NANOPARTICLES-SURFACTANT FOAM AND CRUDE OIL INTERACTION IN POROUS MEDIA

NURUDEEN YEKEEN

UNIVERSITI TEKNOLOGI MALAYSIA

NANOPARTICLES-SURFACTANT FOAM AND CRUDE OIL INTERACTION IN POROUS MEDIA

NURUDEEN YEKEEN

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Petroleum Engineering)

Faculty of Chemical and Energy Engineering Universiti Teknologi Malaysia

JULY 2017

To the Almighty God be the glory for his love, mercies and favour.

ACKNOWLEDGEMENT

I want to express my greatest gratitude to the Almighty God, the ever faithful one, who gave me this opportunity and also provide the strength to complete my study. My sincere appreciation goes to my supervisors Prof. Madya Dr. Muhammad A. Manan and Professor Dr. Ahmad Kamal Bin Idris for their excellent guidance, contribution, motivation and constant support throughout the entire study. I felt opportune to have work with dedicated and committed researcher as you.

My deepest appreciation goes to my lovely and amiable wife, Nike who stood by me all through this period. Her love, calmness, encouragement and contributions make my stay in Malaysia a fulfilling one. I must say she is simply the best. Special thanks to all my beloved family members: the Yekeens' and Okunades' for their unconditional support. To my brother, Paul and sister, Favour, for unflagging love, and support throughout my life and being my haven. You are the best of siblings. A million thanks to my sister in law, Yemi, for her unwavering support for me and my wife throughout this journey.

Also I would like to thank all the staffs, technicians, and Mr. Roslan of Reservoir Engineering Laboratory for their enthusiastic help in laboratory materials supply. Thanks to all my friends in Petroleum Engineering Department who made UTM a home away from home. Many thanks to all my brethren in Johor and Serdang for sharing knowledge, friendship, ideas as well as experience during my study. Truly, the future belongs to those who believe in the beauty of their dreams. Thanks a lot to you all.

ABSTRACT

Nanoparticles and surfactant stabilized foams have versatile applications in enhanced oil recovery process. The synergistic advantages of surface tension reduction by surfactant and nanoparticles adsorption at the foam lamellae can be exploited for producing foam with high foamability and longtime stability in the oil producing reservoir. However, the influence of nanoparticles on the static and the dynamic stability of conventional foam is not yet explicit due to limited studies. Moreover, only few studies have considered the pore-scale mechanisms of the nanoparticles-surfactant foams flow process in porous media and the minimization of surfactant adsorption in presence of nanoparticles. Due to limited research in this area, this study was conducted to understand the influence of silicon dioxide (SiO₂) and aluminum oxide (Al₂O₃) nanoparticles on the surfactant foam bulk and dynamic stability and surfactant adsorption on clay mineral. Four main experimental studies comprising the influence of the nanoparticles on surfactant adsorption on kaolinite, bulk and bubble-scale foam stability evaluation in presence of oil and salts, pore-scale visualization studies in etched glass micromodels, and fluid diversion process experiments were conducted. Results of this study showed that the adsorption of surfactant on clay mineral reduced drastically by 40% and 75% in presence of Al₂O₃ and SiO₂ nanoparticles, respectively. The maximum adsorption of surfactant on the nanoparticles occurred at 0.3 wt % sodium dodecyl sulfate (SDS). The foam bulk and bubble scale stability results indicated that 1 wt % of SiO₂ and Al₂O₃ nanoparticles enhanced the stability of the foam in presence of oil and salts. There was a transition salt concentration beyond which the foam stability increased with increasing salt concentrations. The presence of Al₂O₃ and SiO₂ nanoparticles prevented the entering of emulsified oil into the foam lamellae and decreased the transition salt concentrations. From the results of the pore scale studies, the dominant mechanisms of foam propagation in water-wet system were lamellae division and bubble-to-multiple bubble lamellae division. The dominant mechanisms of residual oil mobilization and displacement by the foam in water-wet media were found to be direct displacement and emulsification of oil. The dominant mechanism of foam propagation and residual oil mobilization in oil-wet system was identified as the generation of pore spanning continuous gas foam. Inter-bubble trapping of oil and water, lamellae detaching and collapsing of SDS-foam were observed in presence of oil in both water-wet and oil-wet systems. Generally, the SiO₂-SDS and Al₂O₃-SDS foams propagated successfully in oil-filled water-wet and oil-wet systems. Bubble coalescence was prevented during film stretching. The results of the fluid diversion process indicated an effective diversion of fluid in layered macroscopic model with permeability ratio of 8:1 in presence of SiO₂ and Al₂O₃ nanoparticles. The outcomes of this research is a major breakthrough in prospective field applications of nanoparticles-surfactant foams in oil-filled water-wet and oil-wet porous media.

ABSTRAK

Busa zarah nano dan surfaktan mempunyai aplikasi meluas dalam perolehan minyak tertingkat. Kelebihan sinergi melalui penurunan tegangan permukaan oleh surfaktan dan jerapan zarah nano di permukaan gelembung boleh menghasilkan busa dengan kebolehbusaan yang tinggi dan kestabilan busa yang lebih lama dalam menghasilkan takungan minyak. Namun begitu, kesan zarah nano kepada kestabilan statik dan dinamik busa belum dapat dieksplisitkan kerana kajian yang terhad. Selain itu, tidak banyak kajian yang mempertimbangkan mekanisme skala-liang bagi proses aliran busa dalam media liang dan pengurangan penjerapan surfaktan dengan kehadiran zarah nano. Oleh kerana penyelidikan yang terhad, kajian ini dijalankan untuk menentukan kesan zarah nano silika dioksida (SiO₂) dan alumina oksida (Al₂O₃) terhadap kestabilan busa pukal dan penjerapan surfaktan pada mineral lempung. Empat eksperimen utama yang dijalankan adalah kesan zarah nano terhadap jerapan surfaktan pada kaolinit, penilaian kestabilan busa pukal dan skala-gelembung, dengan kehadiran minyak dan garam, kajian pemerhatian skala-liang dalam model mikro gelas terukir, dan eksperimen proses lencongan bendalir dijalankan. Hasil kajian ini menunjukkan jerapan surfaktan pada mineral lempung berkurang secara mendadak sebanyak 40% dan 75% dengan kehadiran zarah nano masing-masing SiO₂ dan Al₂O₃. Penjerapan maksimum surfaktan pada zarah nano berlaku pada 0.3 % berat sodium dodesil sulfat (SDS). Hasil daripada kestabilan busa pukal dan skala-gelembung menunjukkan peningkatan kestabilan busa pada 1% berat zarah nano SiO₂ dan Al₂O₃ dengan kehadiran minyak dan garam. Terdapat kepekatan garam peralihan yang melampaui kestabilan busa yang meningkat dengan peningkatan kepekatan garam. Kehadiran nano zarah Al₂O₃ dan SiO₂ menghalang kemasukan minyak yang diemulsi ke dalam lamela busa dan menurunkan kepekatan garam peralihan. Daripada hasil kajian skala-liang, mekanisme dominan pergerakan busa dalam sistem basah air adalah pembahagian lamela dan lamela gelembung-ke-multigelembung. Mekanisme dominan untuk pergerakan dan anjakan minyak baki oleh busa dalam sistem basah minyak dikenal pasti sebagai pembentukan liang yang merangkumi busa gas secara berterusan. Inter-gelembung memerangkap minyak dan air, lamela memisah dan meruntuhkan busa SDS yang dicerap dengan kehadiran minyak dalam sistem air-basah dan minyak-basah. Secara umum, pergerakan busa SDS-SiO₂ dan SDS-Al₂O₃ baik dalam sistem berisi minyak basah air dan minyak basah. Tautan gelembung dihalang semasa peregangan filem. Hasil proses lencongan bendalir menunjukkan pelencongan bendalir yang berkesan dalam model makro berlapis dengan nisbah ketertelapan 8:1 dengan kehadiran SiO₂ dan Al₂O₃. Hasil kajian ini merupakan satu kejayaan utama dalam aplikasi bidang prospektif busa zarah nano-surfaktan dalam media liang berisi minyak basah air dan minyak basah..

TABLE OF CONTENT

CHAPTER		TITLE	PAGE
	DEC	CLARATION	ii
	DED	DICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABS	TRACT	v
	ABS	TRAK	vi
	TAB	LE OF CONTENT	vii
	LIST	F OF TABLES	xiii
	LIST	r of figures	XV
	LIST	F OF SYMBOLS	xxvii
	LIST	FOF APPENDICES	xxix
1	INT	RODUCTION	1
	1.1	Background of Study	1
	1.2	Problem Statement	4
	1.3	Objectives of the Work	6
	1.4	Scope and Limitations of Study	7
	1.5	Significance of Study	8
2	LIT	ERATURE REVIEW	9
	2.1	Brief overview of Gas Injection EOR	9
		2.1.1 Problems of Gas Injection EOR	10
		2.1.2 Solutions to the problems of	
		Injection EOR	11
	2.2	The Definitions of Foam	12
	2.3	Mechanisms of Foam Generation in	14
		Porous Media	

	2.3.1	Snap-Off	14
	2.3.2	Lamellae Division	15
	2.3.3	Leave behind Mechanism	16
2.4	Mecha	nisms of Foam Coalescence in	17
	Porous	s Media	
2.5	Foam	as Mobility Control Agent in	18
	Porou	s Media	
2.6	Mecha	nisms of Gas Mobility Control by Foam	21
	2.6.1	Gas Trapping and Apparent Viscosity	21
	Increa	se	
	2.6.2	Fluid Diversion Mechanisms	22
2.7	Experi	imental Study of foam for EOR	24
	Applic	eations	
	2.7.1	Bulk Foam Stability Experiments	25
	2.7.2	Macroscopic Studies	26
	2.7.3	Microscopic Studies	27
2.8	Critica	l Parameters that Influences Foam	33
	Perfor	mance in Porous media	
	2.8.1	Influence of Foam Texture and	33
		Pore geometry	
	2.8.2	Influence of Foam-Oil Interaction	34
		In Porous Media	
	2.8.3	Influence of Porous media	39
		Wettability	
	2.8.4	Influence of Foaming Agents and	43
		Stabilizers	
2.9	Influer	nce of Nanoparticles on Foam	45
	Stabili	ty	
	2.9.1	Mechanisms of foam Stabilization	46
		by nanoparticles	
	2.9.2	Influence of Critical parameters on	47
		Nanoparticles-SDS foam performance	

viii

RESEA	ARCH	METHODOLOGY	61
3.1	Overvi	ew and Research Strategy	61
3.2 Mate		als	62
	3.2.1	The Foaming agents	63
	3.2.2	The Stabilizing Agents	63
	3.2.3	The Fluid Systems	64
	3.2.4	Clay Mineral	67
	3.2.5	Porous Media Characterization	68
3.3	Experi	mental Procedures	73
	3.3.1	Preparations of surfactants and	73
		Nanoparticles-surfactant solutions	
	3.3.2	Surface and interfacial Tension	74
		Measurements	
	3.3.3	Characterization of the	76
		Nanoparticles	
	3.3.4	Adsorption on Kaolinite Experiments	77
	3.3.5	CO ₂ Static and Bubble Scale Stability	80
		and Liquid Drainage Experiments	
	3.3.6.	Foam Flow Dynamics in 2D	84
		Hele-Shaw Cell	
	3.3.7.	Bulk Foam Apparent Viscosity	85
		Investigation	
	3.3.8.	Pore Scale Visualization Study in	86
		Etched Glass Micromodel	
	3.3.9	Foam Fluid Diverting Experiments	89
		In a Layered Macroscopic Model	
	3.3.10	Porous Media Basic Properties	90
		Determination	
RESU	LTS A	ND DISCUSSIONS	93
4.1	Introdu	uction	93
	4.2.1	Extent of Surfactant Adsorption on	93

ix

Nanoparticles

	4.2.2	Surfactants Adsorption at Different	95
		Nanoparticles Concentrations	
4.3	Nanop	particles Characterizations	96
4.4	Solid I	Particle Wettability Determination	98
4.5	Mecha	anisms of SDS-Foam	101
	Improv	vement by Nanoparticles	
	4.5.1	Foam Apparent Viscosity	101
		Determination in Hele-Shaw Cell	
	4.5.2	Films Strength and Bubbles	104
		Morphology	
	4.5.3	Nanoparticles Adsorption and	112
		Accumulation at Foam Lamellae	
4.6	Main I	Experiments	115
	4.6.1	Surfactant Adsorption on Kaolinite in	115
		Presence of Salts	
	4.6.2	Adsorption Isotherm Models	118
	4.6.3	Influence of SiO ₂ and Al ₂ O ₃	121
		nanoparticles on the SDS Adsorption	
	4.6.4	Equilibrium Adsorption Models for the	124
		Experimental Data	
4.7.	Bulk a	nd Bubble –Scale Foam Stability	127
	Experi	iments	
	4.7.1	Influence of Al ₂ O ₃ Nanoparticles	127
		Concentration	
	4.7.2	Influence of Hydrophilic SiO ₂	128
		Nanoparticles Concentration	
	4.7.3	Influence of Modified SiO ₂	130
		Nanoparticles Concentration	
	4.7.4	Evidence of Nanoparticles	132
		Agglomeration from Static Stability	

