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ABSTRACT 

 

 

 

Early detection of gas leakage and its location in a pipeline is crucial in the 

effort to avoid impending disasters such as pipeline rupture.  Existing studies mainly 

use sensors to detect and determine the onset of leakage, but these sensors, 

depending on their types are expensive to install.  They could also give rise to false 

alarms and their handling needs skilled operators.  As such, mathematical modelling 

has been adopted to be a viable alternative that is highly sensitive to pinpoint the leak 

location even for small leaks and to minimize the occurrence of false alarms at low 

cost.  The present investigation focused on the development of a mathematical model 

for transient non-isothermal flow of hydrogen-natural gas mixture in a pipeline.  This 

mixture is considered as hydrogen is often added to natural gas to enhance the 

latter’s burning capacity, and because hydrogen needs to be transported in the same 

pipeline as natural gas due to its storage problem and to reduce transportation cost.  

The mathematical model developed took into consideration the effect of the mass 

ratio of gas mixture, the transient condition due to the sudden closure of valves 

during leakage, the surrounding temperature and the inclination angle of pipeline.  

The gas mixture was assumed to be homogeneous and the transient pressure wave 

was created by the sudden or instantaneous closure of a downstream shut-off valve to 

ensure the attainment of minimum pressure at the downstream end within a short 

time.  The boundary conditions imposed were under the assumption that a reservoir 

exists at the upstream and a sudden closure valve was at the downstream.  The 

governing equations consist of non-linear partial differential equations of unsteady, 

compressible and non-isothermal one dimensional flow.  They were numerically 

solved using the reduced order modelling (ROM) technique, which had not been 

previously applied on non-isothermal models involving gas mixtures.  The transient 

pressure wave analysis was adopted to calculate the leak location and leak discharge.  

Specifically, the iron pipeline was taken to be 0.4 m  in diameter, 600 m  long, mass 

flow 0 55 kg sQ   at a static temperature o15 CT   and an absolute pressure 

35 bar.P    Numerical results on the effects of inclination angles, mass ratio of gas 

mixture and temperature change on the transient pressure and celerity waves due to 

the inclined pipeline show that the leakage occurs at about 200 m.   It is observed that 

the leak position is closer to the reservoir and the amount of leak discharge is higher 

than that of isothermal flow.  An increase in the mass ratio   leads to an increase in 

the pressure and celerity wave, while the leak location and amount of leak discharge 

decrease.  It is found that the mass ratio of hydrogen to natural gas should not be 

more than 0.5 to ensure that leakage does not occur before the estimated leak 

position.  It is also observed that an increase in the inclination angle   increases the 

pressure drop and leak discharge but the celerity wave and the leak location do not 

seem to be affected. 
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ABSTRAK 

 

 

 

