
 

 

 

 

n-HEPTANE ISOMERIZATION OVER PLATINUM AND PHOSPHORUS 

SUPPORTED ON MODIFIED MOLYBDENUM OXIDE-MESOPOROUS 

SILICA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOR AIZA BINTI ABDUL FATAH 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITI TEKNOLOGI MALAYSIA 

 

 



 

 

 

 

 

 

n-HEPTANE ISOMERIZATION OVER PLATINUM AND PHOSPHORUS SUPPORTED 

ON MODIFIED MOLYDENUM OXIDE-MESOPOROUS SILICA 

 

 

 

 

 

 

 

 

NOR AIZA BINTI ABDUL FATAH 

 

 

 

 

 

 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of   

Doctor of Philosophy (Chemical Engineering)  

 

 

 

 

 

 

Faculty of Chemical and Energy Engineering   

Universiti Teknologi Malaysia  

 

 

 

 

 

MAY 2017 



iii 

 

 

 

 

 

 

  

 

 

Specially dedicated to Abah and Ma, 

(Abdul Fatah Che Omar & Halimah Yusof) 

‘Thank you for always being there; your endless love, faith, and encouragement never 

fail to strengthen me’ 

 

 

 

 

& 

 

 

To my beloved siblings, 

(Kak Na, Abe G, Kak Eni, Irah and Suha) 

'Your continuous helps, cares, motivations and supports can never be repaid’ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

 

 

 

 

 

ACKNOWLEDGEMENTS 

 

 

 

 

Alhamdulillah, all praise to Allah. Peace and blessing to Prophet Muhammad 

S.A.W. his families and all muslims. Special thanks to my supervisors, Prof. Dr. Aishah 

Abdul Jalil and Prof. Dr. Sugeng Triwahyono for the never ending advices and help 

during the study. Without their patience, criticisms, ideas and supports, this work could 

not have been accomplished.  

 

A million thanks and appreciation goes to all the Green Technology and 

Advanced Materials (GTAM) research group members, for giving me a hand in the 

process of doing this research. A lot of appreciation also goes to the staffs of Ibnu Sina 

Institute for their valuable help and cooperation.  My gratitude to the Ministry of Higher 

Education through financial support from MyPhD awards.  

 

Last but not least, I wish to express my sincere appreciation to my beloved 

family for their continuous support, advices and motivation for me to complete my 

project. Thank you so much. 

 

 

 

 

 

 

 



v 
 

 

 

 

 

 

ABSTRACT 

 

 

 

 

 

Catalytic isomerization of n-alkanes into the corresponding branched isomers 

is an important reaction to produce clean fuel with high quality. Therefore, continuing 

studies on efficient catalysts for isomerization have been conducted in recent years. In 

this study, mesostructured silica nanoparticles (MSN) were mixed physically with 

platinum (Pt) and molybdenum oxide (MoO3) to prepare Pt/MSN and MoO3/MSN for 

n-heptane isomerization. Besides, the effect of support was studied by employing the 

bicontinuous concentric lamellar silica (KCC-1) which was prepared by microwave-

assisted microemulsion, as MoO3 support (MoO3/KCC-1). In order to improve the 

catalytic activity, the effect of phosphorus (P) loading was carried out by impregnation 

of MoO3/KCC-1 with phosphoric acid to form P/MoO3/KCC-1. The catalysts were 

characterized using x-ray diffraction, surface area analysis, scanning electron 

microscopy, hydrogen-temperature programmed reduction, nuclear magnetic 

resonance, ultraviolet-visible, Fourier transform infrared (FTIR) and electron spin 

resonance (ESR) spectroscopies. High activity of n-heptane isomerization was 

observed on MoO3/MSN compared to the Pt/MSN in the presence of hydrogen at 350 

°C, with yield of mono- and di-branched iso-heptane reaching 36.6% and 6.8%, 

respectively. ESR and FTIR studies indicated that the high activity and stability of 

