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ABSTRACT 

 

 

 

 

Fluid is a substance that continuously deform under the influence of shear 

stress. Basically, fluid can be classified into two categories which are Newtonian and 

non-Newtonian. In reality, most fluids belong to the class of non-Newtonian fluids and 

one of them is Jeffrey fluid. Jeffrey fluid is also known as viscoelastic fluid that 

exhibits both viscous and elastic characteristics. Recently, this type of fluid have 

received considerable attention due to their numerous applications in industries 

especially in polymer industries. Due to this reason, many investigations have been 

made to study the Jeffrey fluid in various aspects from both analytical and numerical 

methods. Therefore, in this thesis, the effect of thermal radiation on unsteady 

magnetohydrodynamics (MHD) free convection flow of Jeffrey fluid with and without 

nanoparticles past an infinite vertical plate are studied. The fluid is taken electrically 

conducting in the presence of uniform transverse magnetic field applied in a direction 

perpendicular to the flow. Specifically, focused of this study is to obtain an exact 

solution for velocity and temperature distributions under conditions of ramped wall 

temperature and isothermal plate. Using the constitutive relation of Jeffrey fluid and 

some assumptions of physical conditions, five specific problems are modelled as 

partial differential equations. For the first three problems, the fluid is considered as 

non-rotating fluid, while in the fourth and fifth problems the rotating fluid is analyzed. 

An appropriate dimensionless variables are employed to the dimensional governing 

equations and solved analytically with the help of Laplace transform technique. The 

effect of pertinent parameters such as Jeffrey fluid parameter, rotation parameter, 

phase angle, Hartmann number, permeability parameter, nanoparticles volume 

fraction, Grashof number, Prandtl number, radiation parameter and time on velocity 

and temperature are plotted graphically and discussed in details. Numerical results of 

Nusselt number and skin friction for various emerging parameters are calculated and 

presented in tabular forms. In order to authenticate the present results, the limiting 

cases are provided, where an excellent agreement are found. Results obtained show 

that, increasing of Hartmann number tends to retard the fluid flow due to the Lorentz 

force effect. Increasing the values of radiation parameter led to an increase in velocity 

and temperature fields. Further, in the case of rotating fluid, large values of rotation 

parameter reduces the primary velocity but enhance in the secondary velocity. On the 

other hand, increasing nanoparticles volume fraction causes the velocity of non-

rotating fluid increases but decreases for rotating fluid. It also found that, the fluid 

motion for ramped wall temperature is always slower compared to an isothermal plate. 

Interestingly, Jeffrey fluid can be reduced to a Second grade fluid in the absence of 

material parameter. 
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ABSTRAK 

 

 

 

 

Bendalir adalah bahan yang sentiasa berubah bentuk di bawah pengaruh 

tegasan ricih. Pada dasarnya, bendalir boleh diklasifikasikan kepada dua kategori iaitu 

Newtonan dan bukan Newtonan. Realitinya, kebanyakan bendalir adalah tergolong 

dalam bendalir bukan Newtonan dan salah satunya adalah bendalir Jeffrey. Bendalir 

Jeffrey juga dikenali sebagai bendalir viskoelastik yang mempamerkan dua ciri iaitu 

likat dan anjal. Akhir-akhir ini, bendalir Jeffrey telah mendapat perhatian kerana 

pelbagai aplikasinya dalam bidang industri terutamanya dalam industri polimer. Oleh 

sebab itu, banyak penyelidikan telah dilakukan untuk mengkaji bendalir Jeffrey dalam 

pelbagai aspek dari kedua-dua kaedah analitik dan berangka. Oleh itu, dalam tesis ini, 

kesan sinaran terma pada hidrodinamik magnet (MHD) aliran olakan bebas tak mantap 

bendalir Jeffrey melintasi plat menegak tak terhingga dengan dan tanpa nanozarah 

dikaji. Bendalir ini diambil dalam keadaan pengaliran elektrik dengan kehadiran arus 

medan magnet seragam yang melintang dan berserenjang dengan aliran bendalir. 

Secara khususnya, fokus kajian ini adalah untuk mendapatkan satu penyelesaian tepat 

untuk taburan halaju dan suhu di bawah syarat suhu tanjakan dinding dan plat isoterma. 

