumpul menunjukkan bahawa terdapat kurang daripada 10 tempoh pengeringan 

yang berterusan lebih daripada 5 hari sepanjang 5 bulan tersebut. Profil sedutan 

menunjukkan bahawa perubahan yang lebih besar di zon akar (< 30 cm) dan kesan 

sedutan berkurang di tahap yang lebih dalam. Kawasan kajian tersebut tidak berjaya 

mengekalkan sedutan tanah yang dijana setiap masa, ia mungkin menurun ke tahap 

minimum pada semua kedalaman pengukuran selepas hujan. Selain itu, kadar 

evapotranspirasi rumput telah dikaji dengan mengukur jumlah kehilangan air dalam 

sampel rumput setiap hari. Data menunjukkan air hilang dari tanah secara berterusan 

walaupun pada hari hujan yang dipenuhi dengan awan. Secara umum, air hilang dari 

tanah ke udara setiap hari walaupun semasa hari hujan dengan penyejatan yang lebih 

rendah iaitu 0.4-0.9 mm sehari. Kadar evapotranspirasi boleh mencapai sehingga 8.0 

mm sehari dan 5-6 mm sehari pada hari yang biasa. Satu persamaan matematik telah 

dicadangkan untuk mensimulasikan corak sedutan matrik dalam tanah. Persamaan 

tersebut merangkumi kedalaman akar dan evapotranspirasi rumput. Ia berfungsi 

untuk menganggarkan profil sedutan tanah selepas tempoh pengeringan tertentu. 

Model sedutan yang dicadangkan dan beberapa model pengambilan air telah 

dikodkan ke dalam program dengan menggunakan MATLAB. Kod program ini telah 

disahkan dengan pelan ujian untuk memastikan program ini  berfungsi seperti yang 

dirancang dan direka. Model sedutan telah disahkan dengan data corak sedutan yang 

dikumpul dari pengukuran di tapak. kestabilan cerun cetek dianalisis dengan 

menggunakan program SLIP4EX dalam keadaan tepu dan tidak tepu. Kajian ini 

menunjukkan pengaruh sedutan matrik dan kekuatan tegangan akar rumput ke atas 

peningkatan kekuatan tanah. Faktor keselamatan cerun bagi mengatasi keruntuhan 

telah meningkat sebanyak 0.6-4.8% di bebrapa tahap kedalaman tertentu kerana 

pengaruh sedutan. Perbandingan antara pengaruh sedutan matrik dan kekuatan 

tegangan akar menunjukkan peningkatan yang lebih tinggi atas bantuan mekanikal 

akar kerana sedutan matrik adalah rendah. Sumbangan daripada sedutan tidak dijejas 

oleh perubahan kelekatan tanah, tetapi kesannya adalah lebih tinggi apabila sudut 

geseran tanah adalah tinggi dan sudut cerun adalah rendah. Kajian ini telah 

menghasilkan satu persamaan matematik pengambilan air untuk menyampaikan 

pemahaman yang lebih teliti mengenai pengagihan corak sedutan rumput dan kesan 

ke atas kestabilan cerun. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

Recently, the development and maintenance of construction starts to go green 

and more environmental in term of design, material, construction technology, as well 

as having more trees or plants. Tree has the function of reduce carbon dioxide, 

increasing suction, reduce water pressure, more aesthetic and prevent landslide but it 

could also very danger to the civil structure. 

 

 

Trees have the power that can damage the building services direct or 

indirectly. Direct damage from tree can be avoided by refer to the safe distances 

guidance given in BS5837: 2005.  Indirectly, tress can cause the clay soils to shrink 

by drawing the water along their roots. Shrinkage will results in vertical and 

horizontal ground movements and the amount of shrinkage depends on the type of 

clay soil, size of tree and also climate. In a typical year expansive soils cause a 

greater financial loss to property owners than earthquakes, floods, hurricanes and 

tornadoes combined (Nelson and Miller, 1992). 

 

 

According to Jones and Jefferson (2012), shrinkage and swelling of clay soil 

due to trees can cause the foundation movements that could damage the buildings. 

This is a serious problem that needs to take into consideration. The prediction of 

heave shrinkage should make through the changes in soil moisture content. The soil 

suction is a limiting parameter for free water uptake and also nutrient uptake. The 
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relationship of plant root system and soil water play an important role in agricultural 

science and geotechnical engineering.  So, the variation in soil suction that occurs in 

presence or absence of plant is very important for an analysis. In addition, the 

different of moisture content could change the physical or mechanical properties of 

soil (Artyunov et al., 1985).  On top of that, soil moisture content also influence the 

deformation behaviour within root-reinforced soils when subjected to shear (Fan & 

Su, 2009).  Therefore, a study on changes of moisture content in soil is required to 

understand some geotechnical and geo-environmental analysis. 