	4.7.5	Evidence of Agglomeration From The	133
		Bubble-Scale Experiments	
4.8.	Effect	ts of Oil Presence on Foam Stability	136
	4.8.1	Foam Static Stability Improvement by	136
		Nanoparticles in Presence of Oil	
	4.8.2	Foam Stability Improvement from the	140
		Bubble Size Distribution	
	4.8.3	Mechanisms of Foam Stability	142
		Improvement by Nanoparticles in	
		Presence of Oil	
4.9	Influe	ence of Salinity on Foam Stability	150
	4.9.1	Influence of Surfactant and Salts	150
		Concentration On SDS-Foam	
		Generation	
	4.9.2	Effects Of Surfactant and NaCl Salts	151
		Concentration on SDS-Foam Stability	
	4.9.3	Influence of CaCl ₂ Concentration on	153
		SDS-Foam Stability	
	4.9.4	Effects of AlCl ₃ Concentration on SDS-	155
		Foam Stability	
	4.9.5	5 Influence of SiO ₂ and Al ₂ O ₃	157
		Nanoparticles on SDS-Foam	
		Stability in Presence of Salts	
	4.9.6	Mechanisms of Foam Stability	162
		Improvement by Nanoparticles in	
		Presence of Salts	
4.10	Foam	Flow Dynamics in 2D Hele–Shaw cell	164
4.11	Pore-S	Scale Visualization Experiments in	168
	Micro	omodels	
	4.11.1	Fluid Distributions in Water-Wet and	169
		Oil-Wet System	

		4.11.2 Configuration and Distribution of	170
		Connate Water Saturation in Water-Wet	
		and Oil-Wet Micromodels	
		4.11.3 Residual Oil Saturation to Waterflood	173
		in Water-wet System	
		4.11.4 Residual Oil Saturation to Waterflood	175
		in Oil-wet System	
		4.11.5 Gas Injection into the Water-Wet	177
		Etched Glass Micromodel Experiments	
		4.11.6 Gas Injection into the Oil-Wet Etched	178
		Glass Micromodel Experiments	
		4.11.7 Mechanisms of Foam Generation	179
		Propagation and Residual Oil	
		Mobilization	
		4.11.8 Foam Flow Process in Oil-Wet System	195
		4.11.9 Mechanisms of Oil Mobilization by	196
		Foam in Oil-Wet System	
		4.11.10 Influence of Nanoparticles on Foam	197
		Performance in Oil-Wet System	
		4.11.11 Foam-Oil Interaction in Etched Glass	201
		Micromodels	
	4.12	Fluid Diversion Mechanisms	207
		4.12.1 Fluid Diversion Performance of Foam	207
		in the Absence of Oil	
		4.12.2 Fluid Diversion Process in Presence of	212
		Crude Oil	
5	CON	CLUSIONS AND RECOMMENDATIONS	215
	5.1	Conclusions	215
	5.2	Recommendations	217
REFERENCES			218
Appendices A-C			241-251

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Summary of the previous research on experimental	31
		26
2.2	Foam stability prediction by L, E and S	36
2.3	Summary of the previous research about the effect	37
	of oil on foam stability	
2.4	Summary of the previous research about the	59
	influence of critical parameters on nanoparticles-	
	surfactant foam performance	
3.1	Properties of the nanoparticles used in this study	64
3.2	Properties of the model oils used in this study	65
3.3	Properties of crude oil used in the experiments	66
3.4	Basic properties of the Hele-Shaw cell used in the	69
	study	
3.5	Basic properties of the etched glass micromodels	71
3.6	Basic properties of the visual layered macroscopic	72
	model	
3.7	Formulae and description of parameters for Temkin	79
	adsorption isotherm, Langmuir adsorption isotherm	
	and Freundlich adsorption isotherm.	
4.1	Summary of the basic measurement experiments	100
4.2	Static analysis of the foam morphology through	111
	IMAGE J	
4.3	Average particle diameter for Al ₂ O ₃ nanoparticles in	135
	Al ₂ O ₃ /SDS dispersions	

4.4	Entering, spreading coefficients and lamella number	149
	for paraffin oil	
4.5	Influence of NaCl, CaCl ₂ and AlCl ₃ salts on foam	151
	generation	
4.6	Summary of gas injection experiments, foam	187
	generation, propagation and oil mobilization	
	mechanisms in water-wet system	
4.7	The summary of foam performance in oil-wet	200
	micromodel	
4.8	Influence of oil on the performance of SDS-foam and	204
	nanoparticles-SDS foam.	

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	(a) Ideal flow of CO ₂ from Injection well (I) to	10
	production well (P) and (b) Viscous fingering of	
	CO ₂ with large volume of un-swept oil	
2.2	Problems of gas Injection EOR in form of (a)	11
	Poor area sweep (b) Gas Channelling and (c)	
	Gravity Overrides	
2.3	Sketch of (a) continuous gas foam and (b)	13
	discontinuous gas foam	
2.4	Schematics of snap-off-mechanism showing	15
	(a) first stage (b) second stage (c) third stage	
2.5	Schematics of lamellae division mechanism	16
	showing (a) mobilized lamellae at branching	
	point and (b) splitting of lamellae into two	
2.6	Schematics of leave behind mechanism showing	17
	(a) two gas fingers at pore throats and (b)	
	draining of liquid lenses to lamellae	
2.7	Gravity override when (a) only CO ₂ gas (blue)	20
	was injected and (b) prevention of gravity	
	override by foam	
2.8	Prevention of viscous fingering by injection of	20
	CO ₂ foam	
2.9	Comparison of (a) SAG with (b) waterflooding	23
	in sandpack with 19:1 permeability ratio	

2.10	Comparison of sweep efficiency of SAG,	24
	WAG and waterflooding	
2.11	Side view of a glass-bead Hele Shaw micromodel	29
2.12	Heterogeneous layered micromodel	30
	with permeability contrast of 4	
2.13	Diagrams showing the different interface	35
2.14	Side view of pore level diagram of water-wet,	43
	mixed-wet and oil-wet porous media	
2.15	Mechanisms of oil droplet mobilization	47
	by SDS-foam and SiO ₂ /SDS foam	
2.16	Effect of SDS/SiO ₂ concentration ratio on	55
	foam generation and stability	
3.1	Overview of the overall research strategy	62
3.2	Magnified section of (a) circular shaped grain	70
	design micromodels and (b) diamond shaped	
	grain design micromodels used in this study	
3.3	Schematic diagram of the 2D layered	72
	macroscopic model	
3.4	Schematic of the experimental set-up for the bulk	81
	foam stability	
3.5	Krüss foam analyser (DFA100) used to	83
	investigate foam bubble-scale stability and	
	drainage	
3.6	Leica EZ4 HD stereo microscope used for	84
	lamellae thickness and foam morphology	
	determination	
3.7	Set-up of the 2D Hele-Shaw Cell used for foam	85
	flow dynamics	
3.8	Experimental set-up for the pore scale	88
	visualization experiments in etched glass	
	micromodels	

3.9	Experiments to determine the fluid diverting	89
	performance of foam	
3.10	Procedures for wettability alterations of the	92
	micromodels	
4.1	Adsorption index versus surfactant concentration	94
	for different nanoparticles	
4.2	Adsorption index versus surfactant concentration	95
	for different SiO ₂ concentration	
4.3	Scanning electron microscope image of modified	96
	SiO ₂ nanoparticles	
4.4	Scanning electron microscope (SEM) images of	97
	(a) SiO ₂ nanoparticles and (b) Al ₂ O ₃	
	nanoparticles	
4.5	Transmission electron microscope (SEM) images	97
	of (a) SiO ₂ nanoparticles and (b) Al ₂ O ₃	
	nanoparticles	
4.6	Images for contact angle measurement for (a)	99
	hydrophilic Al ₂ O ₃ nanoparticles (b) hydrophilic	
	SiO ₂ nanoparticles and (c) modified SiO ₂	
	nanoparticles	
4.7	Foam apparent viscosity at 50 % foam quality	102
	and different flowrates	
4.8	Foam apparent viscosity at 75 % foam quality	103
	and different flowrates	
4.9	Lamellae thickness and bubble diameter of the	104
	SDS-stabilized foam (a) immediately after	
	generation and (b) 60 minutes after generation	
4.10	Morphology of the bubble size distribution of the	105
	SDS- foam	
4.11	Histogram of bubble size distribution of SDS	106
	stabilized foam	

4.12	Lamellae thickness of the hydrophilic SiO ₂ -SDS	106
	60 minutes after generation	
4.13	Morphology of the bubble size distribution of the	107
	SiO ₂ /SDS foam	
4.14	Histogram of bubble size distribution of	108
	SiO ₂ /SDS stabilized foam	
4.15	Lamellae thickness of the modified SiO ₂ /SDS	108
	foam	
4.16	Morphology of the bubble size distribution of the	109
	modified SiO ₂ /SDS- foam	
4.17	Histogram of bubble size distribution of modified	110
	SiO ₂ /SDS bubbles	
4.18	Lamellae thickness and bubble diameter of the	110
	Al ₂ O ₃ -SDS foam	
4.19	Histogram of bubble size distribution of	111
	Al ₂ O ₃ /SDS stabilized bubbles	
4.20	Image of Al ₂ O ₃ /SDS foam showing nanoparticles	113
	accumulation at the thin films	
4.21	Time of liquid drainage from the modified	115
	SiO ₂ /SDS foam as a function of nanoparticles	
	concentration	
4.22	Effect of NaCl concentration on the adsorption of	116
	SDS onto kaolinite	
4.23	Effect of CaCl ₂ on the adsorption of SDS onto	117
	kaolinite	
4.24	Effect of AlCl ₃ on the adsorption of SDS onto	118
	kaolinite	
4.25	Langmuir Equation fitting for adsorption	119
	isotherm at NaCl concentration	
4.26	Langmuir equation fitting for adsorption isotherm	119
	of SDS at different CaCl ₂ concentration	

4.27	Langmuir equation fitting for adsorption isotherm	120
	of SDS at different AlCl ₃ concentration	
4.28	Surface tension trends of different concentration	122
	of SDS in absence and presence of 1 wt% SiO_2	
	and Al ₂ O ₃ nanoparticles	
4.29	Adsorption isotherms of SDS in absence and	124
	presence of 1 wt% SiO ₂ and Al ₂ O ₃ nanoparticles	
	(Results of two-phase titration experiments).	
4.30	Langmuir isotherm model fit for the adsorption	125
	of SDS, SiO ₂ /SDS and Al ₂ O ₃ /SDS mixtures	
	onto kaolinite	
4.31	Freundlich isotherm model fit for the adsorption	126
	of SDS, SiO ₂ /SDS and Al ₂ O ₃ /SDS mixtures onto	
	kaolinite	
4.32	Temkin isotherm model fit for the adsorption of	126
	SDS, SiO ₂ /SDS and Al ₂ O ₃ /SDS mixtures onto	
	kaolinite	
4.33	Influence of Al ₂ O ₃ nanoparticles concentration on	128
	Al ₂ O ₃ /SDS Foam	
4.34	Influence of hydrophilic SiO ₂ nanoparticles on	129
	SiO ₂ /SDS foam	
4.35	Normalized foam height of hydrophilic	129
	SiO ₂ /SDS CO ₂ foam showing 1 wt % as optimum	
	concentrations for maximum foam stability	
4.36	Influence of nanoparticles concentration on	130
	modified SiO ₂ /SDS foam	
4.37	Normalized foam height of modified SiO ₂ /SDS	131
	CO ₂ foam showing that foam stability increases	
	with increasing nanoparticles concentration	
4.38	Images of $Al_2O_3/SDS CO_2$ foam with (a) 1 wt %	133
	Al ₂ O ₃ concentration (b) 2 wt % Al ₂ O ₃	
	concentration	

4.39	Influence of particle agglomeration on the bubble	134
	size distribution of (a) Al_2O_3/SDS foam (b)	
	hydrophilic SiO ₂ /SDS foam and (c) modified	
	SiO ₂ /SDS foam.	
4.40	Influence of nanoparticles on foam stability in	137
	presence of oil	
4.41	The normalized height of SiO ₂ /SDS CO ₂ -foams	138
	in the presence of oil	
4.42	The normalized height of CO ₂ -foams in the	138
	presence of crude oil	
4.43	Bubble size distribution of (a) SDS foam (b)	141
	Al ₂ O ₃ -SDS foam (c) Modified SiO ₂ -SDS foam	
	and (d) Hydrophilic SiO ₂ -SDS foam in presence	
	of decane	
4.44	Entering and spreading of oil at the lamellae of (a)	143
	Al ₂ O ₃ /SDS foam and (b) SDS-foam	
4.45	Bubble-scale dynamics of (a) Al ₂ O ₃ /SDS foam	144
	and (b) SDS-foam in presence of decane oil	
4.46	Bubble-scale dynamics of (a) Al ₂ O ₃ /SDS foam	145
	and (b) SDS foam in presence of crude oil	
4.47	Histograms of the bubble size distribution for	146
	foam in presence of oil	
4.48	Rate of liquid drainage from foam in presence of	148
	(a) Paraffin oil (b) Crude oil (c) Decane oil and (d)	
	Hexadecane oil	
4.49	Change in foam height with respect to time for	152
	SDS-foam in the absence of salt	
4.50	Change in foam height with respect to time for	153
	SDS-foam (with 1 wt % NaCl concentration)	
4.51	Change in foam height with respect to time for	154
	SDS in presence of 0.1 wt% CaCl ₂	
4.52	Change in foam height with respect to time for	154
	SDS foam in presence of 0.5 wt% CaCl ₂	