MoO3/MSN could be attributed to the dissociative-adsorption of molecular hydrogen 

to form atomic hydrogen, which subsequently formed active (MoOx)
-(Hy)

+. The 

interaction of Pt/MSN and molecular hydrogen formed Pt-H, which was not active in 

n-heptane isomerization. In comparison, the MoO3/KCC-1 possessed low activation 

energy (28.1 kJ/mol), as well as gave higher yield of isomers (42.2%) compared to 

MoO3/MSN (35.8%). The result was related to the unique morphology of silica KCC-

1, which allowed high accessibility of bulky mass reactant to the active sites. The 

P/MoO3/KCC-1 showed a decrease in the Brønsted acid while new Lewis acidic 

centers were formed at 1624 cm-1 and 1587 cm-1, as observed by 2,6-lutidine adsorbed 

infrared. High yield of isomers obtained by P/MoO3/KCC-1 was related to the 

participation of the acidic centers at 1624 cm-1 and 1587 cm-1, in the formation of 

protons by trapping electrons, as well as high accessibility to active (MoOx)
-(Hy)

+. The 

ANOVA analysis indicated that the reaction temperature was the prominent significant 

variable in the production of isomers. Based on the optimization experiment, 44.9% 

yield of isomers was obtained at the optimum condition of 311 °C, treated at 464 °C 

for 6 h. This study highlighted the potential of modified mesoporous silica in the 

catalysis research, especially for linear alkane isomerization. 



vi 
 

 

 

 

 

 

ABSTRAK 

 

 

 

 

 

Pengisomeran bermangkin alkana kepada isomer bercabang merupakan tindak 

balas penting untuk menghasilkan bahan api bersih dengan kualiti yang tinggi. Oleh 

itu, kajian berterusan ke atas pemangkin yang cekap untuk pengisomeran telah 

dilakukan sejak kebelakangan ini. Dalam kajian ini, mesostruktur silika nanozarah 

(MSN) dicampur secara fizikal dengan platinum (Pt) dan molibdena oksida (MoO3) 

bagi menyediakan Pt/MSN dan MoO3/MSN untuk pengisomeran n-heptana. Selain itu, 

kesan penyokong telah dikaji dengan menggunakan silika lamela sepusat dwiselanjar 

(KCC-1), yang disediakan melalui kaedah mikroemulsi berbantu gelombang mikro, 

sebagai penyokong MoO3 (MoO3/KCC-1). Untuk meningkatkan aktiviti pemangkin, 

penambahan fosforus (P) telah dijalankan melalui pengisitepuan MoO3/KCC-1 dengan 

asid fosforik untuk membentuk P/MoO3/KCC-1. Pemangkin dicirikan menggunakan 

pembelauan sinar-x, analisis kawasan permukaan, mikroskop elektron pengimbas, 

penurunan berprogram suhu-hidrogen, resonans magnet nuklear, spektroskopi cahaya-

nampak ultraungu, spektroskopi inframerah transformasi Fourier (FTIR) dan 

spektroskopi resonans putaran elektron (ESR). Aktiviti pengisomeran n-heptana yang 

tinggi diperhatikan pada MoO3/MSN berbanding dengan Pt/MSN di dalam hidrogen 

pada 350 °C, dengan hasil iso-heptana mono- dan dwi-cabang masing-masing 

mencapai 36.6% dan 6.8%. Kajian ESR dan FTIR menunjukkan bahawa aktiviti yang 

tinggi dan kestabilan MoO3/MSN boleh dikaitkan dengan pemisahan-penjerapan 

molekul hidrogen untuk membentuk atom hidrogen, yang kemudiannya membentuk 

(MoOx)
-(Hy)

+ aktif. Interaksi Pt/MSN dengan molekul hidrogen membentuk Pt-H, 

yang mana ia tidak aktif dalam pengisomeran n-heptana. Sebagai perbandingannya, 

MoO3/KCC-1 mempunyai tenaga pengaktifan yang rendah (28.1 kJ/mol), serta 

memberikan hasil isomer yang lebih tinggi (42.2%) berbanding dengan MoO3/KCC-1 

(35.8%). Keputusan ini adalah berkaitan dengan morfologi unik silika KCC-1, yang 

membenarkan akses bahan tindak balas berjisim besar yang tinggi terhadap tapak aktif. 