Menggunakan hubungan juzuk bendalir Jeffrey dan beberapa andaian keadaan fizikal, 

lima masalah dimodelkan sebagai persamaan pembezaan separa. Bagi tiga masalah 

pertama, bendalir dianggap sebagai aliran tak berputar, manakala dalam masalah 

keempat dan kelima aliran berputar dianalisis. Pembolehubah tak bermatra yang 

bersesuaian digunakan dalam persamaan menakluk dan diselesaikan secara analitik 

dengan bantuan kaedah penjelmaan Laplace. Kesan parameter yang bersangkut-paut 

seperti parameter Jeffrey, parameter putaran, sudut fasa, nombor Hartmann, parameter 

keliangan, isipadu pecahan nanozarah, nombor Grashof, nombor Prandtl, parameter 

radiasi dan masa terhadap halaju dan suhu diplot secara grafik dan dibincangkan secara 

terperinci. Keputusan berangka untuk nombor Nusselt dan geseran kulit bagi pelbagai 

parameter yang muncul dikira dan dipersembahkan dalam bentuk jadual. Untuk 

mengesahkan kesahihan penyelesaian yang telah diperolehi, kes penghad telah 

disediakan, dengan ketepatan yang sangat baik telah ditemui. Keputusan yang 

diperoleh menunjukkan bahawa peningkatan nombor Hartman cenderung untuk 

melambatkan aliran bendalir, disebabkan oleh kesan daya Lorentz. Peningkatan nilai 

parameter radiasi menyebabkan peningkatan dalam halaju dan suhu. Seterusnya, 

dalam kes bendalir yang berputar, untuk nilai parameter putaran yang besar, halaju 

pertama berkurangan tetapi meningkat pada halaju kedua. Sebaliknya, peningkatan 

isipadu pecahan nanozarah menyebabkan halaju bendalir tak berputar meningkat tetapi 

berkurangan bagi bendalir yang berputar. Didapati juga, aliran bendalir bagi kes suhu 

tanjakan dinding sentiasa lebih perlahan berbanding plat isoterma. Menariknya, 

bendalir Jeffrey boleh diturunkan kepada bendalir gred kedua dengan ketiadaan 

parameter bahan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

This chapter provides some basic terminologies of fluid mechanics, focusing 

on unsteady free convection flow of non-Newtonian Jeffrey fluid. A brief description 

of research background is addressed in Section 1.2. Problem statement and research 

objectives are given in Section 1.3 and Section 1.4, respectively. The scope of the 

study is discussed in Section 1.5, while Section 1.6 highlights the significance of 

findings. Section 1.7 presents the research methodology. Finally, the thesis 

organization is given in Section 1.8. 

 

 

 

 

1.2 Research Background 

 

 

Fluid mechanics is a subcategory of fluid dynamics, defined as science that 

deals with the behavior of fluids at rest (fluid statics) or in motion (fluid dynamics), 

and the interaction of fluids with solids or other fluids at the boundaries (Cengel and 

Cimbala, 2006). It is also referred to as fluid dynamics, by considering fluids at rest 

as a special case of motion with zero velocity (Cengel and Cimbala, 2006). 

Numerous applications of fluid mechanics can be found in biological and medical 

applications such as artificial heart, breathing machine and dialysis system. Other 

than that, it is applied widely in piping system, design building, transportation, and 

also broader scale such as design and analysis of aircraft, jet engines, submarines, 

rockets.  
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Fluid can be described as a substance that continuously deforms under the 

influence of shear stress. Primarily, fluid can be classified into two categories, which 

are Newtonian and non-Newtonian; differentiated based on their viscosity behavior. 

Fluids that obey Newton’s Law viscosity are called as Newtonian fluid. In contrast, 

non-Newtonian fluids do not follow the Newton’s Law viscosity. The relation that 

defined the Newtonian fluid behavior is 

 ,
u

y
 





 (1.1) 

where   is denoted as shear stress exerted by the fluid,   is the dynamic viscosity 

of the fluid and u y   is the shear rate, rate of strain or velocity gradient. This 

relation is known as Newton’s Law of viscosity; named after Isaac Newton in his 

1687 work, namely “Philosophie Principa Mathematica”. The viscosity of this type 

of material will remain constant no matter how fast they are forced to flow through a 

pipe or channel. Water, mineral oil, gasoline, alcohol, glycerin and organic solvents 

are the examples of Newtonian fluid.  

