
iii 

 
 
 
 
 
 

BIODEGRADATION OF ALKANOLAMINES IN BATCH AND PACKED-BED 

REACTORS USING FREE LACCASE AND SOL-GEL LACCASE 

 

 

 

 

 

 

NUR ATIKAH BINTI MOHIDEM 

 

 

 

 

 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of 

Doctor of Philosophy (Chemical Engineering) 

 

 

 

Faculty of Chemical and Energy Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

FEBRUARY 2018 



iii 

DEDICATION 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This thesis is dedicated to Allah swt, prophet Muhammad saw, my beloved 

husband, parents and grandparents 

 



iv 

ACKNOWLEDGEMENT 

 Alhamdulillah. In the name of Allah S.W.T., the Most Gracious and Merciful. 

Peace be upon Muhammad S.A.W., the messenger of Allah S.W.T. May Allah grant 

peace and honour on Him and His family ( ٍد دٍ  وَعَلىَ آلِ  مُحَمَّ  Greatest .(اللَّھُمَّ  صَلِّ  عَلىَ مُحَمَّ

thanks to Almighty Allah S.W.T for His blessing and aid throughout the research. 

First and foremost, my deepest love and high appreciation to my beloved parents Hj 

Mohidem and Hjh Safiah, my beloved grandparents, the late Hj Hassan and Hjh 

Aishah, my beloved husband Suhail, my beloved parents in law Hj Muhammad and 

Hjh Khodizah, my beloved sister Adibah, my beloved aunties Khuzaimah, Haniza, 

Haslina and Asiah and my relatives who have given me endless support and love at 

all times. Thank you so much! 

 
 
 Secondly, I would like to express my deepest gratitude to my supervisor, 

Associate Professor Dr. Hanapi Mat who has given me guidance, encouragement and 

confidence to conduct this research under his supervision. Thank you for your 

willingness to spend time with me in completing this research.  

 
 
 Thirdly, I would like to acknowledge my gratitude to my internal and external 

examiners, Professor Dr Ida Idayu Muhamad and Professor Dr Robiah Yunus for 

their guidance throughout my thesis correction. Your comments for thesis 

improvement were very much appreciated.  

 
 

Not to forget, thank you to all my colleagues who have supported me and 

shared their precious ideas and suggestions in solving my research problems. I would 

like to thank Mada, Nazrah, DrRoket group, Post Graduate Support Group, AMPEN 

group members, Kak Lin, Kak Syura, and Ilah.  

 



v 

I also wish to thank my Head of Department at the Manipal International 

University, Malaysia, Prof Dr Murthy Velury for giving me the opportunity to use 

the campus facilities. Thanks to Prof Dr Syed Nur Azman, Dr Yee, Dr Asrul and 

colleagues at Manipal International University for sharing advice for my PhD thesis 

writing. 

 
 
Last but not least, I am grateful to Universiti Teknologi Malaysia 

(Fundamental Research Grant Scheme) and the Ministry of Higher Education, 

Malaysia for the financial assistance (MyPhd) used towards completing my studies. 

Again, thanks to all of you. With all your help and guidance, I managed to complete 

my Doctor of Philosophy degree successfully and gain optimum benefits.  



vi 

 
 
 
 
 

ABSTRACT 

 
 
 
 

Alkanolamine is commonly used in natural gas processing plant for carbon 
dioxide removal from natural gas. Alkanolamine may incidentally release and 
contaminate the surrounding soil and water due to plant operational failure or 
irresponsible related activities. Thus, the application of laccase for biodegradation of 
alkanolamine, which has not been reported so far, carried out in batch (shake flask) 
and continuous (packed-bed) reactors was investigated. Though, biodegradation 
using laccase may offer many advantages, the free laccase (FL) itself is unstable, 
cannot be reused and poor of thermal and storage stability. The sol-gel laccase 
(SGL), i.e. SOLAC04 was therefore synthesized by manipulating triethylamine 
(TEA) concentration (which was used as a gelating agent), laccase loading (LL), 
agitation conditions (with or without sonication), and experimental procedures (one-
step or two-step) towards obtaining a higher laccase catalytic activity and stability. 
The SOLAC04 synthesized using two-step procedure, TEA (0.1 mL), laccase 
loading, LL (5 mg/mL) and without sonication had the highest laccase catalytic 
activity and stability as compared to other synthesized by SGL samples. This result 
suggested that the entrapment in silica matrix provided an additional framework for 
the preservation of an active laccase conformation at higher temperature and long 
storage duration. The biodegradation of alkanolamines: diethanolamine (DEA), 
ethanolamine and N-methylethanolamine was carried out in batch reactor using both 
FL and SGL; and optimized using response surface methodology. The results 
showed that the biodegradation efficiency (µ) and biodegradation rate of DEA using 
SOLAC04 was higher than other alkanolamines and observed to be higher compared 
to FL. The µ of DEA in batch reactor using FL and SOLAC04, respectively reached 
an optimum value at 50 °C and 40 °C. The µ of DEA increased with increasing 
dosage (Ds) of FL and SOLAC04. It was also revealed that the SOLAC04 are fairly 
stable and can be used many times. The µ of DEA remained constant at almost the 
same level after being reused for 5 times. The biodegradation performance and µ of 
DEA using FL under optimum pH of 5.8, temperature of 45.71°C, Ds of 37.14 mg, 
and reaction time of 42.66 minutes were 84.8 % and 0.077 mg-1, while for SGL 
obtained under the optimum pH of 5, temperature of 41°C, Ds of 34.01 mg, and 
reaction time of 57.59 minutes were 66 % and 1.11 mg-1, respectively. The µ of DEA 
in packed-bed reactor using SOLAC04 was optimum at pH 6, 250 mL/h and 500 
ppm. The µ of DEA increased with increasing Ds of SOLAC04. These experimental 
results demonstrated the advantages gained from entrapment of laccase in silica 
matrix and the biodegradation superiority of the SGL over FL for the removal of 
alkanolamines. Thus, the potential of laccase especially SGL for biodegradation of 
the alkanolamine was finally demonstrated. 
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ABSTRAK 