4.53	Change in foam height with respect to time for	155
	SDS foam in presence of 0.025 wt% AlCl ₃	
4.54	Foam half-life as a function of surfactant	156
	concentrations	
4.55	Foam half-life as a function of NaCl	158
	concentrations	
4.56	Influence of nanoparticle on foam stability (0 wt	159
	% NaCl)	
4.57	Influence of nanoparticle on foam stability (0.25	159
	wt % NaCl)	
4.58	Foam half-life as a function of different CaCl ₂	161
	concentrations	
4.59	Foam half-life as a function of different AlCl ₃	161
	concentrations	
4.60	Effect of different NaCl concentration on the	162
	surface tension of SDS, SiO ₂ -SDS and Al ₂ O ₃ -	
	SDS mixtures	
4.61	Aggregate size and zeta potential of the	163
	nanoparticles in nanoparticles-surfactant solutions	
	as function of NaCl concentrations	
4.62	Bubble size distribution of SDS-stabilized CO ₂	165
	foams (a) immediately after generation and (b)	
	after 60 minutes in the 2D Hele-Shaw cell	
4.63	Bubble size distribution of Al ₂ O ₃ /SDS-stabilized	166
	CO ₂ foams (a) immediately after generation and	
	(b) after 60 minutes in 2D Hele-Shaw Cell	
4.64	Bubble size distribution of the (a) Hydrophilic	167
	SiO ₂ /SDS CO ₂ foams and (b) modified SiO ₂ /SDS	
	CO ₂ foam in 2D Hele-Shaw cell after 60 minutes	
4.65	Magnified images of the (a) SDS-stabilized CO ₂	168
	foam and the (b) modified SiO ₂ /SDS CO ₂ foam	
	showing the thickness of the foam lamellae in the	
	2D Hele-Shaw Cell	

4.66	Fluid distributions in water-wet micromodels (a)	169
	Circular shaped system and (b) Diamond shaped	
	system (red color indicates oil and blue color	
	indicates water).	
4.67	Fluid distributions in oil-wet micromodels (a)	170
	Circular shaped system and (b) diamond shaped	
	system (red color indicates oil and blue color	
	indicates water)	
4.68	Connate water saturation in the water-wet system	171
	in form of (a) thin films on the grain surfaces (b)	
	dense water films in pore throat (c) dense water	
	films in pore body and (d) connate water in entire	
	pore body and pore throat (red color indicates oil	
	and blue color indicates water)	
4.69	Connate water saturation in the oil-wet system in	172
	form of (a) evenly distributed layer in the middle	
	of the larger pores (b) isolated water droplets and	
	globules that are surrounded by thick continuous	
	oil films (c) uniformly distributed or in form of	
	trapped water globules and (d) isolated water	
	droplets, thick and thin strip, or occupied the	
	middle of the larger pore (red colour indicates oil	
	and blue colour indicates water)	
4.70	Residual oil saturation to waterflood in water-wet	174
	micromodel showing (a) spontaneous imbibition	
	of water (b) growth and gradual thickening of	
	water layers (c) oil filaments becomes thinner and	
	water filament become thicker and (d) discrete oil	
	ganglia from oil-snap off (Red colour indicates oil	
	and blue colour indicates water).	
4.71	Residual oil saturation to waterflood in oil-wet	176
	micromodel in form of (a) continuous oil	
	filaments on the pore surface (b) the residual oil	

	clusters trapped in smaller pore bodies for the	
	circular shaped model (c) the residual oil clusters	
	trapped in smaller pore bodies for the diamond	
	shaped model (d) High residual oil saturation and	
	earlier water breakthrough in a diamond shaped	
	model (e) High residual oil saturation and earlier	
	water breakthrough in a circular shaped model.	
4.72	Gas Injection into the water-wet system showing	177
	(a) direct displacement of oil by gas (b) gas	
	fingering through the oil.	
4.73	Gas Injection into the oil-wet system showing (a)	179
	direct displacement of oil by gas (b) gas fingering	
	through the oil	
4.74	Foam regeneration by the occurrence of lamellae	181
	division mechanism in (a) circular shaped	
	micromodel and (b) diamond shaped micromodel	
	(c) Magnified pore body and throat showing	
	lamellae division and leave behind mechanisms	
4.75	Bubble-to-multiple-bubble lamellae division in	183
	(a) Circular shaped micromodel and (b) diamond	
	shaped micromodel (c) at pore throat and pore	
	body	
4.76	Mechanism of direct displacement of oil by foam	184
	showing (a) Foam behind an oil bank in the	
	micromodel and (b) 100% microscopic	
	displacement efficiency by the foam.	
4.77	Mechanism of the emulsification of oil showing	186
	oil within the foam system amd at pleateau	
	borders in (a) circular shaped micromodel and	
	(b) diamond shaped micromodel.	

4.78	Direct displacement mechanisms in SDS-Stabilized	189
	foam showing (a) trapping of oil in form of oil	
	filament and macro-emulsions and (b) oil trapped	
	between bubbles at pore body and pore throat.	
4.79	Direct displacement mechanisms of (a)	190
	hydrophilic SiO ₂ /SDS foam showing almost 100	
	% microscopic efficiency and (b) Al_2O_3/SDS	
	foam with some trapped oil	
4.80	Oil mobilization and displacement process	191
	through the oil emulsification mechanism by (a)	
	SDS-stabilized foam and (b) modified SiO ₂ /SDS	
	foam	
4.81	Foam flow process in circular shaped etched glass	192
	micromodel showing (a) Almost 100 % sweep by	
	the Al_2O_3/SDS foam and (b) trapped oil by the	
	pore walls of the micromodel during SDS-	
	stabilized foam	
4.82	Foam flow process showing (a) 100 % sweep	193
	during hydrophilic SiO ₂ / SDS foam flow and (b)	
	trapped oil at the pore walls during SDS-stabilized	
	foam flow process in a diamond shaped	
	micromodel	
4.83	Foam propagation in oil-wet system as (a) isolated	196
	trapped bubbles (b) isolated and pore spanning	
	bubbles in form of continuous gas foam	
4.84	Propagation and mobilization of oil by SDS-	198
	stabilized foam in oil-wet porous medium	
4.85	Pore spanning continuous SiO ₂ /SDS foam in (a)	199
	circular shaped micromodel and (b) diamond	
	shaped micromodel.	
4.86	Image of oil-wet etched glass micromodel after	200
	(a) Al ₂ O ₃ /SDS foam flooding and (b) SiO ₂ /SDS	
	foam flooding.	

4.87	SDS-stabilized foam interaction with (a) Paraffin	202
	oil in etched glass micromodel (b) Crude oil in	
	etched glass micromodel.	
4.88	Successful propagation of Al2O3/SDS foam in	203
	presence of crude oil resisting entering and	
	spreading of oil at foam lamellae.	
4.89	Foam image showing high microscopic	204
	displacement efficiency of (a) SiO ₂ /SDS foam (b)	
	Al ₂ O ₃ /SDS foam in presence of paraffin oil.	
4.90	Mobilization and recovery of oil from the dead	206
	end pores by (a) SDS-stabilized foam (b)	
	hydrophilic SiO ₂ /SDS foam (c) modified	
	SiO ₂ /SDS foam and (d) Al ₂ O ₃ /SDS foam.	
4.91	The layer model when the high and low	208
	permeability layer was filled with the injected	
	brine (water is coloured blue for visual	
	observation).	
4.92	The layer model when 8 PV of brine was injected.	208
	The upper permeability layer was filled while	
	cross flow of fluid into low permeability layer was	
	observed (the water is coloured blue for visual	
	observation).	
4.93	Injection of SDS-foam and brine into model	209
	showing fluid (brine) diversion process by the	
	foam. The foam is white while the water is	
	coloured blue for visual observation.	
4.94	Injection of Al ₂ O ₃ /SDS foam and brine into	210
	model showing fluid (brine) diversion process by	
	the foam. The foam is white while the water is	
	coloured blue for visual observation.	

4.95	Injection of hydrophilic SiO ₂ /SDS foam followed	210
	by the injection of brine into model showing fluid	
	diversion process. Foam is white while the water	
	is coloured blue.	
4.96	Injection of modified SiO ₂ /SDS foam followed	211
	by the injection of brine into model showing fluid	
	diversion process.	
4.97	Crude oil saturated high and lower permeability	212
	layer of the macroscopic layered model	
4.98	Waterflooding of the model resulted in recovery	213
	of oil from the upper permeability layer only. The	
	oil is brown and the waater blue.	
4.99	The diversion of injected water towards the oil by	214
	SDS-foam.	
4.100	SiO ₂ /SDS foam flooding after the water-flooding	214
	of the macroscopic model. The oil is dark brown,	
	the foam is white while the water is colored blue	
	for visual observation.	

LIST OF SYMBOLS

Υαβ	-	Interfacial tension
ΔP	-	The differential pressure
θ	-	The particle contact angle at the interface c
λ	-	Conductivity coefficient
μ	-	Viscosity. coefficient
σ	-	Surface tension coefficient
C _e	-	The equilibrium concentration.
Co	-	The initial concentration of surfactant
K_f	-	The Freundlich adsorption capacity and intensity
K_L	-	The Langmuir equilibrium constant
K _r	-	Relative permeability
Г _{тах}	-	Maximum amount of surfactant
b	-	The gap thickness of the 2D Hele-shaw cell
W_r	-	The energy required to remove the particle from the interface
L	-	The length of cell
М	-	Mobility ratio
R	-	Radius of the particle
Г	-	The amount of adsorbate adsorbed
S	-	Surfactant solution
U	-	The velocity of the foam
AI	-	Adsorption index

- *NP* Nanoparticles dispersion
- *NPS* Nanoparticles/surfactant mixtures
- μ_{fapp} Foam apparent viscosity

LIST OF APPENDICES

APPENDIX NO.	TITLE	PAGE
А	Basic Properties Measurements	241
В	Summary of Adsorption Isotherm	248
	Parameters of SDS at Different	
	Salinities Conditions	
С	List of Publications	250

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Oil recovery from the petroleum reservoirs can be achieved by primary, secondary and tertiary oil recovery methods. Primary and secondary recovery methods depending on the reservoir characteristics, can only recover about 30 to 40 % of the original oil in place (Xing, 2012). Hence, the remaining oil in the petroleum reservoir remains the target of any enhanced oil recovery (EOR) operations such as gas injection, chemical injection, microbial enhanced oil recovery and thermal oil recovery. During enhanced oil recovery process, there is an improvement in the oil displacement and volumetric sweep efficiencies. This can be achieved through reduction of oil viscosity, capillary forces, interfacial tension and the development of a favorable mobility ratio between the displacing and the displaced fluid (Simjoo, 2012). This results in the eventual mobilization and the production of a substantial portion of the trapped residual oil in the reservoir at minimum cost (Payatakes, 1982).

Gas injection with about 39% contributions to world's EOR (Oil & Gas Journal, 2010) remains one of the most commonly used and generally accepted EOR methods. In gas injection, hydrocarbon and non-hydrocarbon gases like methane, air, carbon dioxide, natural gas and nitrogen are injected into the reservoirs for the recovery of residual oil (Liu *et al.*, 2011). Gas injection can either be miscible or an immiscible gas flooding. In miscible gas flooding, the gas is injected either at

minimum miscibility pressure (MMP) or beyond. Oil recovery is enhanced by the reduction of viscosity and interfacial tension as the injected gas mixes completely with the oil. In immiscible flooding, the injected gas does not mix with the reservoir oil. Reservoir pressure is maintained as the gas injection takes place below the minimum miscibility pressure (MMP) (Shokrollahi *et al.*, 2013). However, any gas enhanced oil recovery process suffers from poor macroscopic sweep efficiency because of gas higher mobility and lower density compared to oil or water (Rossen *et al.*, 2010). Gas segregation, gravity override, viscous fingering and channeling through the high permeability streaks are the major challenges of gas injection EOR process (Andrianov *et al.*, 2012).

In order to control the injected gas mobility and improve the poor volumetric efficiency during gas injection EOR, injection of gas slugs and water alternatively known as water-alternating gas (WAG process) has been used for several decades. The synergistic blend of the improved macroscopic sweep of waterflooding and the enhanced microscopic displacement efficiency of gas injection is exploited during WAG process (Sagir *et al.*, 2014). However, as WAG process continues, large volume of oil is considerably trapped by excess production of water that prevents the injected gas from contacting the resident oil in the reservoir. Moreover at some distances away from the wellbore, the process may lead to a poor gravity segregation control due to the large density contrast between the injected gases and the trapped oil (Sohrabi *et al.*, 2001). Consequently, vertical sweep efficiency and total oil recovery are drastically reduced as the process ultimately suffers from viscous instabilities and gravity segregation (Khalil and Asghari, 2006; Farajzadeh *et al.*, 2009).