P/MoO3/KCC-1 telah menunjukkan penurunan di dalam asid Brønsted manakala 

terdapat pusat berasid Lewis baharu terbentuk pada 1624 cm-1 dan 1587 cm-1, seperti 

yang ditunjukkan oleh penjerapan inframerah 2,6-lutidina. Penghasilan isomer yang 

tinggi diperoleh dengan P/MoO3/KCC-1 adalah berkaitan dengan penyertaan pusat 

berasid pada 1624 cm-1 dan 1587 cm-1, dalam pembentukan proton melalui 

pemerangkapan elektron, serta akses yang tinggi kepada (MoOx)
-(Hy)

+ aktif. Analisa 

ANOVA menunjukkan bahawa suhu tindak balas adalah pemboleh ubah penting di 

dalam pengeluaran isomer. Berdasarkan uji kaji pengoptimuman, 44.9% hasil isomer 

telah diperoleh pada keadaan optimum 311 °C, dirawat pada 464 °C selama 6 jam. 

Kajian ini menyerlahkan potensi silika berliang meso terubah suai di dalam kajian 

pemangkinan, terutamanya bagi pengisomeran alkana lurus. 
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CHAPTER 1 

 

 

 

 

 

INTRODUCTION 

 

 

 

 

 

1.1 Research Background  

 

 

Worldwide concern over the destructive effect of oil usage on the environment 

has led several changes in regulation with the impact on gasoline, other jet fuels and 

lubricating oils. Therefore, numerous studies have been implemented to enhance the 

quality of gasoline by increasing the Research Octane, which is one of the main 

parameters used in the quality control of gasoline that provide information on the 

resistance to auto ignition (Mendes et al., 2012). Previously, lead compound or 

aromatic known as methyl tertiary butyl ether (MTBE) was added into the gasoline 

mixture to improve the RON. However, this method has been under scrutiny due to 

their deleterious environmental effects such as the increase in the nitrogen oxide 

emission and speeds up corrosion (Pinto et al., 2015). In addition, MTBE is an 

expensive component that can further increase the cost of gasoline from its application.  

 

 

In this regard, hydroisomerisation complements the catalytic reforming process 

in upgrading the octane number of refinery naphtha streams. It is well known that the 

branched isomers of C5-C8 paraffins possess a higher octane number compared to the 

corresponding linear paraffins (C7) (Singh et al., 2014). Therefore, the production of 

paraffin based high octane gasoline blend stocks such as isomers from isomerisation of 



2 

 

light and mid-cut naphtha might be a key technology for gasoline supply to cope with 

future gasoline regulations.  

 

 

The isomerisation reaction proceeds through the consecutive branching 

reactions over bifunctional metal-acid catalysts. This process occurs at the acid sites of 

bifunctional catalyst, while the metal site provides hydrogenation-dehydrogenation 

capability. Previously, many studies have focused on various type of zeolite catalyst for 

isomerisation since conventional catalysts including chlorided Pt alumina led to 

corrosion and environmental problems. It has been reported that zeolite Pt/mordenite 

catalyst was catalytically active for n-C5 isomerisation due to its high acidity; however, 

it exhibited less selectivity when dealing with longer chain paraffins such as n-C6 and n-

C7 (Chica et al., 2001). Besides, different types of material such as SAPO-11 (Liu et 

al., 2008) , MOR (Lee and Rhee, 1997), ZrO2 (Ruslan et al., 2011; Triwahyono et al., 

2007), alumina (Vandegehuchte et al., 2014), ZSM-5 (Fernandez et al., 2010), HY 

(Aziz et al., 2012), and HBEA (Kamarudin et al., 2012)  were also commonly applied 

for the hydroisomerization process. However, these materials exhibited several 

limitations that include high acidity, which prone to form cracking products, low 

surface area, as well as small pore size. Thus, extensive effort has been made to develop 

new support material that can overcome the aforementioned limitations by considering 

the aspects of mesoporosity and balanced acidity properties. 