Pengesanan awal kebocoran dan lokasinya pada saluran paip adalah penting 
bagi mengelakkan kemungkinan berlakunya bencana seperti ledakan gas.  
Kebanyakan kajian sedia ada menggunakan sensor untuk mengesan dan menentukan 
kebocoran, walau bagaimanapun pemasangan sensor ini sangat mahal bergantung 
kepada jenisnya.  Ia boleh mengakibatkan amaran palsu, disamping keperluan 
kepada tenaga mahir untuk pengendaliannya.  Oleh itu, pemodelan matematik adalah 
alternatif yang berdaya maju dengan ketepatan yang jitu bagi menentukan lokasi 
kebocoran walaupun terhadap kebocoran kecil, dan kejadian amaran palsu boleh 
diminimumkan pada kos yang rendah.  Penyelidikan ini memberi tumpuan kepada 
pembangunan model matematik bagi aliran campuran hidrogen-gas asli dalam 
saluran paip dengan suhu tak sekata.  Campuran ini dipertimbangkan kerana 
hidrogen sering ditambah kepada gas asli untuk meningkatkan kadar pembakaran, 
disamping hidrogen tidak boleh disimpan dan ia perlu di angkut bersama gas asli di 
dalam saluran paip yang sama untuk mengurangkan kos pengangkutan.  Model 
matematik yang dibangunkan mengambil kira kesan nisbah jisim gas campuran, 
keadaan fana yang disebabkan oleh penutupan injap serta-merta semasa kebocoran 
berlaku, suhu sekitar dan sudut kecondongan saluran paip.  Campuran gas diandai 
sebagai homogen dan gelombang tekanan fana dihasilkan oleh penutupan injap 
secara tiba-tiba atau serta-merta pada hiliran paip untuk memastikan tekanan 
minimum tercapai pada hujung hiliran paip dalam masa yang singkat.  Syarat 
sempadan yang dikenakan mengambil kira terdapatnya reservoir di hulu paip dan 
injap ditutup serta merta di hiliran.  Persamaan menakluk terdiri daripada persamaan 
pembezaan separa tak linear, bagi aliran satu dimensi tak mantap, mampat dan suhu 
tak sekata.  Persamaan ini telah diselesaikan secara berangka dengan menggunakan 
teknik pemodelan pengurangan tertib (ROM), yang mana teknik ini belum pernah 
digunakan pada model suhu tak sekata yang melibatkan campuran gas.  Analisis 
gelombang tekanan fana digunakan bagi mengira lokasi dan kadar alir kebocoran.  
Khususnya, saluran paip besi digunakan dengan diameter 0.4 m,  600 m  panjang, 
aliran jisim 0 55 kg sQ   pada suhu statik o15 CT   dan tekanan mutlak 35 bar.P    
Keputusan berangka terhadap kesan sudut kecondongan saluran paip, nisbah jisim 
campuran gas dan perubahan suhu terhadap tekanan dan halaju rambat fana yang 
disebabkan oleh kecondongan paip menunjukkan kebocoran berlaku di sekitar 
200 m.   Lokasi kebocoran saluran gas didapati lebih dekat kepada reservoir dengan 
jumlah kadar alir kebocoran adalah lebih tinggi berbanding kadar alir bagi aliran 
suhu sekata.  Peningkatan nisbah jisim   menyebabkan peningkatan gelombang 
tekanan dan halaju rambat, manakala lokasi dan jumlah kadar alir kebocoran pula 
menurun.  Nisbah jisim hidrogen kepada gas asli didapati tidak boleh melebihi 
daripada 0.5 untuk memastikan kebocoran tidak akan berlaku sebelum lokasi 
anggaran.  Peningkatan sudut kecondongan   juga diperhatikan akan meningkatkan 
penurunan tekanan dan kadar alir kebocoran, akan tetapi gelombang halaju rambat 
dan lokasi kebocoran tidak terjejas. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

In general, transportation in a pipeline is among the biggest infrastructure 

projects in developing countries in recent years.  Liquids and gases are transported in 

pipelines and any chemically stable substance can be sent through a pipeline.  These 

liquids and gases can be delivered to consumers, whether in different countries, 

towns or villages.  There are many types of fluid or sources that can be transported 

through a pipeline such as oil, biofuel, ammonia, coal, hydrogen and the common 

one is natural gas. 

 

 

Three major types of pipelines are found along the transportation of natural 

gas from the point of production to the point of use, which are gathering pipelines, 

transmission/transportation pipelines and distribution pipelines [refer to Figure 1.1] 

(Shaw, 2012).  Gathering pipeline systems gather raw natural gas from production 

wells and transport it to centralized points, such as processing facilities, tanks, or 

marine docks.  Transportation pipelines carry natural gas across long distances and 

occasionally across interstate boundaries, usually to and from compressors or to a 

distribution center or storage facility.  Distribution pipeline systems can be used to 
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transport natural gas to homes and businesses through large distribution lines mains 

and service lines. 

 

 

In this research, the transportation of hydrogen-natural gas mixture in an 

inclined pipeline is considered.  Transportation pipelines are used to transport crude 

oil and natural gas from their respective gathering systems to refining, processing, or 

storage facilities.  It also transports refined petroleum products and natural gas to 

customers, for use and further distribution.  Transportation pipeline systems include 

all of the equipment and pipeline components to facilitate the transportation of the 

products.  This includes the pipe, valves, pumps or compressors, tanks, refining and 

processing facilities and other equipment and facilities.  Transportation pipelines are 

constructed from steel pipe as diameters of pipe commonly used range in size from 

4 in  to 48 in  and can range in length from 101cm  to 121cm  (Baker and Fessler, 

2008; Baum, 1996; Shaw, 2012).  In the transportation pipeline, the fluid could be a 

single phase, liquid phase or gas phases.  It is could be the mixture of gas, liquids or 

may be solid. 