Due to the inadequacy of WAG, foam, a dispersion of gas in liquid, such that the liquid phase is continuous and some part of the gas phase is made discontinuous by a thin liquid film called lamellae (Falls *et al.*, 1988) emerged in 1958 as a promising solution for controlling gas mobility. Foam controls gas mobility by increasing the apparent viscosity of the displacing fluid and reducing the relative permeability of the gas phase. In heterogeneous porous media, foam helps to divert the injected fluid from the high permeability regions to the low permeability un-swept areas by lowering the gas mobility in the high permeability zones (Kovscek and Bertin, 2002; Skauge *et al.*, 2002; Blaker *et al.*, 2002). Results of previous studies show that foams apparent viscosities can be up to 1,000 times higher than that of their constituent phases (Zhu *et al.*, 2004; Liu *et al.*, 2005). Foam flooding are also more efficient than WAG process, waterflooding and gas flooding in reducing viscous fingering and improving sweep efficiency (Hirasaki and Lawson, 1985; Liu *et al.*, 2005).

Nevertheless, foams are thermodynamically unstable and require surface active agents for their continuous generation and stability. For effective foam applications in enhanced oil recovery process, the foam have to remain stable and be able to propagate in the reservoir in the presence of resident reservoir brines and oils and at high temperatures (Zhu *et al.*, 2004). Stable foams generation has been achieved using surfactants, polymer and proteins as the conventional foaming and stabilizing agents for several decades (Romero *et al.*, 2002; Murray and Ettelaie, 2004; Romero-Zerón *et al.*, 2010). It has been demonstrated experimentally that gaseous bubbles can be prevented from coalescing by the adsorption of surfactant, polymers and protein molecules at the gas–liquid interface of the foam (Rossen, 1996; Bournival *et al.*, 2014; Zhang *et al.*, 2015).

However, surfactant-stabilized foams, polymer enhanced foams and protein foams are unable to maintain their stability for a long time at reservoir conditions of high salinity, temperatures, and in the presence of oil in porous media. This is due to their high propensity to degrade and their low adhesion energy at the foam interface. Low adhesion of the stabilizing agents at foam lamellae promotes easy desorption and rapid film thinning of foam films (Carrier and Colin, 2003; Adkins *et al.*, 2007; Fameau and Salonen, 2014). The film thinning increases and the foam becomes drier as a result of liquid drainage from the foam films (Fameau and Salonen, 2014). The thinning of the foam films eventually results in foam coalescence, that is, the breaking of smaller unstable bubbles to form bigger bubbles (Carrier and Colin, 2003; Fameau and Salonen, 2014). For surfactant-stabilized foam, the rate of surfactants adsorption on rock surfaces can also be very high thereby reducing the amount of surfactant molecules available for stabilizing the gas-liquid interface of the foam. Recently, there is an emerging interest in foam stabilized by a mixture of nanoparticles and surfactant. The synergistic advantage of interfacial tension and capillary forces reduction by the surfactant and nanoparticles adsorption at the foam lamellae is exploited for producing foam with high foamability and long time stability (Osei-Bonsu *et al.*, 2015). Results of some previous studies showed that nanoparticles-surfactant foams demonstrated high static and dynamic stability (Hunter, 2008; Cui *et al.*, 2010; Sun *et al.*, 2014; Singh and Mohanty, 2015). This has been attributed to the remarkable stability of the foam films due to the irreversible adsorption and aggregation of nanoparticles at the thin liquid films of the foam. Nanoparticles as the stabilizing components of the foam are solids; therefore, foams stabilized by nanoparticles–surfactant mixtures are more resistant to high salinity, temperatures, and the presence of resident reservoir brines and oils (Adkins *et al.*, 2007). The rate of surfactant adsorption on reservoir rock surfaces and clay minerals is also reduced in presence of nanoparticles (Ahmadi and Shadizadeh, 2013).

1.2 Problem Statement

The performance of foam also depends on the adsorption properties of the foaming agents in presence of resident reservoir brine in porous media. Inorganic salt influences the adsorption of surfactant molecules on clay minerals and at gas-liquid interface of surfactant-stabilized foam. The higher the adsorption of surfactant on clay minerals, the less the available surfactant molecules on the gas-liquid interface of the foam. Effects of different parameters on surfactant adsorption from solution onto reservoir rocks and clay minerals have been investigated in literatures (Zhang and Somasundaran, 2006; Sánchez-Martín *et al.*, 2008; Gogoi, 2009; Muherei *et al.*, 2009; Lv *et al.*, 2011; Amirianshoja *et al.*, 2013; Bera *et al.*, 2013). The results show that surfactants adsorption increases with increasing adsorbent dose, decreasing temperature and NaCl concentration due to their influence on the screening of the electrostatic charge (Behera *et al.*, 2014). However, these previous studies focused only on surfactant adsorption onto reservoir rocks and clay minerals. There is still paucity of information on the influence of electrolyte on the competitive and

co-operative adsorption of surfactant and nanoparticles onto reservoir clay. It is essential to gather information regarding the effect of salts on the adsorption of these foaming/stabilizing agents in order to optimize their performance for foam generation.

Another major concern for ensuring effective foam application in EOR is the stability of foam in the presence of oil. Jensen and Friedmann (1987) discovered from their studies that residual oil saturation of 15% and above in the reservoir will drastically affect foam propagation and performance. Foam stability in the presence of oil depends on aqueous phase composition, type of foaming and/or stabilizing agent, and oil type (Osei-Bonsu *et al.*, 2015). Generally, it has been reported from previous studies that oil has a destabilizing effect on the static and dynamic stability of foam (Vikingstad *et al.*, 2005; Simjoo *et al.*, 2013b; Duan *et al.*, 2014; Osei-Bonsu *et al.*, 2015; Farzaneh and Sohrabi, 2015). Results of these studies further showed that small-chain hydrocarbons with lower density and viscosity are more detrimental to the longevity of foams than long-chain hydrocarbons. Although the influence of oil on the stability of surfactant-stabilized foam has been widely investigated, few studies on the effects of oil on bulk stability of foams stabilized by nanoparticles–surfactant mixtures have been carried out. Thus, the role of nanoparticles on the static stability of surfactant foam in the presence of oil is yet to be well understood.

Porous media wettability is another critical parameter that influence foam stability and performance through their influence on fluid distribution and foam flow characteristics in porous media (Kulkarni and Rao, 2005; Talebian *et al.*, 2013). Results of previous experimental studies suggested divided opinions among researchers on the influence of porous media wettability on foam performance in porous media. Some researchers reported that the ideal reservoir rock wettability for optimum foam performance in porous media is water-wet (Kristiansen and Holt, 1992; Rossen, 1996). Others asserted that foam can be generated and propagated in an oil-wet porous media due to wettability alteration of hydrophobic porous medium to hydrophilic porous medium (Sanchez and Hazlett, 1992; Schramm and Mannhardt, 1996; Mannhardt, 1999). Few other researchers reported optimum foam generation, propagation and stability in oil-wet porous media due to lower surfactants adsorption in the oil-wet porous medium (Lescure and Claridge, 1986; Haugen *et al.*, 2012;

6

Romero-Zeron and Kantzas, 2007). These results are still contradictory and inconclusive and further studies will be required to obtained consistent results.

Meanwhile, most of the recent studies of nanoparticles-surfactant foams has been focused on either the bulk foam stability static experiments or the macroscopic studies (Yu et al., 2012a; Worthen *et al.*, 2013c; Singh and Mohanty, 2015; Farhadi *et al.*, 2016). The dominant mechanisms controlling the foam generation, propagation and stability in porous media especially in the presence of resident reservoir oils and brines are largely unknown due to limited studies. Knowledge of nanoparticlessurfactant foam propagation and stability in porous media at pore scale is vital for successful field design, application and implementation of nanoparticles-surfactant foam EOR.

1.3 Objectives of Study

The aim of this research is to determine the influence of silicon oxide (SiO₂) and aluminum oxide (Al₂O₃) nanoparticles on the static and dynamic stability of sodium dodecyl sulfate (SDS) foams and to carry out a pore scale mechanistic study of the nanoparticles-surfactant stabilized foam flow process in water-wet and oil-wet porous media. Thus the specific objectives of this study are as follows:

- To evaluate the influence of SiO₂ and Al₂O₃ nanoparticles on the adsorption of SDS surfactant by kaolinite at different salinities
- II. To determine the effect of nanoparticles concentration, salinity and oil presence on bulk and bubble scale stability of nanoparticles-surfactant foams
- III. To determine the mechanisms of nanoparticles-surfactant foam flow process at pore scale in water-wet and oil-wet porous media.
- IV. To investigate the role of nanoparticles on the process of fluid diversion by nanoparticles-surfactant foam in heterogeneous porous media.

1.4 Scope and Limitations of Study

This research comprises four main experiments which are surfactant adsorption experiments using two-phase titration method, bulk and bubble scale stability experiments conducted using foam column, dynamic foam analyzer and the 2D Hele-Shaw cell, pore scale visualization studies in the water-wet and oil-wet etched glass micromodels and fluid diversion experiments in unconsolidated visual layered glass bead packed macroscopic models. Some preliminary experiments were conducted in order to support and explain the observations and the results of the main experiments. These includes: surface tension measurements, determination of surfactant adsorption extent on the nanoparticles, determination of particle shape and wettability, determination of foam apparent viscosity in 2D Hele-Shaw cell, determination of foam lamellae thickness and morphology under the Leica EZ4 HD microscope.

The foam was pre-generated before injection into the porous media in all experiments in this study and all experiments were conducted at room temperature and pressure. The foam quality is limited to from 50 % to 90 %. The porosity of the etched glass micromodels ranges from 29 % to 40 % and the permeability ranges from 0.741 to 1.359 Darcy. The flowrate of 0.5 ml/hr (0.00833ml/min) was used in the pore scale visualization experiments. It was difficult to generate foam at lower flowrate than that in this study. The dead end pores investigation experiments were limited to the waterwet system. Influence of pore geometry in terms of aspect ratio and coordination number on the foam performance was not very significant due to the presence of dead end pores. It was difficult to determine any reasonable oil recovery at the production outlet from the diamond shaped micromodels due to its low pore volume (0.47 ml). The permeability contrast of the layered model is 8:1 while the porosity ranges from 30 % to 45 %. The flowrate of fluid diversion experiments could not translate into 2 ft/day at flow rate of 3ml/min-6ml/min. The contact angle of nanoparticles was measured in the absence of oil. Three major salts, NaCl, CaCl₂ and AlCl₃ were used in this research. These salts represent the major monovalent, divalent and trivalent cations, and the major anion found in reservoir brines.

1.5 Significance of Study

•

A micro-scale understanding of influence of nanoparticles on conventional foam stability and the displacement behaviours of nanoparticles-surfactant stabilized CO_2 foam in oil and water-wet porous media has been provided from the results of these experiments. This will provide the basic guidelines for further research, future field design and implementation of nanoparticles-surfactant CO_2 foam enhanced oil recovery (EOR) process.

REFERENCES

- Abdallah, W., Buckley, J.S., Carnegie, A., Edwards, J., Herold, B., Fordham, E., Graue, A., Habashy, T., Seleznev, N., Signer, C., Hussain, H., Montaron, B. & Ziauddin, M. (2007). Fundamentals of Wettability. Oilfield Review. www.slb.com, *Schlumberger*.
- Adkins, S. S., Gohil, D., Dickson, J. L., Webber, S. E. and Johnston, K. P. (2007).
 Water-in-Carbon Dioxide Emulsions Stabilized with Hydrophobic Silica Particles. *Physical Chemistry Chemical Physics*, 9(48), 6333-6343.
- Afsharpoor, A., Lee, G. and Kam, S. (2010). Mechanistic Simulation of Continuous Gas Injection Period During Surfactant-Alternating-Gas (Sag) Processes Using Foam Catastrophe Theory. *Chemical Engineering Science*, 65(11), 3615-3631.
- Ahmadi, M., Shadizadeh, S. and Salari, Z. (2014). Dependency of Critical Micellization Concentration of an Anionic Surfactant on Temperature and Potassium Chloride Salt. *Petroleum Science and Technology*, 32(16), 1913-1920.
- Ahmadi, M. A. and Shadizadeh, S. R. (2013). Induced Effect of Adding Nano Silica on Adsorption of a Natural Surfactant onto Sandstone Rock: Experimental and Theoretical Study. *Journal of Petroleum Science and Engineering*, 112, 239-247.
- Alvarez, J., Rivas, H. and Rossen, W. (2001). Unified Model for Steady-State Foam Behavior at High and Low Foam Qualities. *SPE journal*, 6(03), 325-333.
- Amirianshoja, T., Junin, R., Idris, A. K. and Rahmani, O. (2013). A Comparative Study of Surfactant Adsorption by Clay Minerals. *Journal of Petroleum Science and Engineering*, 101, 21-27.