 

 

Previously, the development of mesostructured silica nanoparticles (MSN) with 

a highly ordered mesostructure, high surface area, large pore volume and well-defined 

pore size has attracted a lot of attention. MSN has been successfully applied in many 

different applications such as CO2 reforming of CH4 (Sidik et al., 2015), methanation 

of CO2 (Aziz et al., 2014), drug delivery (Kamarudin et al., 2013) and adsorption 

(Karim et al., 2012). The tuneable pore size of MSN and high surface area offer an 

opportunity of designing an isomerisation catalyst for linear chain alkane longer than 

n-C5. However, the MSN requires modification to provide acidic property since it 

comprises of silica framework with no Brønsted acid sites (Sazegar et al., 2014).  
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Fortified by the discovery of new bicontinuous concentric lamellar silica KCC-

1 (Febriyanti et al., 2016; Polshettiwar et al., 2010), this material had shown a great 

potential in several applications such as alkane hydrogenolysis (Fihri, Bouhrara, et al., 

2012), adsorbent for CO2 capture (Patil et al., 2012), propane methathesis (Polshettiwar 

et al., 2011), cumene hydrocracking (Firmansyah et al., 2016) and Suzuki coupling of 

aromatic halides (Fihri et al., 2012). This is due to its high surface area (> 600 m2/g), 

large pore sizes, high thermal stability and unique bicontinuous concentric lamellar 

morphology of silica KCC-1 allowing high accessibility of bulky mass reactant to the 

active sites, which consequently improves the rate of reaction and products formation. 

Moreover, the presence of some large pores around its external surfaces with many 

small pores throughout its structure was also beneficial as carrier for drugs and genes 

(Du and Qiao, 2015). However, KCC-1 is made of neutral silica frameworks without 

active sites, thus limiting its application for acid catalytic reaction such as isomerization 

and cracking of hydrocarbon. 

 

 

In order to improve the potential of MSN and bicontinuous concentric lamellar 

silica KCC-1 as catalyst for isomerisation, the loading of metal oxide could be useful 

to improve the support acidic property. Among the metal oxide catalysts, MoO3 has 

been extensively studied due to its potential in alkane isomerisation and 

environmentally friendly properties as compared to mineral acids such as HF and 

H2SO4 (Ono, 2003). Many works have been devoted to MoO3-related catalysts and 

discussed in several reviews (Akhmedov and Al‐Khowaiter, 2007; Wehrer et al., 2003). 

In recent studies, Sakagami and co-workers reported that the catalytic activity of 

Pt/MoO3 catalyst was greatly influenced by its surface area (Sakagami et al., 2014). 

The improvement in the Pt/MoO3 surface area due to the slow reduction rate of H2 flow 

gave the MoOx with the highest n-heptane isomerisation activity. Besides, previous 

study also has reported on the formation of acidic Brønsted (MoOx)
-(Hy)

+ over Pt/MoO3 

for cumene cracking (Timmiati et al., 2013). It was evidenced by XRD and 2,6-lutidine 

IR spectroscopy that the presence of Pt was essential in the formation of the active site. 