 
 
 
 

Alkanolamina lazimya digunakan dalam loji pemprosesan gas asli untuk 
penyingkiran karbon dioksida daripada gas asli. Alkanolamina secara tidak sengaja 
boleh terbebas dan mencemarkan tanah dan air yang berada di persekitaran yang 
berpunca daripada kegagalan operasi atau berkaitan kecuaian aktiviti. Oleh yang 
demikian, penggunaan lakase untuk biodegradasi, yang mana belum dilaporkan 
setakat ini telah dilaksanakan dalam reaktor kelompok (kelalang goncang) dan 
reaktor berterusan (turus terpadat). Walaupun biodegradasi menggunakan lakase 
boleh memberikan banyak manfaat, lakase bebas (FL) sendiri tidak stabil, tidak dapat 
diguna semula, dan kurang kestabilan terma dan penyimpanan. Dengan sebab itu, 
lakase sol-gel (SGL) seperti SOLAC04 telah disintesis dengan memanipulasi 
kepekatan trietilamina (TEA) (yang mana digunakan sebagai bahan gelatin), muatan 
lakase (LL), keadaan pengadukan (bersama atau tanpa sonikasi), dan tatacara 
eksperimen (satu langkah atau dua langkah) ke arah mendapatkan peningkatan 
aktiviti bermangkin dan kestabilan. SOLAC04 disintesis menggunakan tatacara dua 
langkah, TEA (0.1 mL), muatan lakase, LL (5 mg/mL) dan tanpa sonikasi 
mempunyai lakase aktiviti bermangkin dan kestabilan paling tinggi jika 
dibandingkan dengan yang disintesis oleh sampel SGL yang lain. Keputusan ini 
menunjukkan bahawa pemerangkapan dalam matriks silika memberikan rangka 
tambahan untuk pemeliharaan bentuk lakase aktif pada suhu yang lebih tinggi dan 
tempoh penyimpanan yang panjang. Biodegradasi alkanolamina: dietanolamina 
(DEA), etanolamina dan N-metiletanolamina telah dijalankan dalam reaktor 
kelompok menggunakan kedua-dua FL dan SGL, dan dioptimumkan menggunakan 
kaedah permukaan tindak balas. Keputusan menunjukkan bahawa kecekapan 
biodegradasi  (µ) dan kadar biodegradasi untuk DEA menggunakan SOLAC04 lebih 
tinggi berbanding dengan alkanolamina lain, dan juga lebih tinggi berbanding dengan 
FL. Nilai µ untuk DEA dalam reaktor kelompok menggunakan FL dan SOLAC04 
masing-masingnya mencapai optimum pada 50 °C dan 40 °C. Manakala nilai µ 
untuk DEA meningkat dengan peningkatan muatan (Ds) untuk FL dan SOLAC04. 
Ianya telah ditunjukkan bahawa SOLAC04 adalah sangat stabil dan boleh digunakan 
berulang kali, iaitu nilai µ untuk DEA kekal malar pada aras hampir sama selepas 
digunakan sebanyak 5 kali. Perolehan biodegradasi dan nilai  µ untuk DEA 
menggunakan FL pada pH optimum 5.8, suhu 45.71°C, Ds 37.14 mg, dan masa 
tindak balas 42.66 minit masing-masing adalah 84.8 % dan 0.077 mg-1, sementara 
untuk SGL yang telah didapati optimum pada pH 5, suhu pada 41°C, Ds 34.01 mg, 
dan masa tindak balas 57.59 minit masing-masing adalah 66 % dan 1.11 mg-1. Nilai 
µ untuk DEA dalam reaktor turus terpadat menggunakan SOLAC04 memiliki tahap 
optimum pada pH 6, 250 mL/h dan 500 ppm. Nilai µ untuk DEA meningkat dengan 
peningkatan Ds untuk SOLAC04. Keputusan eksperimen ini telah membuktikan 
kemanfaatan yang diperolehi daripada pemerangkapan lakase dalam matriks silika 
dan keunggulan SGL berbanding FL bagi penyingkiran alkanolamina. Oleh yang 
demikian, akhirnya potensi lakase terutama SGL untuk biodegradasi  alkanolamina 
telah akhirnya dibuktikan. 