 

 

 

 

Figure 1.1 Types of natural gas pipeline (Shaw, 2012) 
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Commonly, only one gas which is natural gas could be considered in 

simulating the transient flow in a pipeline.  Natural gas is a combustible gas, 

hydrocarbon mixture which is predominantly 85% of methane, 10% of ethane and 

small amount of propane, butane and nitrogen (Kidnay and Parrish, 2006).  Natural 

gas could also refer as compressed natural gas (CNG).  Natural gas has promising 

energy source with less carbon emission output when compared to coal and 

petroleum oil (Younger, 2004).  To reduce carbon emission, attention has been put 

on energy generation through natural gas.  Natural gas is easier to store and 

transported through the pipeline (Bade and Karim, 1999; Balat and Balat, 2009; 

Elaoud and Hadj-Taïeb, 2008; Hoeseldonackx and D‘haeseleer, 2011; Uilhoorn, 

2009; Veziroglu and Barbir, 1992).  However, natural gas has the low burning 

velocity capacity and poor lean capability (Cheng et al., 2009; Tabkhi et al., 2008). 

 

 

During the transition phase towards a full development of hydrogen market, 

the use of the existing natural gas network, mixed with hydrogen or often known as 

hydrogen-natural gas mixture seems to be a good economic solution (Bade and 

Karim, 1999; Geagla et al., 2013; Karim et al., 1996; Ma, et al., 2009).  Hydrogen 

could play an important role as a sustainable energy supply (Corbo et al., 2011; 

Elaoud and Hadj-Taïeb, 2008; Subani et al., 2015; Uilhoorn, 2009).  Hydrogen is an 

attractive, colourless, non-toxic and clean flammable gas and it’s considered as a 

future energy source (Corbo et al., 2011; Winter, 2009).  If hydrogen is made from 

renewable energy sources without yielding much carbon dioxide (CO2), it would be 

possible to produce and use energy with near zero emissions of greenhouse gases or 

air pollutants (Srinivasan and Ogden, 2006). 

 

 

Adding a small percentage of hydrogen will not only quicken the burning 

capacity of other gases, but it is also environmentally friendly since it has zero 

emission (Ma et al., 2009).  However, hydrogen has a storage problem and it does 

not exist on its own (Sierens and Rosseel, 2000), but it could be manufactured (Balat 

and Balat, 2009).  It occurs chiefly in combination with other gases such as natural 

gas, which will improve its performance (Bade and Karim, 1999; Balat and Balat, 

2009; Elaoud and Hadj-Taïeb, 2008; Hoeseldonackx and D‘haeseleer, 2011; 
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Uilhoorn, 2009; Veziroglu and Barbir, 1992).  The mixture of hydrogen and natural 

gas occurs either through pipeline transportation or by injecting (Cheng et al., 2009; 

Tabkhi et al., 2008).  Transmission costs of the construction of new networks of 

pipelines exclusively for transporting hydrogen will be relatively expensive (Elaoud 

and Hadj-Taïeb, 2008).  Thus, hydrogen is usually transported in the same pipeline 

as natural gas to reduce the transportation cost, to enhance the storage capability and 

to increase the storage problem. 

 

 

According to Veziroglu and Barbir (1992), the transportation of natural gas 

and hydrogen is feasible as long as the mass ratio of hydrogen remains sufficiently 

low.  From the experimental results, the mass ratio is in the range of 10% to 20% 

hydrogen by volume mixed with natural gas.  The addition of even a small quantity 

of hydrogen to natural gas may have an impact on the safety related to the delivery of 

gas and to the economics of the country.  The problem of hydrogen or hydrogen-

natural gas mixture release appears to be a major potential risk that should be 

predicted (Elaoud and Hadj-Taïeb, 2009; Elaoud et al., 2010).  Mixing higher 

percentages of hydrogen requires special attention regarding the functioning of 

pipeline, end-user appliances and emissions (Uilhoorn, 2009).  Hydrogen is a 

reactive element and it diffuses into the materials such as the steel pipelines and this 

could cause changes in the mechanical properties and could lead to rupture or 

leakages. 