- Andrianov, A., Farajzadeh, R., Mahmoodi Nick, M., Talanana, M. and Zitha, P. (2012). Immiscible Foam for Enhancing Oil Recovery: Bulk and Porous Media Experiments. *Industrial & Engineering Chemistry Research*, 51(5), 2214-2226.
- Apaydin, O. G. and Kovscek, A. R. (2001). Surfactant Concentration and End Effects on Foam Flow in Porous Media. *Transport in porous media*, 43(3), 511-536.
- Aroonsri, A. (2014). Nanoparticle-Stabilized Supercritical CO₂ Foam for Mobility Control in CO₂ Enhanced Oil Recovery. PhD Dissertation, University of. Texas. http://hdl.handle.net/2152/26463 Available from: University of Texas repositories library [Accessed 5 May 2015].
- Aroonsri, A., Worthen, A. J., Hariz, T., Johnston, K. P., Huh, C. and Bryant, S. L. (2013). Conditions for Generating Nanoparticle-Stabilized CO₂ Foams in Fracture and Matrix Flow. *Proceedings of the SPE Annual Technical Conference and Exhibition*, September.30-October 2, New Orleans Louisina, USA, Society of Petroleum Engineers. SPE-166319-MS.
- Arriaga, L. R., Drenckhan, W., Salonen, A., Rodrigues, J. A., Íñiguez-Palomares, R., Rio, E. and Langevin, D. (2012). On the Long-Term Stability of Foams Stabilised by Mixtures of Nano-Particles and Oppositely Charged Short Chain Surfactants. *Soft Matter*, 8(43), 11085-11097.
- Attarhamed, F., Zoveidavianpoor, M. and Jalilavi, M. (2014). The Incorporation of Silica Nanoparticle and Alpha Olefin Sulphonate in Aqueous Co2 Foam: Investigation of Foaming Behavior and Synergistic Effect. *Petroleum Science* and Technology, 32(21), 2549-2558.
- Aveyard, R., Binks, B., Fletcher, P., Peck, T. and Rutherford, C. (1994). Aspects of Aqueous Foam Stability in the Presence of Hydrocarbon Oils and Solid Particles. *Advances in colloid and interface science*, 48, 93-120.
- Azdarpour, A., Rahmani, O., Rafati, R., Junin, R. and Manan, M. (2013). Laboratory Investigation of the Effects of Parameters Controlling Polymer Enhanced Foam (PEF) Stability. *Asian Journal of Applied Sciences*, 1(1).
- Baviere, M., Ruaux, E. and Defives, D. (1993). Sulfonate Retention by Kaolinite at High Ph-Effect of Inorganic Anions. SPE reservoir engineering, 8(02), 123-127.

- Baz-Rodríguez, S. A., Botello-Alvarez, J. E., Estrada-Baltazar, A., Vilchiz-Bravo, L. E., Padilla-Medina, J. A. and Miranda-López, R. (2014). Effect of Electrolytes in Aqueous Solutions on Oxygen Transfer in Gas–Liquid Bubble Columns. *Chemical Engineering Research and Design*, 92(11), 2352-2360.
- Behera, M. R., Varade, S. R., Ghosh, P., Paul, P. and Negi, A. S. (2014). Foaming in Micellar Solutions: Effects of Surfactant, Salt, and Oil Concentrations. *Industrial & Engineering Chemistry Research*, 53(48), 18497-18507.
- Bera, A., Kumar, T., Ojha, K. and Mandal, A. (2013). Adsorption of Surfactants on Sand Surface in Enhanced Oil Recovery: Isotherms, Kinetics and Thermodynamic Studies. *Applied Surface Science*, 284, 87-99.
- Bernard, G. G. and Jacobs, W. (1965). Effect of Foam on Trapped Gas Saturation and on Permeability of Porous Media to Water. *Society of Petroleum Engineers Journal*, 5(04), 295-300.
- Binks, B. and Lumsdon, S. (2000). Influence of Particle Wettability on the Type and Stability of Surfactant-Free Emulsions. *Langmuir*, 16(23), 8622-8631.
- Binks, B. P. (2002). Particles as Surfactants—Similarities and Differences. *Current Opinion in Colloid & Interface Science*, 7(1), 21-41.
- Binks, B. P., Duncumb, B. and Murakami, R. (2007). Effect of PH and Salt Concentration on the Phase Inversion of Particle-Stabilized Foams. *Langmuir*, 23(18), 9143-9146.
- Binks, B. P. and Horozov, T. S. (2005). Aqueous Foams Stabilized Solely by Silica Nanoparticles. *Angewandte Chemie*, 117(24), 3788-3791.
- Binks, B. P., Kirkland, M. and Rodrigues, J. A. (2008). Origin of Stabilisation of Aqueous Foams in Nanoparticle–Surfactant Mixtures. Soft Matter, 4(12), 2373-2382.
- Binks, B. P., Philip, J. and Rodrigues, J. A. (2005). Inversion of Silica-Stabilized Emulsions Induced by Particle Concentration. *Langmuir*, 21(8), 3296-3302.
- Blaker, T., Aarra, M. G., Skauge, A., Rasmussen, L., Celius, H. K., Martinsen, H. A. and Vassenden, F. (2002). Foam for Gas Mobility Control in the Snorre Field: The Fawag Project. SPE Reservoir Evaluation & Engineering, 5(04), 317-323.
- Blokhus, A. M., Høiland, H., Gjerde, M. I. and Ersland, E. K. (1996). Adsorption of Sodium Dodecyl Sulfate on Kaolin from Different Alcohol–Water Mixtures. *Journal of colloid and interface science*, 179(2), 625-627.

- Bournival, G., Du, Z., Ata, S. and Jameson, G. (2014). Foaming and Gas Dispersion Properties of Non-Ionic Surfactants in the Presence of an Inorganic Electrolyte. *Chemical Engineering Science*, 116, 536-546.
- Caldelas, F. M., Murphy, M., Huh, C. and Bryant, S. L. (2011). Factors Governing Distance of Nanoparticle Propagation in Porous Media. *Proceedings of the SPE Production and Operation Symposium*, March 27-29, Oklahoma City Oklahoma, USA. Society of Petroleum Engineers. SPE-142305-MS.
- Caps, H., Vandewalle, N. and Broze, G. (2006). Foaming Dynamics in Hele-Shaw Cells. *Physical Review E*, 73(6), 065301.
- Carrier, V. and Colin, A. (2003). Coalescence in Draining Foams. *Langmuir*, 19(11), 4535-4538.
- Chambers, K. T. and Radke, C. (1991). Capillary Phenomena in Foam Flow through Porous Media. *Interfacial phenomena in petroleum recovery*, 36, 191.
- Chen, M., Yortsos, Y. and Rossen, W. (2004). A Pore-Network Study of the Mechanisms of Foam Generation. *Proceedings of the SPE Annual Technical Conference and Exhibition*. September 26-29, Houston, Texas, USA, Society of Petroleum Engineers. SPE-90939-MS.
- Chen, S., Hou, Q., Zhu, Y., Wang, D. and Li, W. (2014). On the Origin of Foam Stability: Understanding from Viscoelasticity of Foaming Solutions and Liquid Films. *Journal of Dispersion Science and Technology*, 35(9), 1214-1221.
- Conn, C. A., Ma, K., Hirasaki, G. J. and Biswal, S. L. (2014). Visualizing Oil Displacement with Foam in a Microfluidic Device with Permeability Contrast. *Lab on a Chip*, 14(20), 3968-3977.
- Corapcioglu, M. Y. and Fedirchuk, P. (1999). Glass Bead Micromodel Study of Solute Transport. *Journal of contaminant hydrology*, 36(3), 209-230.
- Cui, Z.-G., Cui, Y.-Z., Cui, C.-F., Chen, Z. and Binks, B. (2010). Aqueous Foams Stabilized by in Situ Surface Activation of CaCO₃ Nanoparticles Via Adsorption of Anionic Surfactant. *Langmuir*, 26(15), 12567-12574.
- Dicksen, T., Hirasaki, G. J. and Miller, C. A. (2002). Conditions for Foam Generation in Homogeneous Porous Media. *Proceedings of the SPE/DOE Improved Oil Recovery Symposium*, April 13-17, Tulsa, Oklahoma. Society of Petroleum Engineers. SPE-75176-MS.

- Dickson, J. L., Binks, B. P. and Johnston, K. P. (2004). Stabilization of Carbon Dioxide-in-Water Emulsions with Silica Nanoparticles. *Langmuir*, 20(19), 7976-7983.
- Duan, X., Hou, J., Cheng, T., Li, S. and Ma, Y. (2014). Evaluation of Oil-Tolerant Foam for Enhanced Oil Recovery: Laboratory Study of a System of Oil-Tolerant Foaming Agents. *Journal of Petroleum Science and Engineering*, 122, 428-438.
- Emadi, A., Jamiolahmady, M., Sohrabi, M. and Irland, S. (2012). Visualization of Oil Recovery by CO₂-Foam Injection; Effect of Oil Viscosity and Gas Type. *Proceedings of the SPE Improved Oil Recovery Symposium*, April 14-18, Tulsa, Oklahoma, USA, Society of Petroleum Engineers, 1-19. SPE-152996-MS
- Emadi, A., Sohrabi, M., Farzaneh, S. and Ireland, S. (2013). Experimental Investigation of Liquid-CO₂ and CO₂-Emulsion Application for Enhanced Heavy Oil Recovery. *Proceedings of the 75th EAGE Annual Conference & Exhibition incorporating SPE EUROPEC*, June 10-13, London, UK. Society of Petroleum Engineers. SPE-164798.
- Emadi, A., Sohrabi, M., Jamiolahmady, M., Irland, S. and Robertson, G. (2011). Mechanistic Study of Improved Heavy Oil Recovery by CO₂-Foam Injection. *Proceedings of the SPE Enhanced Oil Recovery Conference*, July 19-21, Kuala Lumpur, Malaysia. Society of Petroleum Engineers. SPE-143013-MS.
- Espinosa, D., Caldesas, F., Johnston, K., Bryant, S. and Huh, C. (2010). Nanoparticle-Stabilized Supercritical CO₂ Foams for Potential Mobility Control Applications. *Proceedings of SPE Improved Oil Recovery Symposium*, April 24–28, Tulsa, Oklahoma, USA. Society of Petroleum Engineers. SPE 129925.
- Faerstein, M., Couto, P. and Alves, J. (2012). A Comprehensive Approach for Assessing the Impacts of Wettability on Oil Production in Carbonate Reservoirs. *Proceedings of the ASME 31st International Conference on Ocean, Offshore and Arctic Engineering*. July 1-6. Rio de Janeiro, Brazil, American Society of Mechanical Engineers, 835-850.

- Falls, A., Hirasaki, G., Patzek, T. E. A., Gauglitz, D., Miller, D. and Ratulowski, T. (1988). Development of a Mechanistic Foam Simulator: The Population Balance and Generation by Snap-Off. SPE reservoir engineering, 3(03), 884-892.
- Fameau, A.-L. and Salonen, A. (2014). Effect of Particles and Aggregated Structures on the Foam Stability and Aging. *Comptes Rendus Physique*, 15(8), 748-760.
- Farajzadeh, R., Andrianov, A., Krastev, R., Rossen, W. and Hirasaki, G. (2012). Foam-Oil Interaction in Porous Media-Implications for Foam-Assisted Enhanced Oil Recovery. *Proceedings of the 74th EAGE Conference & Exhibition incorporating SPE EUROPEC*, June 4, Muscat Oman, Society of Petroleum Engineers. SPE 154197.
- Farajzadeh, R., Andrianov, A. and Zitha, P. (2009). Investigation of Immiscible and Miscible Foam for Enhancing Oil Recovery. *Industrial & Engineering Chemistry Research*, 49(4), 1910-1919.
- Farhadi, H., Riahi, S., Ayatollahi, S. and Ahmadi, H. (2016). Experimental Study of Nanoparticle-Surfactant-Stabilized CO₂ Foam: Stability and Mobility Control. *Chemical Engineering Research and Design*, 111, 449-460.
- Farzaneh, S. A. and Sohrabi, M. (2015). Experimental Investigation of CO₂-Foam Stability Improvement by Alkaline in the Presence of Crude Oil. *Chemical Engineering Research and Design*, 94(0), 375-389.
- Figdore, P. E. (1982). Adsorption of Surfactants on Kaolinite: NaCl Versus CaCl₂ Salt Effects. *Journal of Colloid and Interface Science*, 87(2), 500-517.
- Firouzi, M., Howes, T. and Nguyen, A. V. (2014). A Quantitative Review of the Transition Salt Concentration for Inhibiting Bubble Coalescence. Advances in colloid and interface science, 222, 305-318.
- Firouzi, M. and Nguyen, A. V. (2013). Different Effects of Monovalent Anions and Cations on the Bubble Coalescence and Lifetime of Aqueous Films between Air Bubbles. *Chemeca 2013, Challenging Tomorrow*, 177.
- Firouzi, M. and Nguyen, A. V. (2014). Effects of Monovalent Anions and Cations on Drainage and Lifetime of Foam Films at Different Interface Approach Speeds. *Advanced Powder Technology*, 25(4), 1212-1219.

