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ABSTRACT 

 

 

 

Nanoparticles and surfactant stabilized foams have versatile applications in 

enhanced oil recovery process. The synergistic advantages of surface tension reduction 

by surfactant and nanoparticles adsorption at the foam lamellae can be exploited for 

producing foam with high foamability and longtime stability in the oil producing 

reservoir. However, the influence of nanoparticles on the static and the dynamic 

stability of conventional foam is not yet explicit due to limited studies. Moreover, only 

few studies have considered the pore-scale mechanisms of the nanoparticles-surfactant 

foams flow process in porous media and the minimization of surfactant adsorption in 

presence of nanoparticles. Due to limited research in this area, this study was 

conducted to understand the influence of silicon dioxide (SiO2) and aluminum oxide 

(Al2O3) nanoparticles on the surfactant foam bulk and dynamic stability and surfactant 

adsorption on clay mineral. Four main experimental studies comprising the influence 

of the nanoparticles on surfactant adsorption on kaolinite, bulk and bubble-scale foam 

stability evaluation in presence of oil and salts, pore-scale visualization studies in 

etched glass micromodels, and fluid diversion process experiments were conducted. 

Results of this study showed that the adsorption of surfactant on clay mineral reduced 

drastically by 40% and 75% in presence of Al2O3 and SiO2 nanoparticles, respectively. 

The maximum adsorption of surfactant on the nanoparticles occurred at 0.3 wt % 

sodium dodecyl sulfate (SDS). The foam bulk and bubble scale stability results 

indicated that 1 wt % of SiO2 and Al2O3 nanoparticles enhanced the stability of the 

foam in presence of oil and salts. There was a transition salt concentration beyond 

which the foam stability increased with increasing salt concentrations. The presence 

of Al2O3 and SiO2 nanoparticles prevented the entering of emulsified oil into the foam 

lamellae and decreased the transition salt concentrations. From the results of the pore 

scale studies, the dominant mechanisms of foam propagation in water-wet system were 

lamellae division and bubble-to-multiple bubble lamellae division. The dominant 

mechanisms of residual oil mobilization and displacement by the foam in water-wet 

media were found to be direct displacement and emulsification of oil. The dominant 

mechanism of foam propagation and residual oil mobilization in oil-wet system was 

identified as the generation of pore spanning continuous gas foam. Inter-bubble 

trapping of oil and water, lamellae detaching and collapsing of SDS-foam were 

observed in presence of oil in both water-wet and oil-wet systems. Generally, the SiO2-

SDS and Al2O3-SDS foams propagated successfully in oil-filled water-wet and oil-wet 

systems. Bubble coalescence was prevented during film stretching. The results of the 

fluid diversion process indicated an effective diversion of fluid in layered macroscopic 

model with permeability ratio of 8:1 in presence of SiO2 and Al2O3  nanoparticles. The 

outcomes of this research is a major breakthrough in prospective field applications of 

nanoparticles-surfactant foams in oil-filled water-wet and oil-wet porous media. 
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ABSTRAK 

 

 

 

 

 

Busa zarah nano dan surfaktan mempunyai aplikasi meluas dalam perolehan 

minyak tertingkat. Kelebihan sinergi melalui penurunan tegangan permukaan oleh 

surfaktan dan jerapan zarah nano di permukaan gelembung boleh menghasilkan busa 

dengan kebolehbusaan yang tinggi dan kestabilan busa yang lebih lama dalam 

menghasilkan takungan minyak. Namun begitu, kesan zarah nano kepada kestabilan 

statik dan dinamik busa belum dapat dieksplisitkan kerana kajian yang terhad. Selain 

itu, tidak banyak kajian yang mempertimbangkan mekanisme skala-liang bagi proses 

aliran busa dalam media liang dan pengurangan penjerapan surfaktan dengan 

kehadiran zarah nano. Oleh kerana penyelidikan yang terhad, kajian ini dijalankan 

untuk menentukan kesan zarah nano silika dioksida (SiO2) dan alumina oksida (Al2O3) 

terhadap kestabilan busa pukal dan penjerapan surfaktan pada mineral lempung. 