 

 

Leakage detection is very important to consider because pipelines contain 

hazardous and flammable gas and its potential hazards.  Leakage in pipelines, can 

cause serious problems related not only to the environment or safety, but also the 

economy (Elaoud et al., 2010).  Leaks also waste natural resources and create a 

public health risk.  Leakage in a pipeline can cause from the pipeline, third party and 

from natural disaster.  The accident of a pipeline may come from a chemical reaction 

resulting in internal corrosion.  From the third party, the pillar drill or heavy machine 

use to hammer the ground may disturb the pipe.  The severe earthquake and the land 

subsidence can also cause serious damage to the pipe. 
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Figure 1.2 Gas leakage on natural gas pipeline (courtesy of Doug, 2014) 

 

 

During the construction and operation, the pipelines must be able to 

withstand a variety of loads and ranging from the high loads because the major cases 

in most pipelines is that the cause of the internal pressure.  Third party damage also 

included in pipelines failures categories that will cause a big implication to industry.  

Generally, there are many factors that will give a big impact to the pipeline 

transportation.  For example, in oil and gas industry, non-homogeneous mixture, 

corrosion and also leakage problems could be happened in the pipeline (Khare and 

Singh, 2010).  Figure 1.2 shows the gas leakage occurs on natural gas pipeline. 

 

 

There are two main types of methods can be used to detect leakage in 

pipelines which divided into hardware-based and software-based.  Hardware-based 

methods rely mainly on the use of special sensing devices to detect fluid leakage.  It 

is depending on the type of sensors and equipment used for detection.  Hardware-

based methods are able to detect very small leaks and the leak location, but 

installations of the sensors for these methods are very expensive and the detection 

time is very long.  To overcome these difficulties, the mathematical modelling to 

determine leakage in gas pipeline should be focussed.  Software-based methods have 

software programs which based on the mathematical modelling.  The implemented 

algorithms continuously monitor the state of pressure, temperature, flow rate and 
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other pipeline parameters (Jin et al., 2014).  The algorithms can conclude if a leak 

has occurred based on the evolution of these parameters. 

 

 

In this thesis the leakage detection of hydrogen-natural gas mixture can be 

done by using a technique of transient pressure wave analysis.  The governing 

equations can be solved numerically by using Reduced Order Modelling (ROM) 

technique.  The Implicit Steger-Warming Flux Vector Splitting method is interested 

to consider as one of the schemes in ROM technique to solve the governing 

equations.  ROM was proposed by Behbahani-Nejad and Shekari (2010) and was 

used to analyse on the transient gas flow in a rigid pipeline.  Thus, the MATLAB 

programming will be developed to solve the governing equations to analyse the 

behavior of the flow characteristics of hydrogen-natural gas mixture in a pipeline 

when the leakage occurs. 

 

 

 

 

1.2 Problem Statement 

 

 

Detection of leakage and its location has always been one of the main 

problems in gas pipeline transportation.  Early detection is crucial to avoid 

impending disasters.  Previous study only focusing on the external/hardware-based 

method to determine leak in pipelines.  The external methods of leak detection, 

especially from the natural gas pipelines include the optical method with potential 

sensors such as the lidar absorption, diode laser absorption, broadband absorption, 

backscatter imaging, thermal imaging and multi-spectral imaging (Ikuta et al., 1999; 

Kulp et al., 1993; Minato et al., 1999; Spaeth and O’Brien, 2003).  It is observed that 

detecting leakage in pipelines using detection sensors, especially for underground 

pipelines is difficult depending on the types of sensors and equipment used and these 

are usually expensive.  The suitable technique has been chosen to determine and 

locate leakage in gas pipeline (Oke et al., 2003).  The internal/software-based 
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methods are the method used to detect and locate leaks based on mathematical 

modelling.  One of the internal methods is a transient pressure wave analysis. 

