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ABSTRACT 

Biomass pyrolysis product offers great potentials in facilitating energy and 

environmental challenges. This is, however, yet to be realized due to some 

technological barriers that limit its economic potential. In this thesis, a flash pyrolysis 

of Imperata cylindrica in a transported bed reactor is investigated, aiming at improving 

its overall performances from both operation and design perspectives using a 

mathematical modelling approach. A macroscopic model of the process was used in 

estimating the kinetic parameters of I. cylindrica and in determining the optimal 

operating conditions of the reactor. A microscopic model using Computational Fluid 

Dynamics (CFD) was applied to study the reactor’s hydrodynamics and to determine 

optimal values for key design parameters, i.e., solid inlet positions, gas inlet position 

and height-width ratio. To facilitate more detailed analyses, a new algorithm was 

developed for determining cellulose, hemicellulose and lignin compositions from 

biomass devolatilization kinetic study.  The results obtained confirmed that I. 

cylindrica has good fuel properties and decomposes easily in the presence of heat, thus 

making it a suitable feedstock for biofuel production in thermochemical processes. 

However, the laboratory scaled transported bed reactor was found inefficient and 

requires very high operating temperature in maximizing biooil yield.  Based on the 

CFD study, the efficiency can be improved if the biomass and hot-sand inlets were 

positioned closer to the reactor wall and at opposite end. The results also indicated that 

a good hydrogen gas yield could be obtained from steam reforming of I. cylindrica 

biooil. In conclusion, the mathematical modelling approach carried out in this study 

has highlighted the potential of the proposed process and the use of I. cylindrica as a 

good biomass source for energy. 

.    
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ABSTRAK 

Produk pirolisis biojisim menawarkan potensi besar dalam menangani 

cabaran-cabaran sektor tenaga dan persekitaran.  Walau bagaimanapun, ia masih 

belum terlaksana disebabkan oleh beberapa halangan teknologi yang menyekat potensi 

ekonominya. Dalam tesis ini, proses pirolisis kilat bagi Imperata cylindrica di dalam 

reaktor lapisan terangkut diselidiki, bertujuan untuk memperbaiki prestasi daripada 

perspektif operasi dan reka bentuk dengan menggunakan pendekatan pemodelan 

matematik. Model makroskopik bagi proses tersebut telah digunakan bagi 

menganggarkan parameter kinetik I. cylindrica dan dalam menentukan keadaan 

optimum bagi operasi reaktor. Model mikroskopik yang diselesaikan dengan 

menggunakan Pengiraan Dinamik Bendalir (CFD) telah digunakan bagi mengkaji 

hidrodinamik reaktor dan untuk menentukan nilai-nilai optimum bagi parameter reka 

bentuk yang utama, iaitu, kedudukan masukan pepejal, kedudukan masukan gas, dan 

nisbah kelebaran-ketinggian. Bagi membantu analisa yang lebih terperinci, algoritma 

baharu telah dibangunkan bagi menentukan komposisi selulosa, hemiselulosa dan 

lignin menerusi kajian kinetik nyahmeruapan. Hasil kajian yang diperoleh 

mengesahkan bahawa I. cylindrica mempunyai ciri-ciri bahan api yang baik dan 

mudah diurai dengan haba, dan ini menjadikannya sebagai bahan mentah yang sesuai 

bagi pengeluaran biobahan api menerusi proses termokimia. Walau bagaimanapun, 

reaktor lapisan terangkut berskala makmal ini didapati tidak efisyen dan memerlukan 

suhu operasi yang sangat tinggi untuk memaksimumkan pengeluaran biominyak. 

Berdasarkan kajian CFD, kecekapannya boleh diperbaiki sekiranya kedudukan  

biojisim dan pasir panas itu adalah berdekatan dengan dinding dan berjauhan antara 

satu sama lain. Hasil kajian yang diperoleh juga menunjukkan bahawa gas hidrogen 

dapat dihasilkan pada kadar yang baik daripada proses pembaharuan wap minyak I. 

cylindrica.  Sebagai kesimpulan, pendekatan pemodelan matematik yang dilaksanakan 

dalam kajian ini telah menonjolkan potensi proses yang dicadangkan dan penggunaan 

I. cylindrica sebagai sumber biojisim yang baik untuk tenaga.   
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1 

CHAPTER 1 

1 INTRODUCTION 

1.1 Motivation 

An alternative source of fuel that is environmentally friendly, renewable, 

sustainable and commercially viable is the dream in meeting the energy need of the 

future.  In searching for the perfect fuel, there are a myriad number of factors to 

consider.  These factors could be summarised as: (i) selection of raw material, (ii) 

processing of raw material and (iii) the cost of conversion of raw material into green 

fuel.  The raw material of choice is biomass, which is organic and abundantly 

available.  One of the most suitable classes of technologies is thermochemical process, 

which includes combustion, gasification and pyrolysis.  The advantage of 

thermochemical process is in its ability to process all kinds of biomass raw material 

and could easily be integrated with existing fossil processing plants.  However, the 

immaturity of thermochemical technology in the conversion of biomass compared to 

the well-established fossil fuels conversion technology makes it inefficient and costly.  

