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ABSTRACT 

 

 

Structure failure in civil engineering has been a motivation behind the 

development of monitoring system where it provides analytical data for evaluating the 

performance of building's structure, highway bridge, tunnel, etc., in order to minimize 

the risk of engineering disaster that would endanger public’s safety and property. Fiber 

Optic Sensor (FOS) has been extensively studied and used since its first discoveries. 

However, erroneous in measurement due to cross-sensitivity of FBG is the main 

drawback for this sensing principle. Therefore, cascaded FBGs are developed to 

monitor temperature and strain. Another drawback of FBG toward temperature is it 

has poor thermal expansion properties. Thus, an analytical temperature model of FBG 

that able to enhance temperature sensitivity is developed and realized by coating the 

FBG with metal material that has good thermal expansion coefficient. The metal 

coating of FBG is done using electroless plating as this method is simpler and low 

cost.  
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ABSTRAK 

 

 

 Kegagalan struktur dalam kejuruteraan awam telah menjadi motivasi di 

sebalik pembangunan sistem pemantauan di mana ia menyediakan data analisis untuk 

menilai prestasi struktur bangunan, jambatan lebuh raya, terowong, dan sebagainya, 

untuk meminimumkan risiko bencana kejuruteraan yang akan membahayakan 

keselamatan awam dan harta benda awam. Sensor Fiber Optic (FOS) telah banyak 

dikaji dan digunakan sejak pertama kali ditemui. Walau bagaimanapun, salah 

pengukuran disebabkan oleh sensitiviti silang FBG adalah kelemahan utama untuk 

prinsip penderiaan ini. Oleh itu, FBGs dibangunkan untuk memantau suhu dan 

ketegangan. Satu lagi kelemahan FBG ke suhu adalah ia mempunyai ciri 

pengembangan haba rendah. Oleh itu, model suhu analitik FBG yang dapat 

meningkatkan kepekaan suhu dikaji dan direalisasikan dengan melapisi FBG dengan 

bahan logam yang mempunyai pekali pengembangan haba yang baik. Lapisan logam 

FBG dilakukan menggunakan penyaduran elektrolisis kerana kaedah ini adalah lebih 

mudah dan kosnya yang rendah, 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background of the Study 

 

 In the field of civil engineering, fiber optic sensor (FOS) is widely used in early 

detection of structural failure such as a crack in a concrete structure. Crack on the 

concrete structure will develop due to thermal expansion and contraction when 

exposed to changes in temperature. Naturally, it will expand when the material is 

experiencing o hot temperature and contract when the temperature is colder. This crack 

development will lead to structural failure. FOS also has been used widely in another 

field such as biomedical, agriculture, chemical and automatic fire detection [1].  

 

 Features of FOS such as immune to the electromagnetic field, stable signal, 

robustness to a harsh environment and its compact size make this technology superior 

to other sensor technique. Fiber Bragg grating (FBG) is well known in its sensor 

application. It requires no calibration, length limit due to very small losses in optical 

fiber, passive technology, and long-term stability [2]. In this study, FBG, a type of 

grating-based FOS is used over another type of grating-based sensor configuration as 

FBG is simple inherent self-referencing capability, easily multiplexed and able to 

provide real-time monitoring. 
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1.2 Problem Statement 

 

Recently, there are many engineering disasters has been reported. Some 

incident may have put many lives in stakes and has taken lives, such case like St. 

Francis dam where it broke and killed more than 432 sleeping residents [3]. Curing for 

concrete at its early age is a maintenance method in order to maintain adequate 

moisture and temperature in concrete to prevent cracking from developed. Which 

explain what happened to St. Francis dam where cracks were developed under the heat 

generated by the hydration of the cement. Furthermore, the heat generated by curing 

causes thermal stresses and of shrinkage of the mass concrete leading to further 

cracking and without early preventive action taken to cool down the concrete, this 

fateful event was allowed to take place.  

 

Structural Health monitoring (SHM) application provides real-time inspection, 

monitoring, and damage detection and all together will provide an early warning to the 

responsible management to tackle the problem. Leakage in pipelines, tunnel sewerage 

leakage, cracks in the concrete structure, failing geotechnical infrastructure such as 

landslide can be monitored through a variety of techniques of fiber optic sensor (FOS) 

technique has been implemented.   

 

Conventional techniques that are bulky, circuitry and electrical based possess 

many disadvantages such as prone to electromagnetic and electrical interference, 

hence the signal is not stable and also make them difficult to be implemented in a harsh 

environment. These drawbacks make FOS superior as it is immune to electrical and 

electromagnetic interference and its small in size makes this technology easy to be 

implemented and withstand in a harsh environment. 
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1.3  Motivation of the Study 

  

In the field of civil engineering, there are many reported cases of engineering 

failure. There are few primary reasons for engineering disaster which are human 

factors, design flaws, material failure, extreme conditions or environments and most 

commonly and importantly the combination of these reasons. According to a research 

conducted by Swiss Federal Institute [4], a total of 800 cases of structural failure that 

killed 504 people, 594 people injured and total damage of million dollars.  

 

The research concluded that the causes of structural failure were human errors 

in many aspects such as lack of knowledge, ignorant and carelessness, underestimation 

of influence, forgetfulness and relying upon others. Therefore, it is engineer duties to 

ensure the safety and durability of the project for the benefit of the company, civilian 

and workers. The aim of this research area is to develop FBG sensor that will provide 

real-time critical data for evaluating concrete performance derive from temperature 

and strain variances. 

 

1.4 Objectives of the Study 

 

This is study aim to develop dual FBG sensors, to measure strain optic 

coefficient and thermal sensitivity. Therefore, this study underlines the following key 

objectives: 

 

1. To develop analytical temperature and strain model of FBG as sensor.  

2. To determine the characteristic and capability of the proposed FBG sensor 

in response to the different temperature and strain variation at various 

wavelength shift. 

3. To develop cascaded FBGs to overcome cross-sensitivity of FBG 
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1.5 Scope of the Study  

 

In this paper, fundamental of FBG sensing principle, the behavior of metal 

coated FBG toward temperature and strain and preventive method for cross-sensitivity 

of FBG are discussed.  The main goal of this paper is to develop a temperature model 

of FBG, aiming to enhance its temperature sensitivity which attributes to greater 

wavelength shift towards changes in temperature. This can be done by coating the FBG 

with metal material that has good thermal expansion coefficient.  

 

This study is also conducted to overcome the main drawback of fiber Bragg 

grating which is cross-sensitivity as it may cause inaccurate judgment of interest 

parameter which is temperature and strain. This can be done by cascading two FBGs 

with two different center Bragg wavelengths with one FBG monitoring temperature 

while the other monitoring strain. Furthermore, a comparative experimental study is 

carried out between metal coated FBG and bare FBG in order to study the behavior of 

FBG after metallization.   
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