 

 

Risk of leakage through pipelines is well studied for natural gas (Turner and 

Mudford, 1988; Wilkening and Baraldi, 2007), but not for hydrogen or hydrogen-

natural gas mixture.  In the gas pipeline transportation system, the existing pipe is 

designed and constructed specifically for natural gas only.  A study on the 

transportation of hydrogen-natural gas mixture in the existing pipeline is important, 

because the chemical and physical properties of hydrogen differ significantly from 

natural gas.  The pressure evolution of hydrogen-natural gas mixture during the 

transient flow will not be the same (Veziroglu and Barbir, 1992).  It is not at all 

possible to simply replace natural gas by hydrogen in the existing natural gas 

pipeline (Elaoud and Hadj-Taïeb, 2008; Tabkhi et al., 2008).  The mass ratio of the 

gas mix has not been correctly predicted.  Since hydrogen is a reactive gas, it can 

cause changes in the mechanical properties and could lead to leakage.  Therefore, the 

mass ratio portion of both gases is important to consider to prevent the pipeline 

rupture. 

 

 

Valves are always installed in the pipeline to control the gas flow when 

damage occurs.  Maximum pressure can occur during the valve closure or at the end 

of the closure operation.  Short times during valve closure are important in reducing 

the maximum pressure, especially in emergency conditions, especially when leakage 

occurs (Karney and Ruus, 1985; Subani and Amin, 2015).  Previous study only 

considers the linear closing valve law and most studies assumed the flow to be at 

steady state conditions.  Study on transient condition is important because pipeline 

flows are frequently in unsteady state due to the sudden opening and closing of 

valves.  To reduce the pressure, sudden or instantaneous closure valve will be 

considered to ensure the attainment of minimum pressure at the downstream end 

within a short time.  Thus, the effect of the sudden closure valve is important to 

investigate. 
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In many pipeline simulations, the flow characteristics are changing due to the 

operation of system controlling devices such as valves, compressors and pressure 

regulators (Chaczykowski, 2010).  As a result, non-isothermal gas flow models are 

used, to account for sharp changes in the gas pressure, temperature and flow rate.  

Many researches on the gas flow assumed that the temperature is constant through 

the pipeline, thereby they are neglecting the energy equation.  But, in most cases, the 

isothermal flow is not an accurate assumption, due to the fact that heat transfer 

changes the gas temperature as it travels through the pipeline.  One very important 

outcome of this reality, the non-isothermal flow will be considered.  For the non-

isothermal flow in a pipeline, the gas properties can be assumed to be varied or not 

constant over any cross section in a pipeline and some properties, such as the density 

and velocity, will change accordingly (Abbaspour and Chapman, 2008; Tentis et al., 

2003). 

 

 

Another problem is the position of the pipeline.  Most analysis of flow in 

pipeline system has assumed the pipeline is laid horizontally (Behbahani-Nejad and 

Shekari, 2008; 2010; Elaoud and Hadj-Taïeb, 2008; Zhou and Adewumi, 1995).  In 

the engineering design of pipeline networks, the pipeline is not always placed 

horizontally or lie at the same height.  From experiments conducted on the effect of 

the inclination angle of pipelines, reduced storage capacity and pressure loss have 

been observed (Lubbers, 2007).  The inclination term should be included in the 

models because the pressure drop along the pipe has a strong dependence on 

inclination term (Herr´an-Gonz´alez et al., 2009).  It is important to determine the 

effect of body force due to the inclined pipeline in order to give more accurate and 

real representation of pipeline systems. 

 

 

Based on these problems, this study is therefore conducted where the leak 

location and leak discharge will be calculated based on the transient pressure wave 

analysis for non-isothermal flow of hydrogen-natural gas mixture in an inclined 

pipeline. 
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1.3 Objectives of Research 

 

 

The main objective of this research is to develop a mathematical model and 

numerical code to calculate the leak location and leak discharge for transient non-

isothermal flow of hydrogen-natural gas mixture.  The specific objectives are: 

 

1. To determine the effect of mass ratio of gas mixture on the flow 

characteristics of hydrogen and natural gas at leakage point. 