viii 

 
 
 
 
 

TABLE OF CONTENTS 

 
 
 
 
CHAPTER TITLE PAGE 

 

DECLARATION ii  

DEDICATION iii 

ACKNOWLEDGEMENT iv 

ABSTRACT vi 

ABSTRAK vii 

TABLE OF CONTENTS viii 

LIST OF TABLES xii 

LIST OF FIGURES xiv 

LIST OF ABBREVIATIONS xviii 

LIST OF SYMBOLS xix 

LIST OF APPENDICES xxi 

1 INTRODUCTION 1 

1.1 Research Background 1 

1.2 Problem Statement 3 

1.3 Objectives of Research 4 

1.4 Research Scope 5 

        1.5   Novelty Statements                             6 

1.6    Thesis Outline                                7 

1.7    Summary                                   7 

2 LITERATURE REVIEW 8 

2.1 Introduction 8 

2.2 Biodegradation Using Enzymes 8 



ix 

2.2.1 Introduction 8 

2.2.2 Catalytic reaction models 10  

             2.2.3  Enzymatic degradation by laccase              12 

2.3 Enzyme Immobilisation and Stabilization 14 

2.3.1 Enzyme immobilisation 14 

2.3.2 Enzyme immobilisation through entrapment in 
sol-gel silica 21 

2.3.3  Characterization of immobilised enzyme        26 

                  2.3.3.1  Physical properties                 26 

                  2.3.3.2  Chemical properties                27 

                  2.3.3.3  Biological properties               28 

        2.4   Biodegradation of alkanolamines                  35 

             2.4.1  Introduction to alkanolamines               35 

             2.4.2  Biodegradation of alkanolamine  

using oxidoreductase                     35 

             2.4.3  Bioreactors for Biodegradation               40 

2.5 Optimisation 44 

2.5.1 Introduction to optimisation 44 

2.5.2 Optimisation by Response Surface  

 Methodology (RSM) 44 

             2.5.3  Box-Behken Design                        45 

             2.5.4  Statistical design of experiment in  

                  biodegradation  process                    46 

       2.6    Summary                                  48 

3 MATERIALS AND METHODS    49 

3.1 Introduction 49  

3.2 Materials 49 

3.3 Laccase Entrapment in Sol-gel Silica and Its 
Characterisation 51 

3.3.1 Entrapment procedures 51 

3.3.2 Determination of laccase leaching 53 

3.3.3 Laccase  catalytic activity assays 55 



x 

3.3.4 Characterisations of sol-gel laccases (SGLs) 55 

3.4 Biodegradation of Alkanolamine 56 

3.4.1 Biodegradation in in batch reactor 56 

3.4.2 Biodegradation in packed-bed reactor (PBR)                58 

3.4.3 Biodegradation optimisation using Response Surface    

          Methodology (RSM)                                                      60 

             3.4.4  Alkanolamine determination                   64 

3.5 Summary 66 

4 RESULTS AND DISCUSSION 67 

4.1 Introduction 67 

4.2 Characterisation, Catalytic Activity, and Stability of 
Sol-Gel Laccases 67 

4.2.1 Characterisation of Sol-Gel Laccases 68 

4.2.2 Catalytic activity of sol–gel laccase 76 

4.2.2.1 Effect of synthesis conditions 
against sol-gel laccase catalytic 
activity 76 

4.2.2.2 FTIR analysis of laccase catalytic 
activity 80 

4.2.3 Stability of sol–gel laccase (SGL) 86 

4.2.3.1 Effect of pH 86 

4.2.3.2 Effect of temperature 88 

4.2.3.3 Effect of storage duration 90 

4.3 Biodegradation of Alkanolamine in Batch Reactor 94 

4.3.1 Effect of time course 94 

4.3.2 Effect of pH 99 

4.3.3 Effect of temperature 100 

4.3.4 Effect of substrate (DEA) concentration 101 

4.3.5 Effect of enzyme loadings (Ds) 103 

4.3.6 Reusability 104 

4.4 Optimisation using the Response Surface 
Methodology (RSM) 106 



xi 

4.4.1 Optimisation of DEA biodegradation by free 
laccase (FL) using RSM 106 

4.4.2 Optimisation of DEA biodegradation by 
SOLAC04 using RSM 122 

4.5 Biodegradation of Alkaolamine in Packed-Bed 
Reactor (PBR) 139 

             4.5.1  Introduction                            139 

             4.5.2   Effect of reaction time                     139 

             4.5.3  Effect of pH                           141 

             4.5.4  Effect of flowrate                        143 

             4.5.5  Effect of concentration                    144 

             4.5.6  Effect of enzyme dosage (Ds)                  146 

         4.6  Summary                                  147 

5 CONCLUSION AND RECOMMENDATIONS 148 

5.1 Introduction 148 

5.2 Summary of Reseach Findings 148 

5.3 Recommendation for Future Research 150 

      