In order to make biomass thermochemical conversion cost-effective one approach is 

by optimisation of the entire process using the most economical tool for the 

development of mathematical model from reliable conservation laws.   

According to Mohan et al. (2006), in order to make biomass thermochemical 

conversion commercially viable especially pyrolysis, new reactors are constantly 
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needed to be designed and developed.  One approach is to make use of modelling 

strategy to investigate, parameters that influence pyrolysis process.  The parameters 

are related to biomass feedstock type, pyrolysis operating condition and pyrolysis 

reactor design.  A well-conceived pyrolysis model could be simulated to study the 

effect of temperature, heating rate, pressure and biomass feed rate on the pyrolysis 

product.  The sensitivity of the output parameters (quantity of products) to the earlier 

mentioned parameters would give the optimal operating condition.  Similarly, 

computational fluid dynamics (CFD) could be used to investigate the hydrodynamics 

and mixing of biomass particles and the heat source with changes in the reactors 

height-width ratio, inlets and outlet positions.  The CFD results are capable of 

presenting the temperature, velocity and volume fraction distribution for the 

components in the reactor.  The distribution profiles could give insight to the optimal 

reactor design. 

The applications of modelling and simulation to biomass thermochemical 

processes are reported in the literature by many researchers, yet many systems lack 

model or area of improvement exist.  With current computational power, both macro 

and micro (CFD) modelling approach to simulation of the multiphase gas-solid system 

is affordable.  The modelling and simulations results are valid, accurate and acceptable 

for the empirical results.  Therefore, a model that captures biomass pyrolysis process 

using the fundamental conservation laws of mass, momentum and energy is expected 

not only produce results acceptable within permitted errors to the empirical results.  It 

could further simulate results for new operating conditions.  The ability to simulate 

new results allows the determination of optimal conditions. 

1.2 Problem Statement 

In other, for biomass pyrolysis to be commercially viable new reactors that are 

more efficient and economical to build and operate must be investigated.  Transported 

bed reactor is one of such simple and cost-effective reactor.  However, the product 
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obtained from the lab-scale transported bed reactor in the pyrolysis of Imperata 

cylindrica shows that less biooil was produced compared to gas and char (Kamaroddin, 

2014).  Therefore, the essence of this research work is to give understanding to the 

following concerns associated with the pyrolysis of Imperata cylindrica in a 

transported bed reactor: 

I. Understanding the fuel suitability of the biomass (Imperata cylindrica). 

II. Understanding the kinetics behaviour of the biomass (Imperata 

cylindrica) when subject to heat. 

III. Understanding the influence of changes in operating conditions to 

pyrolysis product. 

IV. Understanding the influence of the transported bed reactor geometry, 

inlet and outlet position on the mass and temperature distribution of the 

biomass particles in the reactor, an important factor in pyrolysis. 

V. Understanding the pyrolysis products and possible further processing 

in the generation of energy-rich fuel 

From the problems identified the following research questions (RQ) are 

formulated: 

RQ1: How suitable is the biomass (Imperata cylindrica) as fuel? 

RQ2: How does Imperata cylindrica decompose in the presence of heat? 

RQ3: What is the theoretical optimal operating conditions of Imperata 

cylindrica pyrolysis in transported bed reactor with respect to the 

experimental results? 

RQ4: How does the geometry of the transported bed reactor influence the 

system hydrodynamics and consequently the mass and temperature 

distribution. 

RQ5: What energy packed fuel (hydrogen gas) is derivable from the lab-

scale pyrolysis experiment of Imperata cylindrica biooil product? 
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The research questions (RQ) stated above are the central issues and their 

investigation is the core activity of this research.  Each research question is associated 

directly with an objective.  The solutions to RQ1 and RQ2 are found in Chapter 3 and 

that of RQ3, RQ4 and RQ5 are in Chapter 4, 5 and 6 respectively.  Therefore, using 

conservation law, property laws and kinetic laws the mathematical model of the 

pyrolysis of Imperata cylindrica in the transported bed would be developed.  The 

empirical result obtained will be used in fitting the mathematical model and 

subsequently, the optimal operation and design of the transported bed reactor is 

determined 

1.3 Objectives  

The pyrolysis of Imperata cylindrica in a lab scale transported bed reactor gave 

a low yield of biooil (Kamaroddin, 2014).  The biooil low yield could be has a result 

of inefficient temperature distribution and/or delay in volatile condensation.  

Therefore, this research will be optimising the transported bed operating condition and 

design for efficient temperature distribution and short volatile residence using 

modelling and simulation.  To achieve this aim, the objectives of this research are the 

followings: 

I. To determine the fuel characteristic of Imperata cylindrica 

II. To determine the devolatilization kinetic of Imperata cylindrica. 

III. To develop a macro model for the pyrolysis of biomass in the transported 

bed reactor and fit the developed reactor model with the empirical result 

and subsequently determine the theoretical optimal operating conditions. 

IV. To determine the transporter bed reactor optimal design by studying the 

system hydrodynamics using computational fluid dynamics (CFD).   