- Fried, A. N. (1960). Foam-Drive Process for Increasing the Recovery of Oil. Bureau of Mines, San Francisco, Calif.(USA). San Francisco Petroleum Research Lab. Washington, D.C.
- Friedmann, F., Chen, W. and Gauglitz, P. (1991). Experimental and Simulation Study of High-Temperature Foam Displacement in Porous Media. SPE reservoir engineering, 6(01), 37-45.
- Garrett, P. (1993). Recent Developments in the Understanding of Foam Generation and Stability. *Chemical engineering science*, 48(2), 367-392.
- Gogoi, S. B. (2009). Adsorption of Non-Petroleum Base Surfactant on Reservoir Rock. Curr. Sci, 97(7), 1059-1063.
- Gonzenbach, U. T., Studart, A. R., Tervoort, E. and Gauckler, L. J. (2006). Ultrastable Particle-Stabilized Foams. *Angewandte Chemie International Edition*, 45(21), 3526-3530.
- Green, D. W. and Willhite, G. P. (1998). *Enhanced Oil Recovery*. Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers Richardson, TX.
- Guo, F. and Aryana, S. (2016). An Experimental Investigation of Nanoparticle-Stabilized CO₂ Foam Used in Enhanced Oil Recovery. *Fuel*, 186, 430-442.
- Han, Y. K. (2008). The Effect of Critical Micelle Concentration on Foam Performance as a Mobility Agent in Enhanced Oil Recovery. PhD thesis, University of New Brunswick Canada.
- Hanssen, J., Holt, T. and Surguchev, L. (1994). Foam Processes: An Assessment of Their Potential in North Sea Reservoirs Based on a Critical Evaluation of Current Field Experience. *Proceedings of SPE/DOE Improved Oil Recovery Symposium,* April 17-18. Tulsa, Okhlahoma. Society of Petroleum Engineers. SPE-27768-MS
- Haugen, A., Ferno, M. A., Graue, A. and Bertin, H. J. (2010). Experimental Study of Foam Flow in Fractured Oil-Wet Limestone for Enhanced Oil Recovery. *Proceedings of the SPE Improved Oil Recovery Symposium*, April 24-28, Tulsa, Oklahoma, USA. Society of Petroleum Engineers. SPE-129763-PA.
- Haugen, Å., Fernø, M. A., Graue, A. and Bertin, H. J. (2012). Experimental Study of Foam Flow in Fractured Oil-Wet Limestone for Enhanced Oil Recovery. SPE Reservoir Evaluation & Engineering, 15(02), 218-228.

- Heller, J. P. (1994). CO₂ Foams in Enhanced Oil Recovery. *Advances in Chemistry Series*, 242, 201-201.
- Hendraningrat, L. and Shidong, L. (2012). A Glass Micromodel Experimental Study of Hydrophilic Nanoparticles Retention for EOR Project. *Proceedings of the SPE Russian Oil and Gas Exploration and Production Technical Conference and Exhibition*, October 16-18, Moscow Russia. Society of Petroleum Engineers. SPE-159161-MS..
- Heydarian, A., Kharrat, R., Heydarian, S. and Hashemi, A. (2013). Impact of Nano-Particles on Static Performance of Surfactant Foams. *Journal of American Science*, 9(6).
- Hilgenfeldt, S., Koehler, S. A. and Stone, H. A. (2001). Dynamics of Coarsening Foams: Accelerated and Self-Limiting Drainage. *Physical review letters*, 86(20), 4704.
- Hirasaki, G. and Lawson, J. (1985). Mechanisms of Foam Flow in Porous Media: Apparent Viscosity in Smooth Capillaries. Society of Petroleum Engineers Journal, 25(2), 176-190.
- Hirasaki, G., Miller, C., Szafranski, R., Tanzil, D., Lawson, J., Meinardus, H., Jin, M., Londergan, J., Jackson, R. and Pope, G. (1997). Field Demonstration of the Surfactant/Foam Process for Aquifer Remediation. *Proceedings of the SPE Annual Technical Conference and Exhibition*, October 5-8, San Antonio, Texas.
- Holthoff, H., Egelhaaf, S. U., Borkovec, M., Schurtenberger, P. and Sticher, H. (1996).
 Coagulation Rate Measurements of Colloidal Particles by Simultaneous Static and Dynamic Light Scattering. *Langmuir*, 12(23), 5541-5549.
- Huh, C. and Rossen, W. (2008). Approximate Pore-Level Modeling for Apparent Viscosity of Polymer-Enhanced Foam in Porous Media. SPE Journal, 13(1), 17-25.
- Hunter, T. (2008). Behaviour of Aqueous Foam Stabilised by Nanosilica and Non-Ionic Surfactant. *Chemeca 2008: Towards a Sustainable Australasia*, 1694.
- Hunter, T. N., Wanless, E. J., Jameson, G. J. and Pugh, R. J. (2009). Non-Ionic Surfactant Interactions with Hydrophobic Nanoparticles: Impact on Foam Stability. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 347(1), 81-89.

- Jamaloei, B. Y. and Kharrat, R. (2011). The Influence of Pore Geometry on Flow Instability and Pore-Scale Displacement Mechanisms of Dilute Surfactant Flooding in Mixed-Wet Porous Media. *Journal of Porous Media*, 14(2).
- Jensen, J. and Friedmann, F. (1987). Physical and Chemical Effects of an Oil Phase on the Propagation of Foam in Porous Media. *Proceedings of the SPE California Regional Meeting*, April 8-10, Ventura, California. Society of Petroleum Engineers. SPE-16375-MS.
- Jiménez, A. and Radke, C. (1989). Dynamic Stability of Foam Lamellae Flowing through a Periodically Constricted Pore. Oil-Field Chemistry: Enhanced Recovery and Production Stimulation, 396.
- Joshi, T., Mata, J. and Bahadur, P. (2005). Micellization and Interaction of Anionic and Nonionic Mixed Surfactant Systems in Water. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 260(1), 209-215.
- Kam, S. I. and Rossen, W. (2003). A Model for Foam Generation in Homogeneous Media. SPE Journal, 8(04), 417-425.
- Karadimitriou, N. and Hassanizadeh, S. (2012). A Review of Micromodels and Their Use in Two-Phase Flow Studies. *Vadose Zone Journal*, 11(3).
- Karakashev, S. I. and Manev, E. D. (2003). Correlation in the Properties of Aqueous Single Films and Foam Containing a Nonionic Surfactant and Organic/Inorganic Electrolytes. *Journal of colloid and interface science*, 259(1), 171-179.
- Karakashev, S. I., Ozdemir, O., Hampton, M. A. and Nguyen, A. V. (2011). Formation and Stability of Foams Stabilized by Fine Particles with Similar Size, Contact Angle and Different Shapes. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 382(1), 132-138.
- Khalil, F. and Asghari, K. (2006). Application of Co-Foam as a Means of Reducing Carbon Dioxide Mobility. *Journal of Canadian petroleum technology*, 45(5).
- Kim, I., Taghavy, A., Dicarlo, D. and Huh, C. (2015). Aggregation of Silica Nanoparticles and Its Impact on Particle Mobility under High-Salinity Conditions. *Journal of Petroleum Science and Engineering*, 133, 376-383.
- Koczo, K., Lobo, L. and Wasan, D. (1992). Effect of Oil on Foam Stability: Aqueous Foams Stabilized by Emulsions. *Journal of colloid and interface science*, 150(2), 492-506.

- Kovscek, A. and Bertin, H. (2002). Estimation of Foam Mobility in Heterogeneous Porous Media. *Proceedings of the SPE/DOE Improved Oil Recovery Symposium*, April 13-17, Tulsa, Oklahoma. Society of Petroleum Engineers. SPE-75181-MS.
- Kovscek, A. and Radke, C. (1994). Fundamentals of Foam Transport in Porous Media. ACS Advances in Chemistry Series, 242, 115-164.
- Kovscek, A. R., Chen, Q. and Gerritsen, M. (2010). Modeling Foam Displacement with the Local-Equilibrium Approximation: Theory and Experimental Verification. *SPE Journal*, 15(01), 171-183.
- Kristiansen, T. and Holt, T. (1992). Properties of Flowing Foam in Porous Media Containing Oil. Proceedings of the SPE/DOE Enhanced Oil Recovery Symposium. April 22-24, Tulsa, Oklahoma, USA. Society of Petroleum Engineers, 1-9. SPE-24182-MS
- Krzan, M., Caps, H. and Vandewalle, N. (2013). High Stability of the Bovine Serum Albumine Foams Evidenced in Hele–Shaw Cell. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 438, 112-118.
- Kulkarni, M. M. and Rao, D. N. (2005). Experimental Investigation of Miscible Secondary Gas Injection. *Proceedings of SPE Annual Technical Conference* and Exhibition, October 9-12, Dallas, Texas. Society of Petroleum Engineers. SPE-95975-MS
- Kutay, S. and Schramm, L. (2004). Structure/Performance Relationships for Surfactant and Polymer Stabilized Foams in Porous Media. *Journal of Canadian Petroleum Technology*, 43(2).
- Kutay, S. M. (2000). *The Physical and Rheological Properties of Polymer-Thickened Foams in Bulk and in Porous Media*. PhD Thesis, University of Calgary.
- Lake, L. W. (1989). Enhanced Oil Recovery Englewood Cliffs, New Jersey: Prentice-Hall.
- Lan, Q., Yang, F., Zhang, S., Liu, S., Xu, J. and Sun, D. (2007). Synergistic Effect of Silica Nanoparticle and Cetyltrimethyl Ammonium Bromide on the Stabilization of O/W Emulsions. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 302(1), 126-135.
- Lee, Y. S. and Wagner, N. J. (2003). Dynamic Properties of Shear Thickening Colloidal Suspensions. *Rheologica Acta*, 42(3), 199-208.

- Lescure, B. and Claridge, E. (1986). CO₂ Foam Flooding Performance Vs. Rock Wettability. *Proceedings of the SPE Annual Technical Conference and Exhibition*, October 5-8, New Orleans, LA, Society of Petroleum Engineers. SPE-15445-MS.
- Lewis, Edward (2008). *Sweep Efficiency in Miscible Enhanced Oil Recovery Processes.* PhD Thesis, University of Houston.
- Li, B., Hirasaki, G. J. and Miller, C. A. (2006). Upscaling of Foam Mobility Control to Three Dimensions. Society of Petroleum Engineers. *Proceedings of SPE/DOE Symposium on Improved Oil Recovery*, April 22-26, Tulsa, Oklahoma, USA, Society of Petroleum Engineers 1-19. SPE-99719-MS.
- Li, R., Yan, W., Liu, S., Hirasaki, G. and Miller, C. (2008). Foam Mobility Control for Surfactant EOR. *Proceedings of SPE/DOE Symposium on Improved Oil Recovery*, April 20-23, Tulsa, Oklahoma, USA. Society of Petroleum Engineers, 19-23. SPE 113910.
- Li, R., Yan, W., Liu, S., Hirasaki, G. and Miller, C. (2010). Foam Mobility Control for Surfactant Enhanced Oil Recovery. *SPE Journal*, 15(4), 928-942.
- Li, R. F. (2011). Study of Foam Mobility Control in Surfactant Enhanced Oil Recovery Processes in 1-D, Heterogeneous 2-D, and Micro Model Systems. Doctoral dissertation, RICE University, Houston, Texas. Available from proQuest [Accessed 22 May 2014].
- Li, R. F., Hirasaki, G., Miller, C. A. and Masalmeh, S. K. (2012a). Wettability Alteration and Foam Mobility Control in a Layered 2D Heterogeneous Sandpack. *SPE Journal*, 17(04), 1,207-1,220.
- Li, S., Li, Z. and Wang, P. (2016). Experimental Study of the Stabilization of CO₂
 Foam by Sodium Dodecyl Sulfate and Hydrophobic Nanoparticles. *Industrial* & Engineering Chemistry Research, 55(5), 1243-1253.
- Li, Z., Liu, Z., Li, B., Li, S., Sun, Q. and Wang, S. (2012b). Aqueous Foams Stabilized with Particles and Surfactants. *Proceedings of SPE Saudi Arabia Section Technical Symposium and Exhibition*, 8-11 April, Al-Khobar, Saudi Arabia. Society of Petroleum Engineers. SPE-160840-MS.

- Liu, M., Andrianov, A. and Rossen, W. R. (2011). Sweep Efficiency in CO₂ Foam Simulations with Oil. *Proceedings of the EUROPEC/EAGE Annual Conference and Exhibition*, May 23-26, Vienna, Austria, Society of Petroleum Engineers, 1-18. SPE 142999.
- Liu, Y., Grigg, R. B. and Bai, B. (2005). Salinity PH and Surfactant Concentration Effects on CO₂-Foam. *Proceedings of SPE International Symposium on Oilfield Chemistry*, February, 2-4. The Woodlands, Texas. Society of Petroleum Engineers. SPE 93095.
- Lv, M. M., Wang, S. Z., Jing, Z. F. and Luo, M. (2013). Studies on Foam Flow in the Porous Media in the Last Decade: A Review. Advanced Materials Research, 616, 257-262.
- Lv, W., Bazin, B., Ma, D., Liu, Q., Han, D. and Wu, K. (2011). Static and Dynamic Adsorption of Anionic and Amphoteric Surfactants with and without the Presence of Alkali. *Journal of Petroleum Science and Engineering*, 77(2), 209-218.
- Ma, K. (2013). Transport of Surfactant and Foam in Porous Media for Enhanced Oil Recovery Processes. PhD Dissertation, RICE University. http://hdl.handle.net/1911/71996.
- Ma, K., Liontas, R., Conn, C. A., Hirasaki, G. J. and Biswal, S. L. (2012). Visualization of Improved Sweep with Foam in Heterogeneous Porous Media Using Microfluidics. *Soft Matter*, 8(41), 10669-10675.
- Manlowe, D. and Radke, C. (1990). A Pore-Level Investigation of Foam/Oil Interactions in Porous Media. *SPE Reservoir Engineering*, 5(4), 495-502.
- Mannhardt, K. (1999). Core Flood Evaluation of Solvent Compositional and Wettability Effects on Hydrocarbon Solvent Foam Performance. *Journal of Canadian Petroleum Technology*, 38(13).
- Mannhardt, K., Novosad, J. and Schramm, L. (1998). Foam/Oil Interations at Reservoir Conditions. *Proceedings of the SPE/DOE Improved Oil Recovery Symposium*, April 19-22, Tulsa, Oklahoma. Society of Petroleum Engineers, 287-300. SPE-39681-MS.