REFERENCES                                                                                      152 

     Appendices A-B                                                                                       166-168 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



xii 

 
 
 
 
 

LIST OF TABLES 

 
 
 
 
TABLE NO. TITLE PAGE 

 

2.1  Advantages and drawbacks of immobilization techniques  18 

2.2 Summary of FTIR spectra of functional group associated 
with free laccase and SOLAC04 28 

2.3        Standard substrates and supports for laccase immobilization    30 

2.4 Summary of the procedures of enzyme immobilization and 
important findings 34 

2.5         Biodegradation of alkanolamine using oxidoreductase          39 

2.6 Advantages and disadvantages of bioreactors 40 

3.1 Source and purpose of chemicals used in this study 50 

3.2 Synthesis condition of SGLs 52 

3.3 The level of independent variable chosen for the Box-
Behnken design 61 

3.4 Design matrix in the Box-Behnken model for the 
biodegradation of DEA using FL 62 

3.5  Design matrix in the Box-Behnken model for the 
biodegradation of alkanolamine using SGL (SOLAC04) 63 

4.1 Surface area, pore volume, and pore diameter of sol-gel 
laccases synthesised without sonication: (a) one-step 
(SOLAC01-SOLAC03) and two-step (SOLAC04-
SOLAC06) procedures. 74 

4.2 Surface area, pore volume, and pore diameter of sol-gel 
laccases synthesis (sonication). (a) One-step (SOLAC07-
SOLAC09) and two-step (SOLAC10-SOLAC12). 74 

4.3 Biodegradation rates of EA, DEA, and MEA 96 

4.4 Experimental conditions in the Box-Behnken design and 
the corresponding experimental responses 107 



xiii 

4.5 Sequential model sum of squares 108 

4.6 Observed and predicted values of the response 109 

4.7 Estimated regression coefficient for response 111 

4.8 Analysis of variance for DEA biodegradation performance  

4.9 Experimental conditions in the Box-Behnken design and 
the corresponding experimental responses 124 

4.10  Sequential model sum of squares 125 

4.11 Observed and predicted values of the response 126 

4.12 Estimated regression coefficient for response 128 

4.13 Analysis of variance for biodegradation performance of 
DEA. 129 

4.14 Comparison between optimisation of DEA biodegradation 
performance by FL and SOLAC04 using RSM approach 139 

 

 



xiv 

LIST OF FIGURES 

FIGURE NO. TITLE PAGE 

 

2.1  Reaction coordinate. 10 

2.2         Schematic diagram of the lock-and-key model of  
enzyme catalysis.                                10 

2.3         A simplified reaction mechanism of laccase oxidation  
           of suitable substrate (Rodríguez-Delgado et al., 2015).       14 

2.4        Principle of enzyme immobilisation techniques  
          (Brady and Jordaan, 2009; Brena et al., 2013)             17 

2.5 Enzyme laccase before and after entrapment  
          (Sassolas et al., 2013)                             21 

2.6        Schematic representation of the packed bed  
bioreactor system for phenol removal using laccase  
immobilized on alginate beads: (a) untreated sample  
(phenol model solution); (b) peristaltic pump;  
(c) column bioreactor packed with immobilized beads;  
(d) treated sample (Niladevi and Prema, 2008).              43 

3.1        Standard curve for laccase determination using biuret assay    54 

3.2        Schematic presentation of the PBR system for alkanolamine 
          Biodegradation using SGL: (a) untreated sample (substrate); 
          (b) peristaltic pump; (c) column reactor packed with SGL  
          and silica particles; and (d) feed/substrate sample.           59 

3.3 A standard chromatogram of (a) DEA, (b) EA and 
  (c) MEA 65 

3.5 Standard calibration curve of alkanolamine:  
 EA; DEA; and MEA 65 

4.1 Microscopic structure of sol-gel laccases synthesised 
without sonication observed by SEM: (a) one-step 
(SOLAC01-SOLAC03) and two-step (SOLAC04-
SOLAC06) procedures. 71 



xv 

4.2 Microscopic structure of sol-gel laccases synthesised with 
sonication observed by SEM: (a) one-step (SOLAC07-
SOLAC09) and two-step (SOLAC10-SOLAC12) 
procedures. 72 

4.3 The effect of LL on the laccase catalytic activity of 
SOLAC04. Experimental condition: Temperature = 27 ºC, 
substrate = 1mM, pH 5 of 2,6-DMP. 79 

4.4 FTIR spectra of the FL and SOLAC04. 82 

4.5 FTIR spectra of SOLAC04 having different LL values. 84 

4.6 Effect of pH on the laccase catalytic activity of the free 
laccase and SOLAC04. Experimental condition: 
Temperature = 27 ºC, substrate = 1mM, pH 5 of 2,6-
DMP.; LL: 5 mg/mL. 87 