V. To thermodynamically model and simulate the steam reforming of the 

components identified in the biooil from Imperata cylindrica pyrolysis 

experiment for hydrogen gas production. 
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1.4 Scope of the study 

Though many of the models and simulation in this research could be applied 

to many biomass and pyrolysis reactors.  The biomass and pyrolyzer used as a case 

study are Imperata cylindrica and the transported bed reactor.  Therefore, this research 

is within the confines of the following concepts: 

I. The fuel characteristics are limited to physiochemical properties 

determined from the ultimate analysis, proximate analysis and bomb 

calorimeter. 

II. The devolatilization kinetic of Imperata cylindrica was obtained from 

Thermogravimetric analysis (TGA) through FWO and KAS model free 

and multicomponent model methods 

III. All the mathematical model developed in this research are based on the 

conservation laws (mass, momentum and energy), property laws, 

kinetic or rate laws and other intrinsic equations.  These fundamental 

theories are sufficiently accurate and reliable.  Therefore, this research 

is on the theoretical application and the theoretical results are 

acceptable within the limit. 

IV. Since pyrolysis reaction depends on heat transfer to the biomass from 

the heat sources.  The CFD study is limited to the hydrodynamic of the 

biomass and hot sand interaction using the volume fraction and 

temperature distribution. 

V. The yield of hydrogen gas produced was determined theoretically using 

a mathematical simulation of steam reforming by nonstoichiometric 

equilibrium model.   
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1.5 Significance of the study 

The application of modelling and simulation to any chemical engineering 

process allows the representation of the real process in a mathematical equation from 

the fundamental conservation (mass, momentum and energy) laws.  Simulating the 

system of equations developed gives a set of output variables with respect to changes 

in certain input parameters.  The entire simulation is done on a computer system and 

currently, computational power is cheaper and faster compared to running experiments 

for each of the input parameter changed.  Therefore, three points could be deduced: 

Firstly, the models developed are reliable and accurate within acceptable error.  

Secondly, the model could be arranged and simulated for the suppose of optimising 

certain output parameters constraint by some set of input parameters.  Thirdly, the 

model and simulations are cheaper and faster compare to empirical optimisation.  This 

research utilises mathematical modelling and simulation to study the pyrolysis of 

Imperata cylindrica in a novel transported bed reactor and the significance of the 

research are the followings: 

I. The exploitation of Imperata cylindrica, a farmer’s nightmare weed as 

possible energy grass, such as switchgrass and miscanthus, in the 

production of biofuel 

II. The determination of the devolatilization kinetics gives an indication of 

the degree of decomposition of Imperata cylindrica in the presence of 

heat energy.  Subsequently, an indication to the rate of conversion of 

biomass in a thermochemical process. 

III. The optimal operation condition for the pyrolysis of biomass (Imperata 

cylindrica) in the transported bed reactor.   

IV. The optimal design of the transported bed reactor for the pyrolysis of 

biomass (Imperata cylindrica). 

V. The production of hydrogen gas from biooil produced from pyrolysis 

of Imperata cylindrica further enhances the fuel quality of the grass. 
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1.6 Layout of Thesis 

This thesis is structured into seven major chapters.  The summary of the content 

of each chapter are stated below: 

Chapter 2: The chapter documents the reviews of all literature related and relevant to 

the research.  It identifies a current area of studies in the research of biomass pyrolysis 

and the application of modelling and simulation to the technology.  The review led to 

the formulation of the research questions by (1) analysis of existing biomass 

thermochemical process feedstock and reactors, (2) their limitations, (3) the tools used 

in investigating the biomass fuel and reactors performances. 

Chapter 3: In this chapter, the biomass (Imperata cylindrica) fuel characteristics was 

determined as well as the devolatilization kinetics, which is the first and second 

objectives.  The biomass was subjected to some experimental test and the results are 

used to fit models developed.  The fitted model was used to determine the 

devolatilization kinetics and composition of the biomass. 

Chapter 4: The third objective on the biomass pyrolysis optimal operating condition 

was investigated and the findings are presented in this chapter.  In addressing the 

objective, a macro mathematical model of the biomass pyrolysis process in the 

transported bed reactor was developed.  The model was validated using the pyrolysis 

kinetic parameter cellulose, hemicellulose and lignin.  The validated model was then 

fitted using the empirical data from the lab-scale Imperata cylindrica pyrolysis.  The 

fitted model was then simulated to obtain the optimal operating condition for the 

reactor. 

Chapter 5: This chapter dealt with the fourth objective, which is the optimal design of 

the transported bed reactor.  The CFD multiphase model was used to study the 

hydrodynamic of the biomass and hot sand particles as well as the sweeping gas in the 
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reactor.  The volume fraction and temperature distribution of the biomass are examined 

with changes in the reactor geometry: inlet positions and height and width ratio. 

Chapter 6: This chapter is the fifth objective which is about the theoretical production 

of hydrogen from the biooil produced in the lab scale biomass pyrolysis experiment.  

The aqueous components in the biooil were identified and are subjected to steam 

reforming using thermodynamics and non-stoichiometry model. 

Chapter 7: This is the concluding chapter and the research contributions and future 

work are highlighted. 
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