 

 

 Other than trees, the plenty available grasses would also lead to green 

environment and possible to enhance the soil properties. The contribution of plant 

root systems on slope stability and erosion control has received great attention in 

recent years. Plant roots are believed could greatly increase slope stability and 

control erosion (Abe and Ziemer, 1991; Coutts, 1983; Gray and sotir, 1996; Gyssels 

et al., 2005; Waldron, 1977; Wu et al., 1979; Gray 2009). Roots of grass are short 

but bind the upper layer of soil and reduce the rainwater infiltration into the upper 

layer of loose soil (Huat et al., 2006). Meanwhile, roots of large plant (stitching 

material) increase the shear strength of rock mass generally. However, trees take 

times to grow although its contribute lots on reinforcement (Rai and Shrivasta, 

2012).  In general, fine roots are shown a better contribution on soil fixation compare 

to coarse roots.  According to Gyssels et al. (2005), shallow and dense root network 

of fine roots is most effective in water erosion processes control. However, fine roots 

are not good in tension or bending as coarse roots can resist both of it (Bischetti et 

al., 2005). A combination of deep roots and shallow rooted grass could anchoring 

and stabilise the topsoil then strengthening the slope (Hairiah et al., 2006). Even 

though the relative importance of roots characteristics may be limited, the recent 

development makes the effort of further detailed investigation worth. So effect of 

root system will be appreciated and concerning selected species for land 

rehabilitation (Reubens et al., 2007).  

 

 

This study explores the water uptake and matric suction produced by the 

roots of grasses in selected research plot which covered by grasses and free from 

effect of tree.  The aim of the research is to investigate the matric suction distribution 
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due to grasses and propose a suction model.  Besides, the significant matric suction 

could be related to shear strength enhancement and apply in slope stability analysis.  

 

 

 

 

1.2 Problem Statement 

 

 

The man-made and natural slopes are susceptible by weathering which lead to 

soil surface erosion, shallow failure and massive slope failure. Slope failure is a 

serious geology problem around the world especially in tropical rainforest region due 

to high rainfall intensity. The process of weathering had further weakening the 

subsoil profile in these regions.  Malaysia Public Works Department (2008) reported 

that the factors which triggering landslide included rainfall (57.5%), water level 

change (35%), loading change (5%), slope geometry and vegetation change (2.5%).  

It had caused huge properties damage and lots of injuries as well as fatalities. The 

increasing of soil moisture and pore water pressure might be the main factor 

decreasing the soil strength thus leading to the slope stability problem. The most 

common slope failure happened in Malaysia is shallow landslide which is not more 

than 4 m in depth and happens during the rainfall season (Ali et al., 2000).  A 

shallow failure is not fatal but it could increases the rate of weathering and decreases 

the soil strength which will lead to a series of problem. Therefore, the surface 

protection and soil moisture variation in soil is very important in geotechnical 

engineering. 

 

 

 Bioengineering approach has become a popular method to improve slope 

stability since rising of the environmental issues. This approach utilizes plant or 

vegetation to reduce erosion and improve shear strength of soil.  Such approach 

could beneficial in three aspects, environment, mechanical, and hydrological.  

Vegetation could counter the rising of carbon dioxide level, reinforce the soil and 

reduce surface erosion through rooting system.  Besides, it could reduce runoff and 

lower pore water pressure through evapotranspiration process. The effect of 

vegetation can be classified into root reinforcement, soil moisture depletion, slope 

buttressing and arching (Fan and Su, 2009). Devkota et al. (2006) proved that 
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bioengineering application is more cost-effective compared to conventional 

engineering method.  However, combination of structural and vegetation solution is 

more cost-effective according to the field studies by Tuttle et al. (1992). 

 

 

There are a lot of research had been done about the plant or tree root system 

(Brown and Sheu, 1975; Wu et al., 1979; Ziemer and Swanston, 1977; Indraratna et 

al., 2006; Nakamura et al., 2007; Ali and Rees, 2006).  Some of them have 

investigated the moisture depletion and root water uptake (Prasad, 1988; Ojha and 

Rai, 1996; Mathur and Rao, 1999; Li et al., 2001; Vrugt et al., 2001a; Dardanelli et 

al., 2004; Raats, 2007; Shankar et al., 2013) but rare on the grass evapotranspiration 

(Woon et al., 2011; Ng et al., 2013; Ng et al., 2014; Rahardjo et al., 2014, Garg et 

al., 2015).  