- Mannhardt, K., Novosad, J. and Schramm, L. (2000). Comparative Evaluation of Foam Stability to Oil. *SPE Reservoir Evaluation & Engineering*, 3(1), 23-34.
- Mannhardt, K., Schramm, L. and Novosad, J. (1993). Effect of Rock Type and Brine Composition on Adsorption of Two Foam-Forming Surfactants. SPE Advanced Technology Series, 1(01), 212-218.
- Mast, R. F. (1972). Microscopic Behavior of Foam in Porous Media. Proceedings of the Fall Meeting of the Society of Petroleum Engineers of AIME, October 8-11, San Antonio, Texas. Society of Petroleum Engineers. SPE-3997-MS.
- Meybodi, H. E., Kharrat, R. and Wang, X. (2011). Study of Microscopic and Macroscopic Displacement Behaviors of Polymer Solution in Water-Wet and Oil-Wet Media. *Transport in porous media*, 89(1), 97-120.
- Mo, D., Jia, B., Yu, J., Liu, N. and Lee, R. (2014). Study of Nanoparticle-Stabilized CO₂ Foam for Oil Recovery at Different Pressure, Temperature, and Rock Samples. *Proceedings of the SPE Improved Oil Recovery Symposium*, April 12-16, Tulsa, Oklahoma, USA. Society of Petroleum Engineers. SPE-169110-MS.
- Mo, D., Yu, J., Liu, N. and Lee, R. L. (2012). Study of the Effect of Different Factors on Nanoparticle-Stablized CO₂ Foam for Mobility Control. *Proceedings of the SPE Annual Technical Conference and Exhibition*. October 8-10, San Antonio, Texas, USA. Society of Petroleum Engineers. SPE-159282-MS
- Mo, D., Yu, J., Liu, N. and Lee, R. L. (2013). The Application of Nanoparticle-Stabilized CO₂ Foam for Oil Recovery. *Proceedings of SPE International Symposium on Oilfield Chemistry* April, 8-10, The Woodlands, Texas, USA. Society of Petroleum Engineers. SPE-164074-MS.
- Mohd, T., Shukor, M., Ghazali, N., Alias, N., Yahya, E., Azizi, A., Shahruddin, M. and Ramlee, N. (2014). Relationship between Foamability and Nanoparticle Concentration of Carbon Dioxide (CO₂) Foam for Enhanced Oil Recovery (EOR). *Applied Mechanics and Materials, Trans Tech Publ*, 67-71.
- Morrow, N. R. (1990). Wettability and Its Effect on Oil Recovery. J. Pet. Technol, 42(12), 1476-1484.
- Muherei, M. A. and Junin, R. (2007). Effect of Electrolyte on Synergism of Anionic-Nonionic Surfactant Mixture. *Journal of Applied Sciences*, **7**, 1362-1371.

- Muherei, M. A. and Junin, R. (2009). Investigating Synergism in Critical Micelle Concentration of Anionic-Nonionic Surfactant Mixtures before and after Equilibration with Shale. *J Appl Sci Res*, 5(2), 181-189.
- Muherei, M. A., Junin, R. and Bin Merdhah, A. B. (2009). Adsorption of Sodium Dodecyl Sulfate, Triton X100 and Their Mixtures to Shale and Sandstone: A Comparative Study. *Journal of Petroleum Science and Engineering*, 67(3), 149-154.
- Murray, B. S. and Ettelaie, R. (2004). Foam Stability: Proteins and Nanoparticles. *Current Opinion in Colloid & Interface Science*, 9(5), 314-320.
- Nguyen, P. T., Hampton, M. A., Nguyen, A. V. and Birkett, G. (2010). The Influence of Gas Velocity, Salt Type and Concentration on Bubble Coalescence.
- Nguyen, Q., Alexandrov, A. and Zitha, P. (2000). Experimental and Modeling Studies on Foam in Porous Media: A Review. *Proceedings of the SPE International Symposium on Formation Damage Control*, February 23–24, Lafayette, Louisiana. Society of Petroleum Engineers. SPE 58799
- Nguyen, Q. P., Currie, P. K., Buijse, M. and Zitha, P. L. (2007). Mapping of Foam Mobility in Porous Media. *Journal of Petroleum Science and Engineering*, 58(1), 119-132.
- Nguyen, Q. P., Rossen, W. R., Zitha, P. L. and Currie, P. K. (2009). Determination of Gas Trapping with Foam Using X-Ray Computed Tomography and Effluent Analysis. *SPE Journal*, 14(02), 222-236.
- Nonnekes, L. E., Cos, S. and Rossen, W. R. (2012). Effect of Gas Diffusion on Mobility of Foam for EOR. *Proceedings of SPE Annual Technical Conference* and Exhibition. October 8-10, San Antonio, Texas, USA. Society of Petroleum Engineers. SPE-159817-MS.
- Oil & Gas Journal (2010). Oil and Gas EOR Survey, Oil & Gas Journal, 108(36).
- Osei-Bonsu, K., Shokri, N. and Grassia, P. (2015). Foam Stability in the Presence and Absence of Hydrocarbons: From Bubble-to Bulk-Scale. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 481, 514-526.
- Osei-Bonsu, K., Shokri, N. and Grassia, P. (2016). Fundamental Investigation of Foam Flow in a Liquid-Filled Hele-Shaw Cell. *Journal of colloid and interface science*, 462, 288-296.

- Owete, O. S. and Brigham, W. E. (1987). Flow Behavior of Foam: A Porous Micromodel Study. *SPE Reservoir Engineering*, 2(03), 315-323.
- Pandey, S., Bagwe, R. P. and Shah, D. O. (2003). Effect of Counterions on Surface and Foaming Properties of Dodecyl Sulfate. *Journal of colloid and interface science*, 267(1), 160-166.
- Patzek, T. W. (1996). Field Applications of Steam Foam for Mobility Improvement and Profile Control. *SPE Reservoir Engineering*, 11(02), 79-86.
- Paul, K. T., Satpathy, S., Manna, I., Chakraborty, K. and Nando, G. (2007).
 Preparation and Characterization of Nano Structured Materials from Fly Ash:
 A Waste from Thermal Power Stations, by High Energy Ball Milling.
 Nanoscale Research Letters, 2(8), 397-404.
- Payatakes, A. (1982). Dynamics of Oil Ganglia During Immiscible Displacement in Water-Wet Porous Media. *Annual Review of Fluid Mechanics*, 14(1), 365-393.
- Permadi, A. K., Efriza, I., Bae, W., Muslim, M., Pham, T. H., Saputra, D. D. and Gunadi, T. A. (2013). Optimisation of Surfactant Concentration to the Foam Generation and Swelling Ratio of CO₂ Foam Flooding in Light Oil Reservoir. *Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition*, October 22-24, Jakarta, Indonesia. Society of Petroleum Engineers. SPE-165877-MS.
- Rafati, R., Hamidi, H., Idris, A. K. and Manan, M. A. (2012). Application of Sustainable Foaming Agents to Control the Mobility of Carbon Dioxide in Enhanced Oil Recovery. *Egyptian Journal of Petroleum*, 21(2), 155-163.
- Ransohoff, T. and Radke, C. (1988). Laminar Flow of a Wetting Liquid Along the Corners of a Predominantly Gas-Occupied Noncircular Pore. *Journal of Colloid and Interface Science*, 121(2), 392-401.
- Rao, D. (2001). Gas Injection Eor-a New Meaning in the New Millennium. *Journal of Canadian Petroleum Technology*, 40(2).
- Rojas, Y., Kakadjian, S. and Aponte, A. (2001). Stability and Rheological behavior of Aqueous Foams for Underbalanced Drilling. *Proceedings of the SPE International Symposium on Oilfield Chemistry*, February 13-16, Houston, Texas. SPE 64999.

- Romero-Zeron, L. and Kantzas, A. (2006). Influence of Wettability on Foamed Gel Mobility Control Performance in Unconsolidated Porous Media. *Journal of Canadian Petroleum Technology*, 45(2).
- Romero-Zerón, L., Ongsurakul, S., Li, L. and Balcom, B. (2010). Visualization of the Effect of Porous Media Wettability on Polymer Flooding Performance through Unconsolidated Porous Media Using Magnetic Resonance Imaging. *Petroleum Science and Technology*, 28(1), 52-67.
- Romero-Zeron, L. B. (2004). The Role of Porous Media Wettability on Foamed Gel Propagation and Fluid Diverting Performance. PhD Thesis, University of Calgary. Canada.
- Romero-Zeron, L. B. and Kantzas, A. (2007). The Effect of Wettability and Pore Geometry on Foamed-Gel-Blockage Performance. SPE Reservoir Evaluation & Engineering, 10(02), 150-163.
- Romero, C., Alvarez, J. M. and Müller, A.J. (2002). Micromodel Studies of Polymer-Enhanced Foam Flow through Porous Media. *Proceedings of SPE/DOE Improved Oil Recovery Symposium*, April 13-17, Tulsa, Oklahoma. SPE-75179-MS.
- Romero, L. and Kantzas, A. (2004). The Effect of Wettability and Pore Geometry on Foamed Gel Blockage Performance in Gas and Water Producing Zones. *Proceedings of the SPE/DOE Symposium on Improved Oil Recovery*, April 17-21, Tulsa, Oklahoma, U.S.A. SPE-89388-MS.
- Roof, J. (1970). Snap-Off of Oil Droplets in Water-Wet Pores. Society of Petroleum Engineers Journal, 10(01), 85-90.
- Rossen, W. R. (1996). Foams in Enhanced Oil Recovery. Surfactant Science Series, 413-464.
- Rossen, W. R. (2003). A Critical Review of Roof Snap-Off as a Mechanism of Steady-State Foam Generation in Homogeneous Porous Media. *Colloids and Surfaces* A: Physicochemical and Engineering Aspects, 225(1), 1-24.
- Rossen, W. R. (2008). Comment on "Verification of Roof Snap-Off as a Foam-Generation Mechanism in Porous Media at Steady State". *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 322(1), 261-269.

- Rossen, W. R., Van Duijn, C., Nguyen, Q. P., Shen, C. and Vikingstad, A. K. (2010). Injection Strategies to Overcome Gravity Segregation in Simultaneous Gas and Water Injection into Homogeneous Reservoirs. SPE Journal, 15(01), 76-90.
- Sagar, N. S. and Castanier, L. M. (1997). *Oil-Foam Interactions in a Micromodel*. PhD Thesis, Stanford University.
- Sagir, M., Tan, I. M., Mushtaq, M., Dass, S. C., Guan, B. H., Bhat, A. H., Faye, I., Soleimani, H. and Yahya, N. (2014). CO₂ Philic Surfactant as Possible Mobility Control Agent in EOR Applications. *AIP Conference Proceedings*. AIP, 699-704.
- Saint-Jalmes, A. (2006). Physical Chemistry in Foam Drainage and Coarsening. *Soft Matter*, 2(10), 836-849.
- San, J., Wang, S., Yu, J., Liu, N. and Lee, R. (2017). Nanoparticle-Stabilized Carbon Dioxide Foam Used in Enhanced Oil Recovery: Effect of Different Ions and Temperatures. SPE Journal.
- Sánchez-Martín, M., Dorado, M., Del Hoyo, C. and Rodríguez-Cruz, M. (2008). Influence of Clay Mineral Structure and Surfactant Nature on the Adsorption Capacity of Surfactants by Clays. *Journal of Hazardous Materials*, 150(1), 115-123.
- Sanchez, J. and Hazlett, R. (1992). Foam Flow through an Oil-Wet Porous Medium: A Laboratory Study. *SPE reservoir engineering*, 7(1), 91-97.
- Sandnes, B., Knudsen, H., Måløy, K. and Flekkøy, E. (2007). Labyrinth Patterns in Confined Granular-Fluid Systems. *Physical review letters*, 99(3), 038001.
- Sastry, N., Sequaris, J.-M. and Schwuger, M. (1995). Adsorption of Polyacrylic Acid and Sodium Dodecylbenzenesulfonate on Kaolinite. *Journal of colloid and interface science*, 171(1), 224-233.
- Sayegh, S. and Fisher, D. (2009). Enhanced Oil Recovery by CO₂ Flooding in Homogeneous and Heterogeneous 2D Micromodels. *Journal of Canadian Petroleum Technology*, 48(8), 30-36.
- Schramm, L., Turta, A. and Novosad, J. (1993). Microvisual and Coreflood Studies of Foam Interactions with a Light Crude Oil. SPE reservoir engineering, 8(3), 201-206.
- Schramm, L. L. (1994). Foams: Fundamentals and Applications in the Petroleum Industry. American Chemical Society Washington, DC.