In fact, no (MoOx)
−(Hy)

+ or protonic acid sites were observed on Pt-free MoO3. 
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Although there are several reports published on MoOx supported SiO2 material 

for short alkane isomerisation, the presence of noble metal is still dispensable in these 

types of catalyst. Early study by Gallo et al., (1997) reported that the n-heptane 

isomerisation activity of MoO3-carbon modified supported on silica carbide was 

influenced by its total activation pressure. A selectivity of 12.8 % di-branched isomers 

was obtained over the MoO3/SiC after 24 h activation at with 40 bar total activation 

pressure. On the other hands, Matsuda et al., (2009) have reported that n-heptane 

isomerization over Pt/MoO3-SiO2 can be controlled by the formation of MoOxHy, 

yielded from the reduction of MoO3 along with its number of acid sites. The Pt/MoO3-

SiO2 catalyst with 80 wt. % of MoO3 gave 17.3 % selectivity of di-branched isomers at 

350 °C.  

 

 

In recent years, the addition of second active sites in bifunctional catalyst has 

gained a lot of interests due to their positive effect in improving the catalytic activity, 

stability and selectivity towards isomers. In this area, noble metals such as Pt or Pd-

supported bifunctional catalysts have been widely explored due to their role in 

hydrogen spillover which can enhanced the catalytic activity (Busto et al., 2012; Park 

and Ihm, 2000; Triwahyono et al., 2003). However, the high cost involving noble metal 

has led to alternative active sites including phosphorus. The positive effect of 

phosphorus on the activity and stability of has been widely reported especially for 

HZSM-5 type catalyst (Blasco et al., 2006; Jiang et al., 2008; Xue et al., 2007; Zhao et 

al., 2007). Nevertheless, to date, there is no report available regarding the modification 

of bicontinuous concentric lamellar silica KCC-1 type material using phosphorus.  

 

 

In this thesis, MSN was used as MoO3 support and n-heptane isomerisation was 

chosen as a model reaction. The role of MSN as a silica framework with weak Lewis 

acid property in facilitating the formation of (MoOx)-(Hy)
+ by trapping electron was 

emphasised in correlation with its catalytic activity. The presence of interparticles 

textural porosity contributing to a high surface area and large pore diameter of MSN, 

promises a new design of catalyst with highly dispersed and accessible active sites, 

which leads to the selectivity towards mono- and di-branced isomer products. In 

addition, the physico-chemical properties and catalytic activity of MoO3/MSN were 
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compared with Pt/MSN, since Pt is well known as an active noble metal for alkane 

isomerisation. Additionally, the influence of support morphology in n-heptane 

isomerisation was investigated by employing the bicontinuous concentric lamellar 

silica KCC-1 as a support for MoO3. It was expected that the unique morphology of 

bicontinuous concentric lamellar silica KCC-1 would improve the accessibility of the 

active site. Further modification on MoO3/KCC-1 with phosphorus to form 

P/MoO3/KCC-1 was expected to enhance the catalytic activity. Then, the optimisation 

of n-heptane isomerization over P/MoO3/KCC-1 was carried out using the response 

surface methodology (RSM). 

 

 

 

1.2 Problem Statement and Hypothesis 

 

 

Recently, the increasing awareness towards environmental protection has urged 

the petrochemical refinery industry to reformulate their gasoline composition to 

improve the quality of their product. In an attempt to overcome this problem, the 

isomerisation of alkanes has been utilised as a useful industrial process to improve the 

gasoline octane number. In particular, the di-branched alkanes have drawn much 

attention as a useful component in gasoline due to their higher octane number compared 

to the linear alkane. Previously, platinum-supported on chlorinated alumina as 

bifunctional catalyst has been widely applied for alkane isomerisation but owns several 

limitations due to its corrosion problems. Therefore, many types of catalysts have been 

proposed for the isomerisation reaction and the molybdenum oxide (MoO3) based 

catalyst is considered as one of the potential catalyst due to its stability and regenerative 

properties (Matsuda et al., 2003). Based on previous studies, molybdenum oxide 

catalyst supported on SiO2, Al2O3, ZrO2 and TiO2 have been extensively studied due to 

their possible ability to catalyse the isomerization of linear alkanes (Al-Kandari et al., 

2009; Di-Grégorio et al., 2001; Matsuda et al., 2009). 