 

 

 Woon (2013) studied the soil suction retention after rainfall due to Cynodon 

dactylon in laboratory modelling and field measurement. Ng et al. (2014) 

investigated the suction retention and influence zone of suction in vegetated soil with 

certain degree of relative compaction. Recently, Leung et al. (2015) compared the 

effects of tree root-induced change to soil water retention curve with suction 

responses due to root water uptake in vegetated soil. Besides, Leung et al. (2014) 

investigated the effects of grass to soil suction during evapotranspiration and 

ponding. The vegetated field was recognised potential in reduce infiltration and 

improve slope stability upon rainfall. Leung (2016) also compared 3 cases of study 

which showed the responses of suction in slopes due to grass. Suction induced in 

grassed slope could be lower than bare slope in certain condition and suction 

retention also depends on type of soil.  There were so many studies had been done on 

bioengineering methods and contributions, the outcome of research seem not applied 

into slope design. 

 

 

Although this application to the slope design was not popular, some common 

types of low cost grasses were practically acted as the finisher on the slope.  The root 

system of grass may contributes to water uptake and evapotranspiration which 

produce matric suction and increase the soil strength in term of hydrological and 

mechanical enhancement.  Therefore, the effect of common grass cover toward slope 
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stability was the main focus in this study.  The study focused on the common grass, 

Axonopus Compressus which covered almost whole campus of Universiti Teknologi 

Malaysia (UTM), Skudai Malaysia.  The aim of this study is to understand the effect 

of grass to soil enhancement and shallow slope stability.  The matric suction induced 

and changes of moisture content in soil due to grass are the major measurement in 

the study. The estimated moisture content, anticipated suction and result analysis can 

be obtained easily and faster with the help of computer program. In short, the 

development of the coding program on the water deficit curve and suction model is 

very useful to geo-environment development. 

 

 

 

 

1.3 Objectives 

 

 

The aim of this study is to explore the suction profile in soil due to the 

evapotranspiration of grass.  The changes of soil water content or matric suction will 

be analysed and compared with the other models. To achieve this aim, several 

objectives of study are fixed as below: 

 

 

I. To investigate the soil matric suction data at field and rate of 

evapotranspiration due to Axonopus Compressus. 

 

II. To determine the soil drying pattern in field covered by Axonopus 

Compressus and develops a suction model formulation. 

 

III. To develop a computer program that includes several popular water uptake 

models and suction model which could provide suction profile estimation. 

 

IV. To compare the effect of grass induced suction to slope stability. 
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1.4 Scope of Study 

 

 

This study will present the soil water changes or matric suction variation due 

to the water uptake process and evapotranspiration of grass in a field on unsaturated 

soil.  It focuses on the hydrological-suction pattern within the influence zone of grass 

evapotranspiration.  The parameters investigated are soil water deficit curve, total 

water extraction, matric suction, volumetric water content and grass 

evapotranspiration.  The mechanical enhancement by roots tensile strength is lightly 

touched in this study to show the contribution of grass to the strength of soil. 

 

 

The work consider the effect of existing common cow grass (Axonopus 

Compressus) field with the determination of root zone patterns limited to a depth 

within 0.5 m.  This study focus on cow grass because it is common, relatively easy to 

maintain, good weather resistance and no problem with major diseases. The rooting 

depth is fixed as constant since the roots spread in random direction and concentrate 

on surface area.  The rate of evapotranspiration of grass was investigated through 

concept of total weight loss in a day.  The matric suction profiles were recorded by 

field instruments monitoring. However, the study only present the influence of 

suction induced to shear strength enhancement by Greenwood general equation 

(Greenwood et al., 2004) in program SLIP4EX (Greenwood, 2006).  Other than that, 

a one-dimensional suction model is proposed and developed a computer 

programming to estimate the soil suction distribution. 