Empat eksperimen utama yang dijalankan adalah kesan zarah nano terhadap jerapan 

surfaktan pada kaolinit, penilaian kestabilan busa pukal dan skala-gelembung, dengan 

kehadiran minyak dan garam, kajian pemerhatian skala-liang dalam model mikro gelas 

terukir, dan eksperimen proses lencongan bendalir dijalankan. Hasil kajian ini 

menunjukkan jerapan surfaktan pada mineral lempung berkurang secara mendadak 

sebanyak 40% dan 75% dengan kehadiran zarah nano masing-masing SiO2 dan Al2O3. 

Penjerapan maksimum surfaktan pada zarah nano berlaku pada 0.3 % berat sodium 

dodesil sulfat (SDS). Hasil daripada kestabilan busa pukal dan skala-gelembung 

menunjukkan peningkatan kestabilan busa pada 1% berat zarah nano SiO2 dan Al2O3 

dengan kehadiran minyak dan garam. Terdapat kepekatan garam peralihan yang 

melampaui kestabilan busa yang meningkat dengan peningkatan kepekatan garam. 

Kehadiran nano zarah Al2O3 dan SiO2 menghalang kemasukan minyak yang diemulsi 

ke dalam lamela busa dan menurunkan kepekatan garam peralihan. Daripada hasil 

kajian skala-liang, mekanisme dominan pergerakan busa dalam sistem basah air adalah 

pembahagian lamela dan lamela gelembung-ke-multigelembung. Mekanisme 

dominan untuk pergerakan dan anjakan minyak baki oleh busa dalam sistem basah 

minyak dikenal pasti sebagai pembentukan liang yang merangkumi busa gas secara 

berterusan. Inter-gelembung memerangkap minyak dan air, lamela memisah dan 

meruntuhkan busa SDS yang dicerap dengan kehadiran minyak dalam sistem air-basah 

dan minyak-basah. Secara umum, pergerakan busa SDS-SiO2 dan SDS-Al2O3 baik 

dalam sistem berisi minyak basah air dan minyak basah. Tautan gelembung dihalang 

semasa peregangan filem. Hasil proses lencongan bendalir menunjukkan pelencongan 

bendalir yang berkesan dalam model makro berlapis dengan nisbah ketertelapan 8:1 

dengan kehadiran SiO2 dan Al2O3. Hasil kajian ini merupakan satu kejayaan utama 

dalam aplikasi bidang prospektif busa zarah nano-surfaktan dalam media liang berisi 

minyak basah air dan minyak basah..  
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of Study 

Oil recovery from the petroleum reservoirs can be achieved by primary, 

secondary and tertiary oil recovery methods. Primary and secondary recovery methods 

depending on the reservoir characteristics, can only recover about 30 to 40 % of the 

original oil in place (Xing, 2012). Hence, the remaining oil in the petroleum reservoir 

remains the target of any enhanced oil recovery (EOR) operations such as gas 

injection, chemical injection, microbial enhanced oil recovery and thermal oil 

recovery. During enhanced oil recovery process, there is an improvement in the oil 

displacement and volumetric sweep efficiencies. This can be achieved through 

reduction of oil viscosity, capillary forces, interfacial tension and the development of 

a  favorable mobility ratio between the displacing and the displaced fluid (Simjoo, 

2012). This results in the eventual mobilization and the production of a substantial 

portion of the trapped residual oil in the reservoir at minimum cost (Payatakes, 1982).  

Gas injection with about 39% contributions to world’s EOR (Oil & Gas 

Journal, 2010)  remains one of the most commonly used and generally accepted EOR 

methods. In gas injection, hydrocarbon and non-hydrocarbon gases like methane, air, 

carbon dioxide, natural gas and nitrogen are injected into the reservoirs for the 

recovery of residual oil (Liu et al., 2011). Gas injection can either be miscible or 

an immiscible gas flooding. In miscible gas flooding, the gas is injected either at 
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minimum miscibility pressure (MMP) or beyond. Oil recovery is enhanced by the 

reduction of viscosity and interfacial tension as the injected gas mixes completely with 

the oil. In immiscible flooding, the injected gas does not mix with the reservoir oil. 

Reservoir pressure is maintained as the gas injection takes place below the minimum 

miscibility pressure (MMP) (Shokrollahi et al., 2013). However, any gas enhanced oil 

recovery process suffers from poor macroscopic sweep efficiency because of gas 

higher mobility and lower density compared to oil or water (Rossen et al., 2010). Gas 

segregation, gravity override, viscous fingering and channeling through the high 

permeability streaks are the major challenges of gas injection EOR process (Andrianov 

et al., 2012).  