 

 

However, despite the high conversion of alkane from the previously reported 

catalysts, the yield of the valuable di-branched alkane is still low. In addition, previous 
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studies claimed that the production of di-branched alkane isomers is mainly influenced 

by the catalyst acidity and metal dispersion (Park and Ihm, 2000). The balance between 

the two catalytic functions, such as  density and strength of the Brønsted acid sites (H+) 

and the amount and the dispersion of the metal is what determines the desired 

selectivity (Chao et al., 1996; Chica and Corma, 1999; Höchtl et al., 2001). When the 

hydrogenating function is highly active, the activity and selectivity of the bifunctional 

catalyst will depend only on the acidic function, which is the rate-limiting step in the 

absence of diffusion limitations.  

 

 

It was reported that the acidic function of molybdenum based catalyst can be 

altered by the addition of phosphorus (Ferdous et al., 2004). Besides, previous studies 

demonstrated that the effect of phosphorus addition was related with changes in the 

molybdenum oxide dispersion, structure and morphology, as well as prevention of coke 

formation (Pawelec et al., 2008; Sigurdson et al., 2008; Xue et al., 2010). In addition, 

phosphorus has been reported as hydrogen spillover promoter in molybdenum based 

catalyst for hydrodeoxygenation (HDO) reaction (Yang et al., 2009). Nonetheless, the 

effects and roles of phosphorus in molybdenum based catalyst for alkane isomerisation 

were very limited. Therefore, it was significance to investigate the possible effects of 

phosphorus addition in alkane isomerisation with respect to the changes of catalyst 

physicochemical property. Considering all the factors mentioned above, an ideal 

isomerisation catalyst for producing di-branched alkane isomers should provide 

suitable compositional and structural characteristics, mainly the proper balance 

between metal and acid sites, suitable pore size, high dispersion of metal on the catalyst 

surface and mild acidity strength of acid sites. 

 

 

In that case, an attempt were done to synthesise and characterise isomerization 

catalyst with desired properties to enhance the catalytic activity and efficiency. It was 

hypothesised that the loading of Pt and MoO3 on high surface area of MSN which 

possess interparticles textural porosity and large pore diameter, will give different effect 

on the catalyst physicochemical properties, and hence reflects their catalytic activity in 

n-heptane isomerization. Besides, further development on new isomerisation catalyst 

by using the bicontinuous concentric lamellar silica KCC-1 as MoO3 support was 
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expected to enhance the catalytic activity due to the unique morphology of the KCC-1. 

Lastly, the effect of phosphorus loading on the Mo supported catalyst was expected to 

alter the catalyst acidic property and enhanced the catalytic activity, respectively. 

  

 

 

1.3 Objective of Study 

 

 

 The objectives of this study are: 

  

  

1. To prepare and characterise the MSN, Pt/MSN and MoO3/MSN catalysts 

for n-heptane isomerisation; 

 

2. To study the effect of MSN and KCC-1 as catalyst support for n-heptane 

isomerisation; 

 

3. To study the effect of phosphorus loading for improvement in the catalytic 

activity of n-heptane isomerisation; 

 

4. To optimise the n-heptane isomerisation by response surface methodology 

(RSM). 

 

 

 

1.4 Scope of Study 

 

 

To complete the objectives of this study, four main scopes are covered as below: 

 

 

1. To prepare and characterise the MSN, Pt/MSN and MoO3/MSN catalysts for n-

heptane isomerisation; 
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The MSN was prepared using a co-condensation and sol-gel method. Then, the 

MoO3/MSN was prepared by physically mixing of MoO3 with MSN. In this study, 

physical mixing method was chosen for the preparation of MoO3/MSN due to the 

property of MoO3 which can form solid-molten after calcination (Afanasiev, 1997). 

Besides, the molybdenum based catalyst prepared by physical mixing method 

showed high performance in isomerisation of n-heptane (Matsuda et al., 1999). 