 

 

A series of field monitoring program and laboratory experiments were 

analysed to determine the relationship of field evapotranspiration and grass rooting 

depth to matric suction distribution.  In addition, the field monitoring result provided 

the reference for input parameters to apply in the numerical model and slope stability 

analysis. The site measurement data was verified with another study of grass in 

subtropical climate area. The proposed model was validated with the site 

measurement and the computer program was verified true by a complete set of test 

plan.  The effect of grass induced suction and root tensile strength were compared to 

determine the contribution of grass toward unsaturated slope stability in term of 

hydrological and mechanical aspect. 
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1.5 Significance of the Study 

 

 

The outcome of this study might be utilised as a reference input parameter of 

suction in the grass-covered which exist in soil within the unsaturated zone. It 

contributes to a set of history field suction data of Axonopus Compressus grass that 

is still rare in the research.  The determination of the soil water characteristic curve 

and evapotranspiration of grass could be an alternative low cost measurement.  The 

specific benefits that could be gained from this study including: 

 

 

I. Providing essential quantification information on the behaviour of soil matric 

suction or negative pore water pressure variation in relation to grass 

evapotranspiration due to drying and precipitation.  

 

II. Development of a grass suction induced model and coding program which 

could estimate the matric suction profile in the soil by water uptake models 

and relationship of soil water and suction. 

 

III. Provide the shallow slope stability analysis with the existence of grass which 

includes suction induced and root tensile strength as well as the effect of 

suction to factor of safety when the soil parameters are varied. 

 

IV. The computer program estimates the soil drying condition at grass-covered 

field effectively by grass rooting depth and evapotranspiration. The 

comparison between types of grass could be made and decide which grass to 

be used based on the requirement.  

 

Grass is an important cover to soil because it reduces infiltration and increases 

surface runoff. The grass field evapotranspiration also strengthening the soil by 

extract and drain out the water in soil. The protection at top layer of slope is very 

important to avoid any further problem causes by shallow soil failure. 
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1.6 Thesis Structure and Organization 

 

 

This thesis is structured into seven chapters: Chapter 1 (Introduction), 

Chapter 2 (Literature Review), Chapter 3 (Research Methodology), Chapter 4 

(Preliminary Data), Chapter 5 (Suction Model & Coding Program), Chapter 6 (Slope 

Stability Analysis Based on Grass Induces Suction) and Chapter 7 (Conclusions).  A 

brief introduction was often provided at the beginning of each chapter and 

concluding remarks at the end of the chapter to briefly summarize the content of the 

chapter. 

 

 

As introduction to generally describe the background of problem related to 

geo-environmental problem associated with tree and water content changes have 

been discussed in Chapter 1. Apart from this problem statement, Chapter 1 also 

discusses the objectives, scopes and limitation as well as significance of the research. 

The brief description of bio-engineering methods in slope stability enhancement in 

term of mechanical and hydrological are presented.  

 

 

Chapter 2 provides the previous research work and extensive review of 

literature that related the research topic. This chapter provides descriptions and 

concepts of theories published in literature pertaining on analysis of tree water 

uptake in unsaturated soil.  Besides, this chapter also outlines methodologies of the 

laboratory work, field monitoring work, bio-engineering technique, and slope 

stability analysis that employed in the previous studies. 

 

 

Chapter 3 describes the research methodology adopted in this study, 

particularly laboratory experiments and field monitoring program.  Other than that, 

Chapter 3 also describes the detail of the equipment and procedures followed in order 

to achieve the objectives of the study. The method adopted in the laboratory 

experiments, field monitoring works, model formulation and limit equilibrium 

approach are well explained under this chapter. 
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The following chapters in this thesis are related to the discussions of data, 

results and analyses, i.e. Chapter 4, Chapter 5 and Chapter 6. Chapter 4 presents and 

discusses the preliminary data obtained from laboratory experiments and field 

monitoring as described in Chapter 3.  These results include the soil characterization, 

basic properties, rate of evapotranspiration of grass, parameters of soil water 

characteristic curve and the response of matric suction distribution particularly 

influence by grass field.  

 

 

Chapter 5 presents the formulation of suction model followed by the coding 

program.  The field monitoring data were analysed to obtain the drying pattern of 

suction and the steps formulation of suction model were discussed. The coding 

program focused on some water uptake models and matric suction profile estimation. 

The chapter was concluded with verification of coding program with a series of 

complete test plan.  

 

 

Chapter 6 considered on how much the influence of matric suction generated 

by grass field in the assessment of the stability on unsaturated soil slope.  The typical 

of engineered slope geometry and shear strength of soil affected by matric suction 

were examined. The unsaturated slope stability analysis was presented with and 

without the effect of induced matric suction with simulation of slope geometry and 

soil properties.  In addition, the influence of matric suction to factor of safety due to 

the variation of analysed parameters was discussed. 

 

 

Lastly, the final chapter of the thesis (Chapter 7) covers the overall summary 

and conclusions of the thesis drawn from the present study as well as the 

recommendations for further researches on the subject. 
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