4.7 Effect of temperature on the laccase catalytic activity of 
the free laccase and SOLAC04. Experimental condition: 
Substrate = 1mM, pH 5 of 2,6-DMP.; LL g: 5 mg/mL. 89 

4.8 Effect of storage duration (27°C) on the laccase catalytic 
activity of the free laccase and SOLAC04. Experimental 
condition: Substrate = 1mM, pH 5 of 2,6-DMP.; LL: 5 
mg/mL; storage time; 34 days. 91 

4.9 Fourier transform infrared (FTIR) spectra of the free 
laccase and SOLAC04 for 34 days of storage duration at 
27 ºC. 93 

4.10 Effect of time course of DEA, EA and MEA on 
biodegradation efficiency catalysed by FL. 
[Alkanolamine] = 500 ppm, pH = 5; sample dosage (Ds) = 
20 mg; laccase mass (Lm) = 6 mg; reaction temperature (T) 
= 27 ºC; and reaction time (t) = 1 h. 95 

4.11 Effect of time course of DEA, EA and MEA on the 
biodegradation efficiency catalysed by SOLAC04. 
Experimental conditions: [Alkanolamine] = 500 ppm, pH 
= 5; sample dosage (Ds) = 20 mg; laccase mass (Lm) = 
0.35 mg; reaction temperature (T) = 27 ºC; and reaction 
time (t) = 1 h. 97 

4.12 Effect of pH on the biodegradation efficiency catalysed by 
FL and SOLAC04. Experimental conditions: [DEA] = 500 
ppm; sample dosage (Ds) = 20 mg; laccase mass (Lm) of 
FL= 6 mg, SGL= 0.35 mg;  reaction temperature (T) = 27 
ºC; and reaction time (t) = 1 h. 99 

4.14 Effect of concentration on biodegradation efficiency 
catalysed by FL and SOLAC04. Experimental conditions: 
pH = 5; sample dosage (Ds) = 20 mg; laccase mass (Lm) of 



xvi 

FL= 6 mg, SGL= 0.35 mg; reaction temperature (T) = 27 
ºC and reaction time (t) = 1 h. 102 

4.15 Effect of Ds on biodegradation efficiency catalysed by FL 
and SOLAC04. Experimental conditions: [DEA] = 500 
ppm; pH = 5; reaction temperature = 27 ºC; and reaction 
time (t) = 1 h. 104 

4.16 Effect of reusability of SOLAC04 on biodegradation 
efficiency catalysed by SOLAC04. Experimental 
conditions: [DEA] = 500 ppm; pH = 5; sample dosage (Ds) 
= 20 mg; laccase mass (Lm) of FL= 6 mg, SGL= 0.35 mg;  
reaction temperature (T) = 27 ºC; and reaction time (t) = 1 
h. 105 

4.17 Predicted versus actual DEA biodegradation performance 
 of DEA. 113 

4.18 3D response surface plot showing the effect of 
temperature and pH on the biodegradation performance of 
DEA (%) at Ds of laccase of 40 mg and reaction time of 
37.5 minutes. 115 

4.19 3D response surface plot showing the effect of Ds and pH 
on the biodegradation performance of DEA at 55 ºC and 
reaction time of 37.5 minutes. 116 

4.20 3D response surface plot showing the effect of reaction 
time and pH on the biodegradation performance of DEA at 
55 ºC and 40 mg of Ds. 118 

4.21 3D response surface plot showing the effect of Ds and 
temperature on the biodegradation performance of DEA at 
pH 5 and 37.5 of reaction time. 119 

4.22 3D response surface plot showing the effect of reaction 
time and temperature on the biodegradation performance 
of DEA at pH 5 and 40 mg of Ds. 120 

4.23 3D response surface plot showing the effect of reaction 
time and Ds on the biodegradation performance of DEA at 
pH 5 and 55 ºC. 121 

4.24 Predicted versus actual DEA biodegradation performance. 130 

4.25 3D response surface plot showing the effect of 
temperature and pH on the biodegradation performance of 
DEA at Ds of laccase of 40 mg and reaction time of 37.5 
minutes. 132 

4.26 3D response surface plot showing the effect of SOLAC04 
Ds and pH on the biodegradation performance of DEA (%) 
at 55 ºC and reaction time of 37.5 minutes. 133 



xvii 

4.27 3D response surface plot showing the effect of reaction 
time and pH on the biodegradation performance of DEA at 
55 ºC and 37.5 minutes of reaction time. 134 

4.28 3D response surface plot showing the effect of reaction 
time and pH on the biodegradation performance of DEA at 
55 ºC and 40 mg of SOLAC04 Ds. 135 

4.29 3D response surface plot showing the effect of reaction 
time and temperature on the biodegradation performance 
of DEA at pH 5 and Ds of 40 mg. 136 

4.30 3D response surface plot showing the effect of reaction 
time and Ds on the biodegradation performance of DEA at 
pH 5 and 55 ºC. 137 