In order to control the injected gas mobility and improve the poor volumetric 

efficiency during gas injection EOR, injection of gas slugs and water alternatively 

known as water-alternating gas (WAG process) has been used for several decades. The 

synergistic blend of the improved macroscopic sweep of waterflooding and the 

enhanced microscopic displacement efficiency of gas injection is exploited during 

WAG process (Sagir et al., 2014). However, as WAG process continues, large volume 

of oil is considerably trapped by excess production of water that prevents the injected 

gas from contacting the resident oil in the reservoir. Moreover at some distances away 

from the wellbore, the process may lead to a poor gravity segregation control due to 

the large density contrast between the injected gases and the trapped oil (Sohrabi et 

al., 2001). Consequently, vertical sweep efficiency and total oil recovery are 

drastically reduced as the process ultimately suffers from viscous instabilities and 

gravity segregat i on  (Khalil and Asghari, 2006; Farajzadeh et al., 2009).  

Due to the inadequacy of WAG, foam, a dispersion of gas in liquid, such that 

the liquid phase is continuous and some part of the gas phase is made discontinuous 

by a thin liquid film called lamellae (Falls et al., 1988) emerged in 1958 as a promising 

solution for controlling gas mobility. Foam controls gas mobility by increasing the 

apparent viscosity of the displacing fluid and reducing the relative permeability of the 

gas phase. In heterogeneous porous media, foam helps to divert the injected fluid from 

the high permeability regions to the low permeability un-swept areas by lowering the  
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gas mobility in the high permeability zones (Kovscek and Bertin, 2002; Skauge et al., 

2002; Blaker et al., 2002). Results of previous studies show that foams apparent 

viscosities can be up to 1,000 times higher than that of their constituent phases (Zhu 

et al., 2004; Liu et al., 2005). Foam flooding are also more efficient than WAG 

process, waterflooding and gas flooding in reducing viscous fingering and improving 

sweep efficiency (Hirasaki and Lawson, 1985; Liu et al., 2005).  

 

Nevertheless, foams are thermodynamically unstable and require surface active 

agents for their continuous generation and stability. For effective foam applications in 

enhanced oil recovery process, the foam have to remain stable and be able to propagate 

in the reservoir in the presence of resident reservoir brines and oils and at high 

temperatures (Zhu et al., 2004). Stable foams generation has been achieved using 

surfactants, polymer and proteins as the conventional foaming and stabilizing agents 

for several decades (Romero et al., 2002; Murray and Ettelaie, 2004; Romero-Zerón 

et al., 2010). It has been demonstrated experimentally that gaseous bubbles can be 

prevented from coalescing by the adsorption of surfactant, polymers and protein 

molecules at the gas–liquid interface of the foam (Rossen, 1996; Bournival et al., 2014; 

Zhang et al., 2015).  

 However, surfactant-stabilized foams, polymer enhanced foams and protein 

foams are unable to maintain their stability for a long time at reservoir conditions of 

high salinity, temperatures, and in the presence of oil in porous media. This is due to 

their high propensity to degrade and their low adhesion energy at the foam interface. 

Low adhesion of the stabilizing agents at foam lamellae promotes easy desorption and 

rapid film thinning of foam films (Carrier and Colin, 2003; Adkins et al., 2007; 

Fameau and Salonen, 2014). The film thinning increases and the foam becomes drier 

as a result of liquid drainage from the foam films (Fameau and Salonen, 2014). The 

thinning of the foam films eventually results in foam coalescence, that is, the breaking 

of smaller unstable bubbles to form bigger bubbles (Carrier and Colin, 2003; Fameau 

and Salonen, 2014). For surfactant-stabilized foam, the rate of surfactants adsorption 

on rock surfaces can also be very high thereby reducing the amount of surfactant 

molecules available for stabilizing the gas-liquid interface of the foam.  
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Recently, there is an emerging interest in foam stabilized by a mixture of 

nanoparticles and surfactant. The synergistic advantage of interfacial tension and 

capillary forces reduction by the surfactant and nanoparticles adsorption at the foam 

lamellae is exploited for producing foam with high foamability and long time stability 