 

 

The Power Law, also called as Ostwald-de Waele relation, can be used to 

approximately describe non-Newtonian fluid based on the shear thinning and shear 

thickening behavior. The expression of Power Law can be written as 

 .

n

u
K

y


 
  

 
 (1.2) 

The power n  is known as the power law index or flow behavior index, while K  is 

the consistency coefficient and u y   is the shear rate or the velocity gradient 

perpendicular to the plane of shear. For 1,n   the fluids will show shear thinning 

behavior when the viscosity decreases with shear rate, and shear thickening when 

1n   when the viscosity increases with shear rate. The special case, 1n   

corresponds to the Newtonian behavior. It may be noted that, when ,K   the 

Equation (1.2) will reduce to Newton’s Law viscosity (1.1). The examples of non-

Newtonian fluid can be found in many polymer solutions and molten polymers, such 

as ketchup, starch suspensions, paint and shampoo.  
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Due to the large difference in the chemical and physical structure of non-

Newtonian fluids and the variation of flows, the usual Navier Stokes equations may 

fail and unable to represent all the rheological properties of non-Newtonian fluids. 

Thus, many mathematical models have been proposed to describe the physical 

behavior of these fluids, such as Maxwell fluid, Oldroyd fluid, Walter-B fluid, 

Second grade fluid, Jeffrey fluid and Burgers fluid. Unlike viscous fluid, the 

constitutive equations of non-Newtonian fluids are more complicated, thus highly 

nonlinear governing equations. This area of studies has attracted much attention from 

many researchers including Khan et al. (2013a), Shehzad et al. (2014a), Sivaraj and 

Kumar (2013), Khan et al. (2013b) and Samiulhaq et al. (2014a). Amongst these 

many models, the Jeffrey fluid is one of the relatively simplest types of viscoelastic 

fluid that exhibits both relaxation and retardation effects (Nadeem et al., 2014), 

which has been used in the present study. The reason of choosing Jeffrey fluid is 

because it is able to predict relaxation/retardation time effects, which are significant 

in studying the viscoelastics properties for the polymer industries (Ali and Asghar, 

2014).  Dilute polymer solution is one of Jeffrey fluids (Farooq et al., 2015). 

 

 

Besides different types of fluids, another important transport aspect in fluid 

dynamics is heat transfer. Heat transfer can be described as the transport of the 

thermal energy driven by thermal nonequilibrium within a medium or among 

neighboring media (Kaviany, 2002). The fundamental modes of heat transfer can be 

grouped into three broad categories, namely conduction, convection and radiation. 

Ice melting, heating water in pot, and microwave oven operation are some examples 

of energy transfer. Conduction refers to the transfer of heat between two bodies or 

two parts of the same body through molecules which are more or less stationary, 

whereas convection heat transfer occurs because of the motion of fluid past a heated 

surface; in which the faster the motion, the greater the heat transfer (Nag, 2002). 

According to Jaluria (1980), radiation heat transfer is in the form of electromagnetic 

waves, where the energy is emitted from a material due to its temperature level, 

being larger for a larger temperature. It is then transmitted to another surface through 

the intervening space, which may be vacuum or a medium, which may absorb, reflect 

or transmit the radiation, depending on the nature and extent of the medium.  
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The mechanism of convection is further divided into three types, which are 

free, forced and mixed convections. Amongst three modes of convection, free 

convection is most highlighted in this research. Free, or also known as natural 

convection, happens when a fluid motion are caused by natural buoyancy forces 

alone and not generated by any other sources. The movement of a fluid induced by 

external sources like pump, fan and suction device are called as forced convection. 

Meanwhile, according to Joye (2003), mixed convection heat transfer occurs when 

forced convection currents take the same order of magnitude as natural flow 

velocities. In simple explanation, mixed convection exists when both natural and 

forced convections mechanism significantly and synchronously contribute to the heat 

transfer (Dawood et al., 2015). 