4.31         Effect of DEA, EA and MEA reactions on biodegradation 
efficiency of DEA degradation in PBR catalysed by  
SOLAC04. Experimental conditions: [DEA] = 500 ppm;  
sample dosage Ds = 20 mg; pH = 5;  
reaction temperature (T) = 27 ºC;  
and flowrate (Q) = 100 mL/h.                         140 

4.32            Effect of pH on biodegradation efficiency of DEA  
degradation in PBR catalysed by SOLAC04. 
Experimental conditions: [DEA] = 500 ppm;  
sample dosage Ds = 20 mg; reaction temperature (T) = 27 ºC;  
flowrate (Q) = 100 mL/h; and reaction time (t) = 1 h.        142 

4.33          Effect of flowrate on biodegradation efficiency of  
DEA degradation in PBR catalysed by SOLAC04.  
Experimental conditions: [DEA] = 500 ppm;  
sample dosage Ds = 20 mg; pH = 5;  
reaction temperature (T) = 27 ºC; reaction time (t) = 1 h.      143 

4.34 Effect of concentration on biodegradation efficiency  
of DEA degradation in PBR catalysed by SOLAC04.  
Experimental conditions: Sample dosage Ds = 20 mg;  
pH = 5; reaction temperature (T) = 27 ºC;  
flowrate (Q) = 100 mL/h; and reaction time (t) = 1 h.        145 

4.35           Effect of Ds on biodegradation efficiency of DEA  
degradation in PBR catalysed by SOLAC04.  
Experimental conditions: [DEA] = 500 ppm; pH = 5;  
reaction temperature (T) = 27 ºC; flowrate (Q) = 100 mL/h;  
and reaction time (t) = 1 h.                          146 

 



xviii 

LIST OF ABBREVIATIONS 

2,6-DMP - 2,6- dimethoxyphenol 

BET - Brunauer, Emmett and Teller 

BJH - Barrett–Joyner–Halenda 

CO2 - Carbon dioxide 

DEA - Diethanolamine 

DMAMP - 2-dimethylamino-2-methyl-1-propanol 

EA - Ethanolamine 

FL - Free Laccase 

FTIR - Fourier Transform Infrared Spectrum 

H2S - Hydrogen sulfide 

HCl - Hydrochloric acid 

K2HPO4 - di-potassium hydrogen phosphate 

KBr - Potassium bromine 

KH2PO4 - Potassium dihydrogen phosphate 

MEA - N-methyl ethanolamine 

PEG - Polyethylene gylcol 

PVA - Poly (vinyl alcohol) 

RSM - Response Surface Methodology 

SEM  - Scanning Electron Microscopy 

SGL - Sol-Gel Laccase 

TEA - Triethylamine 

TEOS - Tetraethoxysilane 

TMOS - Tetramethoxysilane 

UV/VIS - Ultraviolet/visible light 

ANOVA - Analysis of Variance 



xix 

 
 
 
 
 

LIST OF SYMBOLS 

 
 
 
 

% - Percentage 

A - Absorbance 

Ds - Dosage 

ka - Linear coefficients 

kaa - Quadratic coefficients 

kab - Quadratic coefficients 

kac - Quadratic coefficients 

kad - Quadratic coefficients 

kb - Linear coefficients 

kbb - Quadratic coefficients 

kbc - Quadratic coefficients 

kbd - Quadratic coefficients 

kc - Linear coefficients 

kcc - Quadratic coefficients 

kcd - Quadratic coefficients 

kd - Linear coefficients 

kdd - Quadratic coefficients 

ko - Constants 

LL - Laccase Loadings 

Lm - Actual Laccase 

mg - milligram 

mL - millimetre 

ºC - Degree Celsius 

pH - Potential of Hydrogen 

ppm - Part per million 

SOLAC - Sol-gel laccase 



xx 

T - Temperature 

v - Volume 

x - Multiple 

Y - Process response or output 

Y’ - Biodegradation performance of alkanolamine 

 



xxi 
 
 

LIST OF APPENDICES 

APPENDIX TITLE PAGE 

 

A Synthesis and Characterisation 166 

B Biodegradation of Alkanolamine in Batch Reactor 168 

   

    

 



1 

 
 
 
 
 

CHAPTER 1 

 
 
 
 
 

INTRODUCTION 

 
 
 
 

1.1.1 Research Background 
 
 

Alkanolamine solutions have been extensively studied during the last 25 

years because of their industrial importance in natural gas processing plants, 

synthetic ammonia plants, fossil-fuel-fired power plants, chemical synthesis, 

petrochemical, cosmetic formulations, agriculture, and pharmaceutical (Chen et al., 

2011; Hansen et al., 2010; Xi et al., 2012; Zurita et al., 2005). Alkanolamines are 

also used in industrial processing plants for acid gas impurities removal such as 

carbon dioxide (CO2), hydrogen sulfide (H2S), and sulfur dioxide (SO2) from gas 

streams (Mundhwa and Henni, 2007).  

