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ABSTRACT

As the world becomes ever more attuned to potential security threats, the need
for sophisticated surveillance system is increasing to monitor and detect any potential
threats. Sophisticated surveillance system should functions as an intuitive “robotic
eye” for accurate and real-time detection of threats. Unattended baggage has become
a critical need for security personnel at airports, stations, malls, and in other public
or crowded areas. However, an effective system for detection of objects like baggage
and people with a real-time video input requires high processing power and storage
to just process the video frames using the typical digital image processing technique.
This will require a very high development cost and time in order to make the system
work which is impractical for commercial use. Moreover, manual configuration is
needed which is not flexible to be for multiple application. Therefore, the objective
of this thesis is to improve the object detection accuracy and flexibility compared
to existing digital image processing techniques. This proposed system uses deep
neural networks approach through collection of datasets thus providing a more accurate
detection and flexible application. Tensorflow framework is used as the deep neural
network framework for the development of this system. This system utilizes the
Single Shot multibox Detection detection algorithm to the "MobileNet’ neural network
architecture which is optimized to provide a promising performance even in embedded
system. This project is developed by implementing the Tensorflow Object Detection
Application Programming Interface (API). This method enables 4 main classes of
detection which are suitcase, backpack, handbag and person. The datasets used for
benchmarking are surveillance video sample that contain unattended baggage scenario
used by most existing works like AVSS2007, PETS2006 and ABODA. The overall
accuracy and flexibility of the proposed system improved up to 43% thus unattended
baggage is able to be detected. The system is able to be applied in various environment

due to the excellent flexibility of the system.
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ABSTRAK

Komunikasi dunia yang semakin global, kita semakin berpotensi kepada
ancaman keselamatan, oleh itu keperluan untuk sistem pengawasan canggih semakin
meningkat untuk memantau dan mengesan sebarang ancaman. Sistem pengawasan
yang lebih canggih yang dicadangkan harus berfungsi untuk mengesan bagasi yang
ditinggalkan dengan tepat telah menjadi keperluan kritikal bagi anggota keselamatan
di kawasan awam seperti lapangan terbang, stesen dan pusat membeli-belah. Walau
bagaimanapun, sistem yang berkesan untuk mengesan objek seperti bagasi dan orang
dengan input video masa nyata memerlukan kuasa pemprosesan yang tinggi dan
penyimpanan untuk memproses video menggunakan teknik pemprosesan imej digital
biasa. Proses ini memerlukan kos pembangunan dan masa yang sangat tinggi untuk
menjadikan sistem berfungsi, oleh itu tidak praktikal untuk kegunaan komersil. Selain
itu, konfigurasi manual diperlukan untuk pengesanan membuktikan bahawa sistem
adalah tidak fleksibel untuk berbilang aplikasi. Oleh itu, objektif projek ini adalah
untuk meningkatkan lagi ketepatan pengesanan objek dan fleksibiliti berbanding
dengan teknik pemprosesan imej digital sedia ada.  Sistem ini menggunakan
pendekatan rangkaian neural melalui pengumpulan dataset untuk menyediakan
pengesanan yang lebih tepat dan aplikasi yang fleksibel. Tensorflow digunakan
sebagai rangka kerja rangkaian neural yang mendalam untuk pembangunan sistem
ini. Sistem ini menggunakan algoritma pengesanan Single Shot Multibox Detector
dengan senibina rangkaian neural "MobileNet’ yang dioptimumkan untuk memberikan
prestasi yang baik walaupun dalam sistem terbenam. Projek ini dibangunkan dengan
melaksanakan Application Programming Interface Pengesanan Objek Tensorflow.
Kaedah ini akan membolehkan 4 kelas pengesanan utama iaitu beg pakaian, beg
sandang, beg tangan dan orang. Dataset yang digunakan untuk menanda aras adalah
sampel video pengawasan yang mengandungi senario bagasi tanpa pengawasan seperti
AVSS2007, PETS2006 dan ABODA. Ketepatan dan fleksibiliti sistem meningkatkan
sebanyak 43% bagasi yang tanpa pengawasan dapat dikesan. Sistem ini boleh

digunakan di pelbagai persekitaran kerana fleksibiliti sistem yang amat baik.
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CHAPTER 1

INTRODUCTION

1.1 Problem Background

The world is getting more connected through the years with the ease of
transportation from one place to another, but it also means that it is more attuned to
security threats from terrorist attacks. In the last decade, there is a sharp increase
statistically in terrorist attack on crowded public places such as airport, train station,
bus terminal and many more. These attacks include mass shooting, bombing and even
hostage situation in crowded public places. In just 2017, these attacks have drastically
increased in occurrence including those attacks that get largely reported and those
which are not reported in the news. For example the bombing happened in London
subway, bombing attack in Saint Petersburg subway, bombing in Brussels Airport in

Belgium and many more.