 

 

In buoyancy driven flow (natural convection), Boussinesq approximation is 

needed. This is due to the fact that the exact governing equations are intractable in 

that particular flow. According to Gray and Giorgini (1976), this approximation is 

the simplest one which admits the buoyancy where some assumptions are 

considered: (i) viscous dissipation is neglected, (ii) constant density, except when it 

directly causes buoyant forces, and (iii) constant properties for all other fluids. 

Boussinesq equation is named after Joseph Boussinesq, a French mathematician. 

This equation can be expressed as difference density in the form of temperature 

difference, as 

   ,T T       (1.3) 

where   is density of the fluid,   is the density in the ambient medium, T is 

temperature, T  is temperature in the ambient medium and   is the coefficient of 

thermal volumetric expansion, 

 
1

.
T T

 







 
   

 
 (1.4) 

Interesting investigations on heat transfer flow have been well documented in 

references by Foisal and Alam (2015), Seth et al. (2015a), Khan et al. (2014), 

Javaherdeh et al. (2015) and Animasaun (2015).  
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Together with heat transfer, effect of magnetohydrodynamics (MHD) is also 

a major interest to investigate in this study. MHD with heat transfer has crucial 

utilizations in solving engineering problems, and it can be found in many devices 

such as power generator, cooling reactor, design of heat exchangers, and MHD 

accelerators. Historically, the design of electromagnetic pump by Hartmann (1937) 

led to the study of MHD flows. The theory of MHD was initiated by Hannes Alfren 

in 1942.  The term “MHD” represents magneto (magnetic field), hydro (water) and 

dynamics (movement). MHD flow is basically a bilateral interaction between a fluid 

flow and magnetic field. According to Ahmad (2016), MHD is defined as the 

capability of a moving conductive fluid to induce current, hence generating forces on 

the fluid and altering the magnetic field effect itself. Some development on this topic 

can be seen in studies by Christian et al. (2014), Yazdi et al.(2014), Farooq et 

al.(2015), Imtiaz et al. (2016) and Sukumar et al.(2016).  

 

 

The study of fluid flow through a porous medium in the presence of MHD 

effect is also important, as reported by Jena et al. (2016), Hayat et al. (2016a), and 

Ellahi et al. (2014). According to Tripathi and Beg (2012), porous medium is a 

material containing a number of pores distributed throughout the matter. Meanwhile, 

fluid flow through porous medium can be described as the behavior of fluids moving 

through a porous medium, as in physical nature such as in seepage of water in river 

beds, limestone, the human lung, filtration of fluids, movement of underground water 

and oils, bile duct, rye bread, wood, gall bladder with stones and small vessels 

(Chauhan and Rastogi, 2012).  

 

 

Usually, study of free convection flow and heat transfer problem depends on 

the thermal boundary conditions, in which, most of the practical problems are 

frequently engaged with non-uniform or arbitrary wall conditions. To understand 

such situations, it is worth to take into account the step discontinuities in the surface 

temperature into this present study. Generally, ramped wall temperature is known as 

the step change in wall temperature. Malhotra et al. (2006) employed ramped wall 

temperature in the fabrication of thin film photovoltaic devices to achieve a finish of 

the system. Besides that, periodic temperature step changes in building heat transfer 

applications such as air conditioning system has been explained in detail by 
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Antonopoulos and Democritou (1994), where conventional assumption of periodic 

outdoor conditions may lead to considerable errors, in case of a significant temporary 

deviation of the temperature from periodicity.  

 

 

 Liu (2008) has shown that the study of Stokes problem has a great 

significance and influences especially in geophysical flows and heat conduction. 

Basically, the traditional Stokes problem can be divided into two types, namely the 

first Stokes and second Stokes problems according to the motions of the rigid 

boundary below the fluid. Ai and Vafai (2005) defined that the shear flow of viscous 

fluid near a flat plate which is suddenly accelerated from rest and then moves in its 

own plane with a constant velocity leads to the first kind problem, or also known as 

Rayleigh type. Meanwhile, Stokes second problem occurs when the flow about the 

infinite flat plate executes harmonic oscillations parallel to itself (Schilichting, 1968). 