 
 
The main problems associated with alkanolamine gas treatment plants is 

corrosion that occurs on the cross exchanger rich side, rich-amine piping after cross 

exchanger, still, and reboiler, where free acid gas and higher temperature are the 

main driving forces for corrosion (Vaidya and Kenig, 2009). This may result in loss 

of alkanolamine solution to surrounding soil and groundwater due to the rich-amine 

piping leakage. Other alkanolamine wastes include from the spillage and spent 

alkanolamine solution generated during plant shut-down. It was reported that 

alkanolamine, such as N-methylethanolamine (MEA), diethanolamine (DEA), and 

triethanolamine, are compounds with potential acute, sub-chronic, and chronic 

toxicity effects towards aquatic species (Libralato et al., 2010).  
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One of the approaches that can be used to remediate if spillage and leakage of 

alkanolamine solutions into soil and underground water system or to dispose of the 

spent alkanolamine solutions is by using biological method  (Grace Liu et al., 2011). 

Enzyme-assisted reaction was investigated in recent years for its advantages in easy 

operation, high efficiency, economic, versatile, and environmentally sound solution. 

It can simulate natural processes and result in the complete destruction of hazardous 

compounds into innocuous products. The use of bioremediation to remove pollutants 

is typically less expensive than the equivalent physical/chemical methods 

(Fernández-Fernández et al., 2013). 

 
 
Laccases enzymes have great biotechnological potential due to their 

capabilities and potential in various applications, such as in juice manufacturing 

(Berka et al., 1998), chemical synthesis, and wine stabilization (Fernández-

Fernández et al., 2013), dye decolonization (Bayramoğlu et al., 2003; Champagne 

and Ramsay, 2010), bioleaching  (Widsten and Kandelbauer, 2008), enzymatic fuel 

cells (Cardoso et al., 2013), wastewater treatment (Georgieva et al., 2008), 

biosensors in nanobiotechnology (Rodríguez Couto and Toca Herrera, 2006), and 

biopulping  have recently attracted considerable research interests.   

 
 
All laccase applications mentioned above, of especially on an industrial scale, 

have increased the demand for high amounts of isolated or immobilized laccase 

production (Birhanli et al., 2013). Meanwhile biodegradation using enzyme has 

many advantages, the isolated enzymes themselves are unstable, difficult to handle 

under non-conventional conditions, easily denatured in non-conventional solvents, 

inhibited by substrates and products, and it can only work well on natural substrates 

and under physiological conditions. However, it can be improved by enzyme 

immobilization (Birhanli et al., 2013).  

 
 

Currently, the stability increase of laccase catalytic activity could be achieved 

through immobilisation, which has been investigated by researchers ranging from 

methods of adsorption (Rekuć et al., 2010; Salis et al., 2009) and covalent 

attachment (Bayramoğlu and Arıca, 2008; Quan and Shin, 2004; Rekuć et al., 2009)  
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on various supports, cross-linking (Jordaan et al., 2009; Matijošytė et al., 2010; 

Rasera et al., 2009), and encapsulation in reverse micelles and emulsions (Michizoe 

et al., 2001; Okazaki et al., 2002), organic polymers such as polyallylamine (Rasera 

et al., 2009) and inorganic polymers such as sol-gel silicas (Mansor et al., 2016; 

Mohidem and Mat, 2012b; Nogala et al., 2010). 

 
 
The common sol-gel materials used in biomolecules encapsulation are silica, 

aluminum, titanium, zirconium, tin, vanadium, and molybdenum oxides (Debecker et 

al., 2013; Owens et al., 2016). Among them, the use of silica as precursors, such as 

tetraethoxysilane (TEOS) and tetramethoxysilane (TMOS), in synthesizing sol-gel 

could offer numerous advantages, for example improving the mechanical strength 

and stability. It does not swell in aqueous or organic solvent, thus preventing 

leaching of encapsulated biomolecules. Silica is not a food source for 

microorganisms and it is biologically inert. Besides, the organically modified silica, 

such as TEOS and TMOS, offer tolerable hydrophilic, hydrophobic, and H-bonding 

capacities, as well as electrochemical activities and display good porosities (Alvarez 

et al., 2007; Owens et al., 2016; Vera-Avila et al., 2004).  

 
 
 
 

1.2 Problem Statement 

 
 

The present research investigates the use of potential laccase as an enzyme to 

degrade alkanolamine solutions such as diethanolamine (DEA), ethanolamine (EA) 

and N-methylethanolamine (MEA) in batch (shake flask) and continuous (packed-

bed) reactors. It was reported that alkanolamines, such as diethanolamine (DEA), 

ethanolamine (EA) and N-methylethanolamine (MEA) are compounds with potential 

acute, sub-chronic, and chronic toxicity effects towards aquatic species. Generally, 

alkanolamine is widely used in natural gas processing plant for carbon dioxide 

removal from natural gas. However, it may incidentally release and contaminate the 

surrounding soil and water due to the operational plant failure or amine piping 

leakage. (Libralato et al., 2010). It has been reported that other oxidoreductase 



4 

enzyme such as ethanolamine oxidase and myeloperoxidase appear to be specific for 

the oxidative deamination of ethanolamine (Lepaumier et al., 2011).  