2.  To determine the effect of sudden closing valve on the flow 

characteristics of gas mixture at leakage point. 

3. To evaluate the effect of inclination angle in a pipeline on the flow 

characteristics of gas mixture at leakage point. 

4. To investigate the effect of temperature change on the flow characteristics 

of gas mixture at leakage point. 

 

 

 

 

1.4 Scope of Research 

 

 

This research focuses on the one dimensional flow system with a 

homogeneous gas mixture of hydrogen and natural gas.  The flow is assumed to be 

compressible and inviscid (viscosity of gases are neglected).  The viscosity of 

hydrogen and natural gas are neglected because they are very small, which are 

50.88 10 kg ms  and 51.10 10 kg ms  for hydrogen and natural gas, respectively.  

The transient will occur due to the sudden closing of valve at the downstream end of 

the pipeline.  The Reduced Order Modelling (ROM) will be used as the numerical 

technique for solving the governing equations.  The application will be considered in 

the transportation of hydrogen-natural gas mixture which includes the effect of mass 

ratio of hydrogen and natural gas, sudden closing valve, inclination angle, 

temperature change and the leakage detection in the rigid gas pipeline.  The leakage 
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causes from the internal pressure since hydrogen will be mixed with natural gas in 

the same pipeline.  Non-isothermal flow will be considered to determine the leak 

point in the inclined pipeline based on the analysis of the transient pressure wave. 

 

 

 

 

1.5 Significance of Research 

 

 

This study concerns the transportation of hydrogen-natural gas mixture 

through a pipeline (Bade and Karim, 1999; Balat and Balat, 2009; Cheng et al., 

2009; Elaoud and Hadj-Taïeb, 2008; Hoeseldonackx and D‘haeseleer, 2011; Tabkhi 

et al., 2008; Uilhoorn, 2009; Veziroglu and Barbir, 1992).  Mixing hydrogen into the 

existing natural gas pipeline has increased the output of renewable energy systems 

such as wind farm and reduce the greenhouse emission (Bade and Karim, 1999; 

Geagla et al., 2013; Karim et al., 1996; Ma, et al., 2009).  A large wind farm may 

consist of several hundred individual wind turbines or wind power which are 

considered to be plentiful, renewable, widely distributed, clean and zero greenhouse 

gas emitting during operation.  By mixing hydrogen into the natural gas pipeline, the 

transportation and storage capacity of the existing infrastructure can be used directly 

to consumers.  Transportation of hydrogen-natural gas mixture through pipeline can 

contribute significantly to solve the problem of transporting and storing electricity 

which generated from renewable resources.  Therefore, this study would help other 

researcher to focus on their studies to develop an efficient pipeline distribution. 

 

 

Pipeline companies are facing a major challenge to detect and locate 

leakages.  This study contains a comprehensive review of the techniques used in 

detecting and locating gas leaks (Hunaidi and Chu, 1999; Hunaidi et al., 2000; 2004; 

Ikuta et al., 1999; Iseki et al., 2000; Minato et al., 1999; Oke et al., 2003; Sivathanu 

and Gore, 1991; Sivathanu et al., 1991).  It is difficult to secure a pipeline with many 

leakage detection sensors, especially for underground pipelines.  Installation of the 

sensors into pipeline are very expensive and the detection time is very long.  To 



11 

 

 

solve the leakage problem, sophisticated leak detection techniques are required (Jin 

et al., 2014).  In this study, the best method for leakage detection is proposed based 

on mathematical modelling, which is the transient pressure wave analysis technique 

(Brunone et al., 2000; Elaoud and Hadj-Taïeb, 2009; Elaoud et al., 2010; Ivetic and 

Savic, 2007).  This method is more significant and correctly simulates transient flow 

with the presence of leaks.  Thus, this study will give the ideas for the other 

researchers who interested to study the leakage detection in the future. 