However, in this study, we only stressed on the Stokes second problem, or so called 

oscillating plate (Panton, 1968). 

 

 

Besides the oscillation of the plates, rotation of the fluid is also important and 

interesting to study. Rotation is described as a circular movement of an object around 

a center or point of rotation. The influence of rotation can be observed in diverse 

phenomena such as ocean circulation, migration of sea winds, internal rotation rate 

of sun, calculating Coriolis drift of the trajectories of very long range artillery shells, 

galaxies formation, maintenance and secular variations of Earth’s magnetic field due 

to the motion of earth’s liquid core (Seth and Sarkar, 2015). This also helps to have a 

better understanding on the behavior of nanoparticle orientation in fluid systems 

through rotational diffusion (Dong and Cao, 2014; Dong et al., 2015; Dong and Cao, 

2015). 

 

 

The Coriolis and centrifugal (inertial) forces are very significant when 

dealing with rotation; in which the Coriolis force is more dominant. Coriolis force, 

named after Gustave Coriolis, is an invisible force that appears to deflect a moving 

object in the frame rotating in the opposite direction. The Coriolis force depends on 

the rate of rotation, in which the deflection is greater near the poles and lesser near 

the equator. Earth rotation is an example of common rotating reference frame. 
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Assume that someone is standing in the equator and throwing an object to his friend 

in the Northern Hemisphere. The object’s movement will bend to the right. In this 

case, the object may be the winds. Therefore, in the Northern Hemisphere, the winds 

will deflect to the right, whereas to the left in the Southern Hemisphere. Due to this 

fact, rotation analysis had been included in this study.  

 

 

Nowadays, development of a new innovative class of heat transfer fluids, 

called nanofluids, is quite prominent. The term “Nanofluid” was coined by Choi and 

Eastman (1995), which describes a suspension of solid nanoparticles having diameter 

1–100 nm in a conventional base fluid such as ethylene glycol, water, lubricant oil, 

kerosene oil and etc. Traditional heat transfer fluids are found to have limited heat 

transfer capabilities to achieve the cooling rate requirements in the industry, due to 

their low thermal conductivities compared to metals. Thus, the concept of insertion 

of nanoparticles in fluids leads to an increase in the thermal conductivity of the base 

liquids, which dramatically enhances the heat transfer performance. Due to these 

reasons, a number of investigations have been made to study nanofluids from both 

theoretical and experimental aspects, such as by Eastman et al. (1997), Lee et al. 

(1999), Eastman et al. (2001), Rashidi et al. (2014), Rajesh et al. (2015), Khan et al. 

(2015), Mohyud-Din et al. (2015), and Dinarvand et al. (2016).  

 

 

 Based on the discussions, the problems in this study have been split into two 

major interests, which are non-rotating and rotating fluid, with consideration of 

various aspects, such as ramped wall temperature, effect of nanoparticles and 

oscillating plate. All of these problems are tackled by applying Laplace transform 

technique, since the exact solutions are important for comparison with the numerical 

scheme. Further discussions are provided in Chapter 2, with reference from literature 

by previous researchers relevant to this study.  
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1.3 Problem Statement 

 

 

Non-Newtonian fluids have gained much attention nowadays due to their 

potential in industrial and technological processes. Significantly, it is because 

viscous fluids are not capable to predict diverse characteristic of all non-Newtonian 

fluids using Navier Stokes equation. Theoretically, the analytical study of unsteady 

free convection flow non-Newtonian Jeffrey fluid with heat transfer along vertical 

plate is affected by some effects such as nanoparticles, ramped wall temperature, 

porous medium, rotation, and oscillation, which are rarely investigated but 

interesting to be explored. Particularly, most previous studies were conducted by 

using numerical analysis and semi-analytical technique, whereas very few were 

found applying the closed form solution. Therefore, this research has been conducted 

to answer the following questions: 

 

(i) How are the mathematical models for rotating and non-rotating of non-

Newtonian Jeffrey fluid past an infinite vertical plate formulated?  

(ii) How does the presence of nanoparticles influence the velocity and 

temperature fields?  