- Schramm, L. L. and Mannhardt, K. (1996). The Effect of Wettability on Foam Sensitivity to Crude Oil in Porous Media. *Journal of Petroleum Science and Engineering*, 15(1), 101-113.
- Schramm, L. L. and Novosad, J. J. (1990). Micro-Visualization of Foam Interactions with a Crude Oil. *Colloids and Surfaces*, 46(1), 21-43.
- Schramm, L. L. and Wassmuth, F. (1994). Foams: Basic Principles. Advances in Chemistry Series, 242, 3-3.
- Shan, D. and Rossen, W. R. (2004). Optimal injection strategies for foam IOR. *SPE Journal*, 9(02), 132-150.
- Shokrollahi, A., Arabloo, M., Gharagheizi, F. and Mohammadi, A. H. (2013). Intelligent Model for Prediction of CO₂–Reservoir Oil Minimum Miscibility Pressure. *Fuel*, 112, 375-384.
- Simjoo, M. (2012). Immiscible foam for enhancing oil recovery. Doctoral dissertation, TU Delft. Delft University of Technology.
- Simjoo, M., Dong, Y., Andrianov, A., Talanana, M. and Zitha, P. (2013a). CT Scan Study of Immiscible Foam Flow in Porous Media for Enhancing Oil Recovery. *Industrial & Engineering Chemistry Research*, 52(18), 6221-6233.
- Simjoo, M., Rezaei, T., Andrianov, A. and Zitha, P. (2013b). Foam Stability in the Presence of Oil: Effect of Surfactant Concentration and Oil Type. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 438, 148-158.
- Simjoo, M. and Zitha, P. (2013). Effects of Oil on Foam Generation and Propagation in Sandstone Porous Media. IOR -From Fundamental Science to Deployment.17th European Symposium on Improved Oil Recovery. Http://www.earthdoc.org/publication/search/?pubedition=342 [Accessed May 04 2013)
- Singh, R. and Mohanty, K. K. (2014a). Foams Stabilized by in-Situ Surface Activated Nanoparticles in Bulk and Porous Media. *Proceedings of the SPE Annual Technical Conference and Exhibition*, October 27-29, Amsterdam, The Netherlands. Society of Petroleum Engineers. SPE-170942-MS.
- Singh, R. and Mohanty, K. K. (2014b). Synergistic Stabilization of Foams by a Mixture of Nanoparticles and Surfactants. *Proceedings of the SPE Improved Oil Recovery Symposium*, April 12-14, Tulsa, Oklahoma, USA. Society of Petroleum Engineers, 1-13. SPE-169126-MS.

- Singh, R. and Mohanty, K. K. (2015). Synergy between Nanoparticles and Surfactants in Stabilizing Foams for Oil Recovery. *Energy & Fuels*, 29(2), 467-479.
- Skauge, A., Aarra, M., Surguchev, L., Martinsen, H. and Rasmussen, L. (2002). Foam-Assisted Wag: Experience from the Snorre Field. *Proceedings of the 2002* SPE/DOE Improved Oil Recovery Symposium, April 13-17, Tulsa, Oklahoma, USA. Society of Petroleum Engineers, 1-11. SPE-75157-MS.
- Sohrabi, M. and Farzaneh, S. A. (2013). A Review of the Status of Foam Application in Enhanced Oil Recovery. *Proceedings of the 75th EAGE Conference & Exhibition incorporating SPE EUROPEC*, June 10-13, London, United Kingdom. Society of Petroleum Engineers, 1-14. SPE-164917-MS.
- Sohrabi, M., Tehrani, D., Danesh, A. and Henderson, G. (2001). Visualisation of Oil Recovery by Water Alternating Gas (WAG) Injection Using High Pressure Micromodels-Oil-Wet & Mixed-Wet Systems. *Proceedings of SPE Annual Technical Conference and Exhibition*, September 30-October 3, New Orleans, Louisina, USA. SPE-71494-MS.
- Solbakken, J. S., Skauge, A. and Aarra, M. G. (2014). Foam Performance in Low Permeability Laminated Sandstones. *Energy & Fuels*, 28(2), 803-815.
- Stevenson, P. (2010). Inter-Bubble Gas Diffusion in Liquid Foam. Current Opinion in Colloid & Interface Science, 15(5), 374-381.
- Suffridge, F., Raterman, K. and Russell, G. (1989). Foam Performance under Reservoir Conditions. *Proceedings of the SPE Annual Technical Conference* and Exhibition, October 8-11, San Antonio, Texas. Society of Petroleum Engineers, 1-12. SPE-19691-MS.
- Suleimanov, B., Ismailov, F. and Veliyev, E. (2011). Nanofluid for Enhanced Oil Recovery. *Journal of Petroleum Science and Engineering*, 78(2), 431-437.
- Sun, Q., Li, Z., Li, S., Jiang, L., Wang, J. and Wang, P. (2014). Utilization of Surfactant-Stabilized Foam for Enhanced Oil Recovery by Adding Nanoparticles. *Energy & Fuels*, 28(4), 2384-2394.
- Talebian, S. H., Rahim Masoudi, P., Tan, I. M. and Zitha, P. L. (2013). Foam Assisted CO₂-EOR; Concepts, Challenges and Applications. *Proceedings of the 2013* SPE Enhanced Oil Recovery Conference, July 2-4, Kuala Lumpur, Malaysia. Society of Petroleum Engineers, SPE-165280-MS.

- Tang, F.-Q., Xiao, Z., Tang, J.-A. and Jiang, L. (1989). The Effect of SiO₂ Particles Upon Stabilization of Foam. *Journal of colloid and interface science*, 131(2), 498-502.
- Tanzil, D. (2001). Foam Generation and Propagation in Heterogeneous Porous Media. PhD Thesis, Rice University, Houston Texas.
- Teerakijpaiboon, K. and Srisuriyachai, F. (2013). The Effect of Foam Stability in CO₂-Foam Flooding. Proceedings of the 2013 ASEAN Forum on Clean Coal Technology: 11th International Conference on Mining, Materials and Petroleum Engineering. November 11-13. Chiang Mai, Thailand.
- Totland, C., Lewis, R. T. and Nerdal, W. (2011). 1 H Nmr Relaxation of Water: A Probe for Surfactant Adsorption on Kaolin. *Journal of colloid and interface science*, 363(1), 362-370.
- Vassenden, F., Holt, T., Moen, A. and Ghaderi, A. (2000). Foam Propagation in the Absence and Presence of Oil. *Proceedings of the SPE/DOE Improved Oil Recovery Symposium*, April 3-5, Tulsa, Oklahoma. Society of Petroleum Society 1-9. SPE-59284-MS.
- Viet, Q. and Quoc, P. (2008). A Novel Foam Concept with CO₂ Dissolved Surfactants. *Proceedings of the SPE Symposium on Improved Oil Recovery*, April, 20-23, Tulsa, Oklahoma. Society of Petroleum Engineers 19-23. SPE 113370.
- Vikingstad, A. K. (2006). *Static and Dynamic Studies of Foam and Foam-Oil Interactions.* PhD Thesis, The University of Bergen.
- Vikingstad, A. K. and Aarra, M. G. (2009). Comparing the Static and Dynamic Foam Properties of a Fluorinated and an Alpha Olefin Sulfonate Surfactant. *Journal* of Petroleum Science and Engineering, 65(1), 105-111.
- Vikingstad, A. K., Skauge, A., Høiland, H. and Aarra, M. (2005). Foam–Oil Interactions Analyzed by Static Foam Tests. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 260(1), 189-198.
- Wang, D.-M., Han, D.-K., Xu, G.-L. and Li, Y. (2008a). Influence of Partially Hydrolyzed Polyacrylamide on the Foam Capability of A-Olefin Sulfonate Surfactant. *Petroleum Exploration and Development*, 35(3), 335-338.
- Wang, D., Hou, Q., Luo, Y., Zhu, Y. and Fan, H. (2015). Stability Comparison between Particles-Stabilized Foams and Polymer-Stabilized Foams. *Journal of Dispersion Science and Technology*, 36(2), 268-273.

- Wang, H. and Chen, J. (2013). A Study on the Permeability and Flow Behavior of Surfactant Foam in Unconsolidated Media. *Environmental earth sciences*, 68(2), 567-576.
- Wang, H., Gong, Y., Lu, W. and Chen, B. (2008b). Influence of Nano-SiO₂ on Dilational Viscoelasticity of Liquid/Air Interface of Cetyltrimethyl Ammonium Bromide. *Applied Surface Science*, 254(11), 3380-3384.
- Wang, S. and Mulligan, C. N. (2004). An Evaluation of Surfactant Foam Technology in Remediation of Contaminated Soil. *Chemosphere*, 57(9), 1079-1089.
- Wellington, S. and Vinegar, H. (1985). CT Studies of Surfactant-Induced CO₂ Mobility Control. *Proceedings of the SPE Annual Technical Conference and Exhibition*, September 22-26, Las Vegas, Nevada. Society of Petroleum Engineers 1-12. SPE-14393-MS.
- Worthen, A., Bagaria, H., Chen, Y., Bryant, S. L., Huh, C. and Johnston, K. P. (2012).
 Nanoparticle Stabilized Carbon Dioxide in Water Foams for Enhanced Oil Recovery.*Proceedings of the SPE Improved Oil Recovery Symposium*, April 14-18, Tulsa, Okhlaoma, USA. Society of Petroleum Engineers. SPE-154285-MS.
- Worthen, A., Hariz, T., Huh, C., Aroonsri, A., Johnston, K. and Bryant, S. (2013a).
 Conditions for Generating Nanoparticle-Stabilized CO₂ Foams in Fracture and Matrix Flow. *Proceedings of the SPE Annual Technical Conference and Exhibition*, September 30-October 2, New Orleans, Louisina, USA. Society of Petroleum Engineers 1-12. SPE-166319-MS
- Worthen, A. J., Bagaria, H. G., Chen, Y., Bryant, S. L., Huh, C. and Johnston, K. P. (2013b). Nanoparticle-Stabilized Carbon Dioxide-in-Water Foams with Fine Texture. *Journal of colloid and interface science*, 391, 142-151.
- Worthen, A. J., Bryant, S. L., Huh, C. and Johnston, K. P. (2013c). Carbon Dioxidein-Water Foams Stabilized with Nanoparticles and Surfactant Acting in Synergy. AIChE Journal, 59(9), 3490-3501.
- Xing, D. (2012). CO₂ Mobility Control Using Direct Thickeners and Foaming Agents. PhD thesis, University of Pittsburgh http://d-scholarship. pitt.edu/id/eprint/16592.

- Xu, Q., Nakajima, M., Ichikawa, S., Nakamura, N., Roy, P., Okadome, H. and Shiina, T. (2009). Effects of Surfactant and Electrolyte Concentrations on Bubble Formation and Stabilization. *Journal of colloid and interface science*, 332(1), 208-214.
- Xu, Q., Vasudevan, T. and Somasundaran, P. (1991). Adsorption of Anionic— Nonionic and Cationic—Nonionic Surfactant Mixtures on Kaolinite. *Journal* of colloid and interface science, 142(2), 528-534.
- Yan, W., Miller, C. A. and Hirasaki, G. J. (2006). Foam Sweep in Fractures for Enhanced Oil Recovery. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 282, 348-359.
- Yin, G., Grigg, R. B. and Svec, Y. (2009). Oil Recovery and Surfactant Adsorption During CO₂-Foam Flooding. *Proceedings of the Offshore Technology Conference* May 4-7 Houston, Texas,1-14. OTC-19787-MS.
- Yu, J., An, C., Mo, D., Liu, N. and Lee, R. L. (2012a). Foam Mobility Control for Nanoparticle-Stabilized Supercritical CO₂ Foam. *Proceedings of the 2012* SPE Improved Oil Recovery Symposium. April, 14-18, Tulsa, Oklahoma, USA. Society of Petroleum Engineers, 1-13. SPE 153337-MS.
- Yu, J., An, C., Mo, D., Liu, N. and Lee, R. L. (2012b). Study of Adsorption and Transportation Behavior of Nanoparticles in Three Different Porous Media. Porous Media. *Proceedings of the 2012 SPE Improved Oil Recovery Symposium*, April, 14-18, Tulsa, Oklahoma, USA. 153336-MS.
- Yu, J., Khalil, M., Liu, N. and Lee, R. (2014). Effect of Particle Hydrophobicity on CO₂ Foam Generation and Foam Flow Behavior in Porous Media. *Fuel*, 126, 104-108.
- Yusuf, S., Manan, M. and Jaafar, M. (2013). Aqueous Foams Stabilized by Hydrophilic Silica Nanoparticles Via in-Situ Physisorption of Nonionic TX100 Surfactant. Journal of Energy and Environment. Special Issue on Nanotechnology 4 (1), 8-16.
- Zhang, R. and Somasundaran, P. (2006). Advances in Adsorption of Surfactants and Their Mixtures at Solid/Solution Interfaces. *Advances in colloid and interface science*, 123, 213-229.

- Zhang, S., Lan, Q., Liu, Q., Xu, J. and Sun, D. (2008). Aqueous Foams Stabilized by Laponite and CTAB. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317(1), 406-413.
- Zhang, T., Roberts, M., Bryant, S. and Huh, C. (2009). Foams and Emulsions Stabilized with Nanoparticles for Potential Conformance Control Applications. *Proceedings of the SPE International Symposium on Oilfield Chemistry*, April 20-22, The Woodlands, Texas. Society of Petroleum Engineers 1-17. SPE-121744-MS.
- Zhang, Y., Chang, Z., Luo, W., Gu, S., Li, W. and An, J. (2015). Effect of Starch Particles on Foam Stability and Dilational Viscoelasticity of Aqueous-Foam. *Chinese Journal of Chemical Engineering*, 23(1), 276-280.
- Zhu, T., Ogbe, D. and Khataniar, S. (2004). Improving the Foam Performance for Mobility Control and Improved Sweep Efficiency in Gas Flooding. *Industrial* & engineering chemistry research, 43(15), 4413-4421.