(Osei-Bonsu et al., 2015). Results of some previous studies showed that nanoparticles-

surfactant foams demonstrated high static and dynamic stability (Hunter, 2008; Cui et 

al., 2010; Sun et al., 2014; Singh and Mohanty, 2015).  This has been attributed to the 

remarkable stability of the foam films due to the irreversible adsorption and 

aggregation of nanoparticles at the thin liquid films of the foam. Nanoparticles as the 

stabilizing components of the foam are solids; therefore, foams stabilized by 

nanoparticles–surfactant mixtures are more resistant to high salinity, temperatures, and 

the presence of resident reservoir brines and oils (Adkins et al., 2007). The rate of 

surfactant adsorption on reservoir rock surfaces and clay minerals is also reduced in 

presence of nanoparticles (Ahmadi and Shadizadeh, 2013).  

1.2 Problem Statement 

The performance of foam also depends on the adsorption properties of the 

foaming agents in presence of resident reservoir brine in porous media. Inorganic salt 

influences the adsorption of surfactant molecules on clay minerals and at gas-liquid 

interface of surfactant-stabilized foam. The higher the adsorption of surfactant on clay 

minerals, the less the available surfactant molecules on the gas-liquid interface of the 

foam. Effects of different parameters on surfactant adsorption from solution onto 

reservoir rocks and clay minerals have been investigated in literatures (Zhang and 

Somasundaran, 2006; Sánchez-Martín et al., 2008; Gogoi, 2009; Muherei et al., 2009; 

Lv et al., 2011; Amirianshoja et al., 2013; Bera et al., 2013). The results show that 

surfactants adsorption increases with increasing adsorbent dose, decreasing 

temperature and NaCl concentration due to their influence on the screening of the 

electrostatic charge (Behera et al., 2014). However, these previous studies focused 

only on surfactant adsorption onto reservoir rocks and clay minerals. There is still 

paucity of information on the influence of electrolyte on the competitive and  
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co-operative adsorption of surfactant and nanoparticles onto reservoir clay. It is 

essential to gather information regarding the effect of salts on the adsorption of these 

foaming/stabilizing agents in order to optimize their performance for foam generation.  

Another major concern for ensuring effective foam application in EOR is the 

stability of foam in the presence of oil. Jensen and Friedmann (1987) discovered from 

their studies that residual oil saturation of 15% and above in the reservoir will 

drastically affect foam propagation and performance. Foam stability in the presence of 

oil depends on aqueous phase composition, type of foaming and/or stabilizing agent, 

and oil type (Osei-Bonsu et al., 2015). Generally, it has been reported from previous 

studies that oil has a destabilizing effect on the static and dynamic stability of foam 

(Vikingstad et al., 2005; Simjoo et al., 2013b; Duan et al., 2014; Osei-Bonsu et al., 

2015; Farzaneh and Sohrabi, 2015). Results of these studies further showed that small-

chain hydrocarbons with lower density and viscosity are more detrimental to the 

longevity of foams than long-chain hydrocarbons.  Although the influence of oil on 

the stability of surfactant-stabilized foam has been widely investigated, few studies on 

the effects of oil on bulk stability of foams stabilized by nanoparticles–surfactant 

mixtures have been carried out. Thus, the role of nanoparticles on the static stability 

of surfactant foam in the presence of oil is yet to be well understood.  

 Porous media wettability is another critical parameter that influence foam 

stability and performance through their influence on fluid distribution and foam flow 

characteristics in porous media (Kulkarni and Rao, 2005; Talebian et al., 2013). 

Results of previous experimental studies suggested divided opinions among 

researchers on the influence of porous media wettability on foam performance in 

porous media. Some researchers reported that the ideal reservoir rock wettability for 

optimum foam performance in porous media is water-wet (Kristiansen and Holt, 1992; 

Rossen, 1996). Others asserted that foam can be generated and propagated in an oil-

wet porous media due to wettability alteration of hydrophobic porous medium to 

hydrophilic porous medium (Sanchez and Hazlett, 1992; Schramm and Mannhardt, 

1996; Mannhardt, 1999). Few other researchers reported optimum foam generation, 

propagation and stability in oil-wet porous media due to lower surfactants adsorption 

in the oil-wet porous medium (Lescure and Claridge, 1986; Haugen et al., 2012; 
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Romero-Zeron and Kantzas, 2007). These results are still contradictory and 

inconclusive and further studies will be required to obtained consistent results.  