(iii) How are the Jeffrey fluid and Jeffrey nanofluid models compared with the 

existing second grade fluid model in the problem of unsteady MHD free 

convection flow with heat transfer? 

(iv) How do Jeffrey fluid parameter, Hartmann number, permeability 

parameter, radiation parameter, rotation parameter and other pertinent 

parameters behave in the problem of unsteady free convection flow of 

Jeffrey fluid with ramped wall temperature and isothermal plate?  

(v) How does the oscillating plate affect the fluid velocity in the case of 

ramped wall temperature and isothermal plate?  

(vi) How can the exact solutions for unsteady non-Newtonian Jeffrey fluid 

past a vertical plate under different conditions be obtained? 

 

Specifically, five problems are discussed in this thesis, which are: (a) unsteady 

free convection flow of Jeffrey fluid with ramped wall temperature, (b) porosity 

effect on unsteady MHD free convection flow of Jeffrey fluid past an oscillating 

vertical plate with ramped wall temperature, (c) unsteady MHD free convection flow 
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of Jeffrey nanofluid saturated in porous medium, (d) unsteady MHD free convection 

flow of rotating Jeffrey fluid embedded in porous medium with ramped wall 

temperature, and (e) impact of nanoparticles on unsteady MHD free convection flow 

of rotating Jeffrey fluid filled in porous medium.  

 

 

 

 

1.4 Research Objectives 

 

 

The objectives of this study are: 

 

(i) to extend and derive mathematical models of the problems: 

(a) unsteady free convection flow of Jeffrey fluid (Khan, 2015) to 

unsteady MHD free convection flow of Jeffrey fluid with ramped wall 

temperature and radiation effect, 

(b) unsteady MHD free convection flow of Jeffrey fluid with ramped wall 

temperature and radiation effect to unsteady MHD free convection 

flow of Jeffrey fluid past an oscillating vertical plate saturated in a 

porous medium, 

(c) unsteady MHD free convection flow of Jeffrey fluid past an 

oscillating vertical plate saturated in a porous medium to unsteady 

MHD free convection flow of Jeffrey nanofluid with an isothermal 

plate, 

(d) unsteady MHD free convection flow of Jeffrey fluid with ramped wall 

temperature and radiation effect to unsteady MHD free convection 

flow of rotating Jeffrey fluid embedded in a porous medium, and 

(e) unsteady MHD free convection flow of rotating Jeffrey fluid 

embedded in a porous medium to unsteady MHD free convection 

flow of rotating Jeffrey nanofluid with an isothermal plate,  

(ii) to provide the mathematical formulation of non-rotating and rotating 

Jeffrey fluid, 

(iii) to obtain an exact solution for velocity and temperature distributions 

using Laplace transform technique, 



10 
 

(iv) to find the expressions of Nusselt number and skin friction for all 

problems and compute the numerical results in tabular forms for all 

emerging parameters, and  

(v) to investigate the behavior of fluid velocity and heat transfer 

characteristic of Jeffrey fluid.  

 

 

 

 

1.5 Scope of the Study 

 

 

This thesis focuses on the unsteady MHD free convection flow of Jeffrey 

fluid and Jeffrey nanofluid past an infinite vertical plate in various situations. Two 

different driving forces, namely buoyancy force and oscillating boundary condition, 

have been considered, which are responsible to generate the movement of the fluid. 

The first problem stresses on unsteady MHD free convection flow of Jeffrey fluid 

over vertical plate with ramped wall temperature. The second problem emphasizes 

on the effect of porosity on unsteady MHD free convection flow of Jeffrey fluid with 

ramped wall temperature, by considering Stokes second problem. The third problem 

explores the impact of nanoparticles on unsteady MHD free convection flow of 

Jeffrey fluid past an oscillating vertical plate in porous medium with constant 

temperature. In this study, Tiwari and Das nanofluid model has been applied. The 

rotating Jeffrey fluid under ramped wall condition has been examined in the fourth 

problem. The last problem highlights the analysis of nanoparticles into problem four 

with constant temperature. The governing equations along the imposed initial and 

boundary conditions have been written into dimensionless system and solved 

analytically with the help of Laplace transform method. The expressions of Nusselt 

number and skin friction have been evaluated and presented in tabular forms, while 

the solutions for velocity and temperature profiles have been analyzed based on 

graphs which have been plotted using mathematical software called MATHCAD. In 

order to check the accuracy of present findings, the limiting cases have been obtained 

from general solutions and compared with the published works in the literature. 
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1.6 Significance of the Study 