 
 
 Although biodegradation by using enzyme has many advantages, the free 

enzyme themselves are unstable, cannot be reused, poor of thermal and storage 

stability. However, the catalytic activity, stability, and reusability can be improved 

by enzyme immobilisation (Brena et al., 2013; Sassolas et al., 2013). One major 

substantial advantage of immobilization is reusability which drastically cut cost of 

laccase in treatment plant. Nevertheless, the experimental conditions of the sol-gel 

technique of immobilisation still require some optimisation to preserve the 

conformation of the most delicate biomolecule during immobilisation and to recover 

a high fraction of their catalytic activity (Owens et al., 2016).  

 
 
 Consequently, in the present doctoral research, the sol-gel laccase (SGL) was 

synthesized by manipulating TEA concentration as a gelating agent, laccase loading 

(LL), agitation conditions (with or without ultrasonic), and experimental procedures 

(one-step or two-step) in order to acquire a higher laccase catalytic activity and 

stability. TEA is widely used as chelating agents in organic synthesis such as the 

formation of cobalt ions based catalyst with TEA (Xu et al., 2012) and new magnetic 

bromochromate hybrid nanomaterial with TEA surface modified iron oxide 

nanoparticles (Rahimi et al., 2014). 

 
 
 
 

1.3  Objectives of Research 

 
 
 The objectives of current research include: 

 
 
a) To synthesize and characterize the sol-gel laccase (SGL); 

 
 
b) To evaluate the biodegradation performance and biodegradation efficiency of 

alkanolamines using free laccase (FL) and SGL in batch reactors; 
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c) To optimise the biodegradation performance of alkanolamines using FL and 

SGL in batch reactors using Response Surface methodology (RSM); 

 
 

d) To evaluate the biodegradation performance and biodegradation efficiency of 

alkanolamines using SGL in PBR. 

1.4 Research Scope  

 
 
 The research scope is divided into three main parts:  

 
 
a) Synthesis and characterisation of the SGL.  

 
 

The SGL was synthesized by manipulating TEA concentration as a gelating 

agent, laccase loading (LL), agitation conditions (with or without ultrasonic), and 

experimental procedures (one-step or two-step). The characterisation of SGL 

included particle morphology, Brunauer, Emmett and Teller (BET) surface areas, 

functional group, effect of pH, effect of temperature and effect of storage durations. 

b) To evaluate the biodegradation process (i.e. biodegradation performance 

and biodegradation efficiency) of alkanolamines using FL and SGL in 

batch reactors; 

 
 
In order to evaluate the biodegradation efficiency and biodegradation 

performance of alkanolamines in a batch reactor, several parameters were explored. 

These include the effect of reaction time, effect of pH, effect of temperature, effect of 

substrate concentration, effect of FL and SGL dosage (Ds) and reusability. 

  
 
c) To optimise the biodegradation performance of alkanolamines using FL 

and SGL in batch reactors using Response Surface methodology (RSM); 
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In order to evaluate the biodegradation performance of alkanolamine by FL 

and SGL and its optimisation by using RSM, the Box–Behnken design was selected. 

The four parameters such as pH, temperature, reaction time, and FL or SGL dosage 

(Ds) were chosen based on the produced results.  

 
 
d) To evaluate the biodegradation performance and biodegradation 

efficiency of alkanolamines using SGL in PBR. 

In order to evaluate the biodegradation performance and biodegradation 

efficiency of alkanolamines in a PBR, several parameters were investigated. These 

include the effect of reaction time, effect of pH, effect of substrate concentration, 

effect of SGL dosage (Ds) and effect of flowrate. 

1.5   Novelty Statement 

 
 

The novelties of the present research are: 

 
 

(a) A synthesis method of sol-gel laccase which resulted in high laccase catalytic 

activity and stability. 

(b) The application of sol-gel laccase for removal of alkanolamines pollutants 

which is commonly found in the contaminated water from the natural gas 

processing plant. The alkanolamines are commonly used in removal process 

of carbon dioxide from natural gas.  

 
 
 
1.6   Thesis Outline 

 
 

This thesis consists of five chapters. Chapter 1 introduces the problem 

statements and clarified the objectives and scope of research. Chapter 2 provides a 

review of past research related to enzyme immobilisation and biodegradation of 
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alkanolamines. The materials and methods used in the present research are presented 

in Chapter 3 while the results and discussion of this research are described in Chapter 

4. Conclusion and recommendations of research are presented in Chapter 5. 

 
 
 
 

1.7   Summary 
 
 

The enzymes immobilisation in the sol-gel matrix have been reported by 

many researchers to improve their functional characteristics to a large extent. Due to 

the need for enhancing the catalytic activity and stability of laccase enzyme for wide 

industrial applications, the synthesis of immobilised laccase in sol-gel silica matrix 

and its applications was studied. In present research, the SGL was obtained by simple 

precipitation of TEOS solution by using TEA as a gelating agent in order to degrade 

alkanolamine in a batch reactor and PBR. Thus the research background, objectives, 

scope and thesis outline were clearly elaborated in this chapter. 
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