 

 

In this study, Reduced Order Modelling (ROM) technique is developed for 

solving the transient flow (Behbahani-Nejad and Shekari, 2010).  This method will 

be modelled and applied to reduce the simulation time of unsteady flow models 

(Behbahani-Nejad and Shekari, 2008; 2010; Dowell, 1996; Florea et al., 1998; Hall, 

1994; Romanowski and Dowell, 1997).  This method is a new application for the 

transportation of transient flow of hydrogen-natural gas mixture problems.  However, 

this method is an efficient computational method to solve the transient flow in gas 

pipelines.  This method gives minor errors and can be reduced the computational cost 

compared to the other method such as method of characteristics, finite difference 

method or method of lines.  This study will provide a platform for other researcher to 

explore into unsteady or transient flow problem, especially in the scope of ROM 

technique, and in oil and gas industry. 

 

 

 

 

1.6 Outline of Thesis 

 

 

This thesis is divided into seven chapters, including this introduction chapter.  

The present chapter brief the introduction on the leakage detection of transient 

hydrogen-natural gas mixture in a pipeline.  All the problems in this study are based 

on hydrogen-natural gas mixture.  The justification of the study is presented in the 

problem statement section, followed by the research objectives.  The scope and 
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importance of the study are also highlighted at the end of this chapter.  The 

remainder of the thesis is organized in six chapters. 

 

 

In Chapter 2, the literature review is presented.  The chapter starts with the 

importance of hydrogen-natural gas mixture.  Then, the previous review of one 

dimensional gas flow models in a pipeline.  Various mathematical models of gas 

flow in a pipeline are reviewed, which include the continuity, momentum and energy 

equations.  Some techniques to detect and locate leaks in a pipeline are also 

discussed in this chapter, such as external methods (hardware-based methods) and 

internal methods (software-based methods).  The advantages and disadvantages of 

each method are also presented.  The numerical method is a very important part to 

consider in solving and simulating this transient flow.  In this chapter, some of 

numerical methods such as finite difference method, characteristics method, method 

of lines and reduced order modelling are also presented for solving the gas flow 

analysis in a pipeline. 

 

 

Chapter 3 presents the mathematical modelling of the leakage detection on 

non-isothermal transient flow of hydrogen-natural gas mixture in an inclined 

pipeline.  The governing equations consist of non-linear hyperbolic partial 

differential equations which are continuity, momentum and energy equation are 

presented with the boundary and initial conditions.  The equations of mass ratio, 

density and celerity wave of hydrogen-natural gas mixture, and sudden closing valve 

equation are also given in this chapter.  The formulation to calculate the leakage 

position and leak discharge are given at the end of this chapter. 

 

 

In Chapter 4, the solution procedure of Reduced Order Modelling (ROM) 

technique is discussed in detail.  The governing equations are numerically solved 

using Implicit Steger-Warming Flux Vector Splitting Method (FSM) scheme.  The 

procedure to determine the eigenvalues and the eigenvectors are also presented.  In 

this chapter, the FSM and ROM algorithm are developed to carry out the numerical 

computation of the non-isothermal flow and presented at the end of this chapter. 
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In Chapter 5, the results on the leak location and leak discharge for 

isothermal flow is presented.  The numerical results obtained have been presented 

and validated with existing numerical methods for pressure behavior on isothermal 

flow of the gas mixture in a horizontal pipeline.  The new results are presented by 

considering the effects of sudden closing valve, mass ratio of hydrogen and natural 

gas and inclination angles for isothermal flow in an inclined pipeline.  Results on the 

pressure and celerity wave are used to determine the leak location and the leak 

discharge of hydrogen-natural gas mixture on isothermal flow in a pipeline. 

 

 

Chapter 6 determines the effect of temperature change on the flow 

characteristics of hydrogen-natural gas mixture.  The parameters such as properties 

of hydrogen and natural gas, diameter and length of pipeline, and the governing 

equations, boundary and initial conditions are remain same as Chapter 5.  The results 

for non-isothermal flow is validated and compared with the isothermal flow in 

Chapter 5.  The effect of temperature change for non-isothermal flow is discussed in 

detail in this chapter. 

 

 

Finally, Chapter 7 contains some concluding remarks, summary of research, 

several recommendations for future works are suggested and our achievements in 

this research. 
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