 

 

The significances of this study are as follows: 

 

 

(i) to build a better understanding on the rheological behavior of non-

Newtonian fluid, especially Jeffrey fluid,  

(ii) enhance knowledge about the formulation of unsteady rotating and 

non-rotating Jeffrey fluid model using constitutive equation, 

(iii) derive accurate analytical solutions for mathematical models 

involving ramped wall temperature and constant wall temperature, 

(iv) to give insight the physical behavior of nanoparticles on the fluid 

velocity and temperature profile, 

(v) to suggest the application of theoretical results of this research as a 

basis for fluid flow, which can contribute to the engineering 

applications and also in related fields, and 

(vi) to provide exact solutions to assist scientists and engineers to check 

the accuracy of complex mathematical models solutions, which are 

obtained from numerical schemes. 
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1.7 Research Methodology 

 

 
Figure 1.1 Operational framework. 
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1.8 Thesis Organization 

 

 

This thesis is divided into eight chapters. Chapter 1 consists of research 

background, problem statement, research objectives, scopes, significance of the study 

and research methodology. Chapter 2 reviews related literature regarding the 

problems identified in the problem statement. Chapter 3 presents the problem of 

unsteady MHD free convection flow of Jeffrey fluid past a vertical plate with ramped 

wall temperature. Full derivation of continuity, momentum and energy equations are 

explained in this chapter. Using the constitutive relation of Jeffrey fluid together with 

some assumptions, the governing equations of non-rotating Jeffrey fluid is 

formulated in terms of partial differential equations. Dimensionless variables are 

introduced to reduce the dimensional governing equations, as well as appropriate 

initial and boundary conditions into non-dimensional system. Analytical solutions for 

velocity and temperature fields are obtained corresponding to two different thermal 

boundary conditions, namely ramped wall temperature and an isothermal plate using 

Laplace transform method. The expressions of Nusselt number and skin friction for 

both cases are determined. Special and limiting cases are provided and compared 

with some published works in the literature. The impact of all emerging parameters 

on velocity and temperature distributions are plotted graphically and discussed in 

details.  

 

 

Chapter 4 investigates the effect of porosity on unsteady MHD free 

convection flow of Jeffrey fluid over an oscillating vertical plate with ramped wall 

temperature. The flow in the fluid is induced due to the cosines oscillation of the 

plate. Similar procedure as Chapter 3 is applied to solve the corresponding governing 

equations. The results obtained for both ramped wall and isothermal plate are plotted 

and discussed for all parameters interest. Chapter 5 is an extension of Chapter 4, 

where momentum equation takes into account the influence of nanoparticles. 

Kerosene oil is used as the conventional base fluid containing silver nanoparticles. In 

this chapter, only constant wall temperature is considered. Analogous procedure is 

utilized to find the solution of velocity and temperature distributions. The physical 

quantities effects on fluid flow and temperature are analyzed through graphs and 

discussed in details.  
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Chapter 6 conveys the unsteady MHD free convection flow of rotating 

Jeffrey fluid embedded in porous medium with ramped wall temperature. As 

continuation of previous chapters, the cases of ramped wall temperature and 

isothermal plate are studied. Formulation of rotating Jeffrey fluid incorporated with 

modified Darcy’s law is served. Appropriate dimensionless variables are employed 

to the governing equations and solved by Laplace transform technique. Nusselt 

number and skin friction are also calculated. Exact solutions for velocity and 

temperature profiles are sketched and the effect of pertinent parameters is explained. 

Chapter 7 is the extension of Chapter 6. This chapter discusses the impact of 

nanoparticles on rotating Jeffrey fluid and heat transfer with constant wall 

temperature. For the purpose of validation, current results have been compared with 

the findings by Khan (2015) and Samiulhaq et al. (2014b), where an excellent 

agreement is found. Finally, the summary of the whole chapters, conclusion and 

some recommendations for future research are presented in Chapter 8.  
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