Meanwhile, most of the recent studies of nanoparticles-surfactant foams has 

been focused on either the bulk foam stability static experiments or the macroscopic 

studies (Yu et al., 2012a; Worthen et al., 2013c; Singh and Mohanty, 2015; Farhadi et 

al., 2016). The dominant mechanisms controlling the foam generation, propagation 

and stability in porous media especially in the presence of resident reservoir oils and 

brines are largely unknown due to limited studies. Knowledge of nanoparticles-

surfactant foam propagation and stability in porous media at pore scale is vital for 

successful field design, application and implementation of nanoparticles-surfactant 

foam EOR. 

1.3 Objectives of Study  

The aim of this research is to determine the influence of silicon oxide (SiO2) 

and aluminum oxide (Al2O3) nanoparticles on the static and dynamic stability of 

sodium dodecyl sulfate (SDS) foams and to carry out a pore scale mechanistic study 

of the nanoparticles-surfactant stabilized foam flow process in water-wet and oil-wet 

porous media. Thus the specific objectives of this study are as follows: 

I. To evaluate the influence of SiO2 and Al2O3 nanoparticles on the adsorption 

of SDS surfactant by kaolinite  at different salinities  

II. To determine the effect of nanoparticles concentration, salinity and oil 

presence on bulk and bubble scale stability of nanoparticles-surfactant 

foams  

III. To determine the mechanisms of nanoparticles-surfactant foam flow 

process at pore scale in water-wet and oil-wet porous media.  

IV.  To investigate the role of nanoparticles on the process of fluid diversion 

by nanoparticles-surfactant foam in heterogeneous porous media. 
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1.4 Scope and Limitations of Study 

 This research comprises four main experiments which are surfactant 

adsorption experiments using two-phase titration method, bulk and bubble scale 

stability experiments conducted using foam column, dynamic foam analyzer and the 

2D Hele-Shaw cell, pore scale visualization studies in the water-wet and oil-wet etched 

glass micromodels and fluid diversion experiments in unconsolidated visual layered 

glass bead packed macroscopic models. Some preliminary experiments were 

conducted in order to support and explain the observations and the results of the main 

experiments. These includes: surface tension measurements, determination of 

surfactant adsorption extent on the nanoparticles, determination of particle shape and 

wettability, determination of foam apparent viscosity in 2D Hele-Shaw cell, 

determination of foam lamellae thickness and  morphology under the Leica EZ4 HD 

microscope.  

The foam was pre-generated before injection into the porous media in all 

experiments in this study and all experiments were conducted at room temperature and 

pressure. The foam quality is limited to from 50 % to 90 %. The porosity of the etched 

glass micromodels ranges from 29 % to 40 % and the permeability ranges from 0.741 

to 1.359 Darcy. The flowrate of 0.5 ml/hr (0.00833ml/min) was used in the pore scale 

visualization experiments. It was difficult to generate foam at lower flowrate than that 

in this study.  The dead end pores investigation experiments were limited to the water-

wet system. Influence of pore geometry in terms of aspect ratio and coordination 

number on the foam performance was not very significant due to the presence of dead 

end pores.  It was difficult to determine any reasonable oil recovery at the production 

outlet from the diamond shaped micromodels due to its low pore volume (0.47 ml). 

The permeability contrast of the layered model is 8:1 while the porosity ranges from 

30 % to 45 %. The flowrate of fluid diversion experiments could not translate into 2 

ft/day at flow rate of 3ml/min-6ml/min. The contact angle of nanoparticles was 

measured in the absence of oil. Three major salts, NaCl, CaCl2 and AlCl3 were used in 

this research. These salts represent the major monovalent, divalent and trivalent 

cations, and the major anion found in reservoir brines. 
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1.5 Significance of Study 

A micro-scale understanding of influence of nanoparticles on conventional 

foam stability and the displacement behaviours of nanoparticles-surfactant stabilized 

CO2 foam in oil and water-wet porous media has been provided from the results of 

these experiments.  This will provide the basic guidelines for further research, future 

field design and implementation of nanoparticles-surfactant CO2 foam enhanced oil 

recovery (EOR) process. 
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