There are also cases that these attempted attacks were stoped in time with
the high sensitivity level of security personnel working with video surveillance. For
example there was an incident that happen in North Carolina Airport which the suspect
left a bag containing explosives in the airport. The security personnel were able to find
the bag with explosives thus able to prevent the bombing attack. However, human error
may occur where security personnel will fail to notice the unattended bag containing

explosives when trying to monitor multiple video surveillance streams.

Therefore in order to help security personnel to monitor any of this suspicious
unattended baggage faster and more efficiently to prevent any tragedy before it
happens, an automated and accurate detection system is needed for real-time video
surveillance system. The baggage detection system enables the detection of unattended
baggage which may contain explosives that may cause harm to civilians in crowded

public places. The detection will be able to notify and alarm security personnel to react



in time to diffuse and evacuate civilians from suspected area where the unattended
baggage is placed. Besides that, this system can be used to locate any lost baggage
through the detection of unattended baggage in the video surveillance. This is where
Deep Neural Networks implementation into unattended baggage detection system will

greatly help in this context due to the accuracy and efficiency it provides.

1.2 Problem Statement

Unattended baggage detection system is highly dependent on the accuracy of
the detection of baggage through the input video footage. Therefore, the system would
have to dissect the video into frames then detect if any baggage exists in the frame.
After the detection stage, the system will move to process the detected information

through the desired algorithm and business rules defined.

Commonly used method is to use image processing method. There are a
number of research papers using image processing methods for the development on
this unattended baggage detection system. For image processing, techniques such as
background subtraction is used to differentiate foreground and background for object
extraction. After that, the extracted objects will go through classification such as
stationary or dynamic objects. After the classification, post-processing of the classified
objects can be done such as activity and unattended situation detection [5]. However,
there are very little or close to none research on development of unattended baggage
detection system using deep neural networks method. With the ability to train deep
neural networks, it should be able to detect objects such as baggage in a more accurate

manner compared to what is available in typical image processing techniques.

Besides that, the accuracy of image processing techniques have high
dependency on algorithm and threshold settings on the processes mentioned.
Therefore, the accuracy of image processing method has a low accuracy compared to
deep learning. This is due to various research using image processing techniques did
not clearly mentioned about the system accuracy on each detection with the variation
of datasets [5]. This might be due to the nature of some image processing technique are
not as flexible and only cater to some specific environment thus unable to be applied

on variety of situation and environment changes.

Another drawback of typical image processing techniques is that it requires



significant amount of computational effort to process the video frames. This is due to
the need of going through multiple processing techniques with different algorithm to
every single frame of the video input. Besides that, the complexity of algorithm may
also increase the computational effort and datasets needed. This drawback is known to

be an issue for image processing.

1.3 Objectives

The objective of this project is to propose the development of unattended
baggage detection system with the implementation of deep neural networks approach.
By utilizing deep neural networks approach, it is expected that the system will be
more robust and accurate compared to typical image processing techniques. Besides
that, this proposed system also aims to be more flexible than typical image processing

method with variations in situations and environment in the video surveillance.

1.4  Scope of Study

The scope of this project is focused on the development of unattended baggage
detection using deep neural networks. The baggage type to be detected is the type of
bags that commonly used by travelers and commuters. This project focuses on 3 main

types as listed below:

° backpack
° handbag
° suitcase

The input video datasets used for this work will be sample of video surveillance footage
that most of the researches in this field are using. This work will use all of those
datasets from different sources to prove the flexibility of this system. The surveillance
video should be located in a public places where the scope mentioned such as airport,
train station or mall. The footage should also be best case scenario if it is captured
or recored from surveillance camera or some similar type of camera to replicate the

real-time scenario as close as possible. Besides that, the surveillance video footage



should also contain the scenario where people are abandoning their baggage in various

distances with people walking around. The datasets name are listed as below:

° Advanced Video and Signal based Surveillance (AVSS 2007) [6]
° Performance Evaluation of Tracking and Surveillance (PETS 2006) [7]
° ABandoned Objects DAtasets (ABODA) [8]

This project will be developed in Tensorflow, which is a machine learning platform that
enables the development of deep learning solutions. This platform enable students and
developers to explore and develop deep learning solutions with minimum development
cost as development can be done locally on personal computer or using available
Google cloud server. Single Shot MultiBox Detector (SSD) will be used as the deep
neural network algorithm, and a pre-trained SSD network with large collection of
baggage datasets trained from MS-COCO datasets will be used. This method is able
to save resources thus further improve development time, cost and efficiency without

sacrificing accuracy or performance.

1.5  Organization

This project report consists of five chapters. Chapter 1 includes problem
background, problem statement, objectives and scope of study. In Chapter 2, the
background of deep learning and reviews of related works will be discussed in detail.
While in Chapter 3, project methodology is explained which include the proposed
algorithm, techniques and platform used. The results will be presented in Chapter
4, where detailed analysis on the unattended baggage detection results will be done.
Discussion and comparison on the result analysis will be explained in this chapter
as well. Finally in Chapter 5, conclusion and suggestions for future work will be

discussed.
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