Thus, physical mixing method was used in this study. The amount of MoO3 was 

adjusted to 40 wt%, based on literature study (Liu et al., 2015; Matsuda et al., 2009) 

and preliminary catalytic activity evaluation using different MoO3 loading. Besides, 

Pt/MSN was also prepared using similar method to compare the influence of noble 

metal in the catalytic activity. The amount of Pt was adjusted to 0.5 wt%, based on 

literature study (Timmiati et al., 2013). The prepared catalysts were characterised 

using X-Ray Diffraction (XRD), N2 physisorption, H2-TPR, Ultraviolet visible 

spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), Electron 

Spin Resonance (ESR) spectroscopy and tested for n-heptane isomerisation with a 

reaction temperature range of 100-350 °C (Ruslan et al., 2012) under atmospheric 

pressure. 

 

 

2. To study the effect of support morphology towards n-heptane isomerisation; 

 

 

The of bicontinuous concentric lamellar silica KCC-1 was prepared using 

microwave assisted hydrothermal method. Then, Pt/KCC-1 and MoO3/KCC-1 was 

prepared by physically mixing the metal with KCC-1 to compare the catalytic 

activity with the MSN based catalysts. The catalyst was characterised using X-Ray 

Diffraction (XRD), N2 physisorption, H2-TPR, field emission scanning electron 

spectroscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), Electron 

Spin Resonance (ESR) spectroscopy and tested for n-heptane isomerisation with a 

reaction temperature range of 100-350 °C under atmospheric pressure. 

 

 

3. To study the effect of phosphorus loading for improving the catalytic activity of n-

heptane isomerisation; 
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In order to study the effect of phosphorus loading, the catalyst was prepared by 

impregnating MoO3/KCC-1 with H3PO4. The amount of H3PO4 concentration was 

adjusted to 0.5 N based on literature (Triwahyono et al., 2006) and preliminary 

catalytic activity evaluation using different H3PO4 concentration. 

 

 

4. To optimise the n-heptane isomerisation by response surface methodology (RSM). 

 

 

The optimum condition for n-heptane isomerization over P/MoO3/KCC-1 was 

identified by RSM using central composite design (CCD). In this study, the range 

of variables were chosen based on the literature studies on previous reported alkane 

isomerisation. The variables selected in the study are reaction temperature (250-350 

°C) (Ruslan et al., 2012), treatment temperature (400-450 °C) (Matsuda et al., 2000) 

and treatment time (3-9 h) (Sakagami et al., 2005). The performance of the catalyst 

was evaluated by analysing the yield of isomer as response. 

 

 

 

1.5 Significance of Study 

 

 

In this study, new catalyst of MoO3 supported on MSN was prepared for n-

heptane isomerisation. A detail investigation on the interaction of catalyst with 

hydrogen was studied, in comparison with Pt/MSN. Besides, the potential of 

bicontinuous concentric lamellar silica KCC-1 as catalyst support for n-heptane 

isomerisation was investigated. In addition, the influence of phosphorus in creating new 

active site in catalyst, despite of noble metal, was also studied. The optimization study 

by RSM analysis showed the influenced of process variables such as reaction 

temperature, treatment time and treatment temperature. In summary, this study provides 

new information of n-heptane isomerisation over the MSN and bicontinuous concentric 

lamellar silica KCC-1 supported MoO3 catalysts. This study will be a significant 

contribution to the research and science community, especially in the isomerization of 

alkane into products with high research octane number. 

 



10 

 

1.6 Thesis Outline 

 

 

This thesis begins with Chapter 1 described the research background, problem 

statement and hypothesis, objectives, scopes and significance of this study. Chapter 2 

reviewed the literatures related to the catalysts and current works about the 

isomerization reaction. Chapter 3 described the experimental and characterization of 

the catalysts and chapter 4 concerned with data processing and discussing of 

physicochemical properties and catalytic activities of the catalysts. The conclusions and 

recommendation for future studies were stated in chapter 5. 
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