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ABSTRACT 

The challenge of using syngas in combustion system is the composition 

variability and low calorific value. Syngas mainly consists of H2 and CO and other sub 

component such as N2, CO2 and H2O. High H2-enriched syngas would result in high 

NOx production for some combustion cases. Whereas high CO concentration is posed 

with stability issues. The presence of sub-component as a diluent improves the 

emission characteristic but slows down the chemical reaction rate and calorific values. 

The variability in syngas strongly depends on the type of gasification technique, 

feedstock and oxidation agent. The present study therefore aims to investigate the 

combustion performance of different configuration in composition of syngas using 

premixed swirl mode technique. Various simulated syngases of CO and H2-dominant 

syngas or CO-rich and H2-rich syngas were used as fuels to evaluate the performance 

of emissions, diluent effects, lean blowout limit and flame structure. Further 

investigation on combustion of syngas was fundamentally conducted using numerical 

approach in which a comparative study on flame structure and reaction zone species 

were evaluated between those syngas fuels. Measurement by gas analyser was used to 

evaluate the performance of combustion emission and direct photography was used to 

analyse the flame appearance. Lean blowout test was performed by gradually reducing 

the fuel flowrate until flame blowout occur. For numerical method, two different 

combustion models namely flamelet generated manifold (FGM) and chemical 

equilibrium (CE) models were implemented to predict the combustion characteristic 

of syngas and the result obtained was then validated with experimental results. The 

results indicate that high CO-rich syngas shows evidently less NOx and CO emissions 

as compared to the other dominant CO fuel. Higher fraction of CO2 dilution results in 

reduction of NOx emissions, with pronounced impact on fuel-rich cases. There was 

minimal effect on CO emissions with increased dilution of CO2. The lean blowout 

limit test shows that higher CO content results in blowout at higher equivalence ratio. 

Addition of hydrocarbon fuel such as CH4 or hydrogen extends the blowout limit as 

the flammability limit is stretched to ultra-lean region. Dilution of unreactive CO2 in 

syngases results in higher lean blowout limit. Higher fraction of H2 in syngas produces 

both lower NOx emission and lean blowout limits. The optimum characteristic of high 

H2-rich syngas is also validated by numerical approach using FGM method. The 

numerical computation found that the increasing content of H2 in syngas results in 

lower flame temperature, subsequently leading to reduced flame height and lower NO 

emissions.
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ABSTRAK 

Kepelbagaian komposisi dan nilai kalori yang rendah adalah antara cabaran 

menggunakan bahan api gas sintesis. H2 dan CO merupakan komposisi utama gas 

sintesis selain elemen sampingan seperti N2, CO2 dan H2O. Kandungan H2 yang tinggi 

di dalam gas sintesis menyebabkan pengeluaran NOx yang tinggi untuk kes-kes 

pembakaran tertentu. Manakala kandungan CO yang tinggi pula menimbulkan isu 

kestabilan. Kehadiran komponen sampingan sebagai pelarut dapat memperbaiki ciri 

emisi tetapi pada masa yang sama memperlahankan kadar tindak balas kimia dan nilai 

kalori. Kepelbagaian komposisi gas sintesis amat dipengaruhi oleh jenis teknik 

penggasan, biojisim dan agen pengoksidaan. Kajian dijalankan untuk mengkaji 

prestasi pembakaran gas sintesis menggunakan teknik pusaran pracampuran. 

Penyelakuan gas sintesis mengikut komposisi CO dan H2-dominan gas sintesis atau 

CO dan H2-kaya gas sintesis telah digunakan sebagai bahan api untuk mengukur 

prestasi emisi, kesan pelarut, had pemadaman cair dan struktur api. Kajian lebih asas 

mengenai pembakaran gas sintesis juga dilanjutkan dengan kaedah berangka di mana 

kajian perbandingan keatas struktur api dan spesies di dalam zon tindak balas dinilai 

terhadap semua jenis gas sintesis tersebut. Penganalisis gas telah digunakan untuk 

mengukur prestasi emisi pembakaran dan fotografi langsung digunakan untuk 

menganalisis susuk api pembakaran. Had pemadaman cair diuji dengan mengurangkan 

kadar aliran bahan api sehingga pemadaman nyalaan berlaku. Bagi kaedah berangka, 

dua model pembakaran iaitu model manifold flamelet terjana (FGM) dan 

keseimbangan kimia (CE) telah dilaksanakan untuk meramalkan ciri pembakaran gas 

sintesis dengan keputusan eksperimen sebagai rujukan. Keputusan menunjukkan CO-

kaya yang tinggi menghasilkan NOx dan CO yang rendah berbanding bahan api CO 

dominan yang lain. Kandungan CO2 yang tinggi memberi kesan ketara kepada 

pengurangan NOx terutama dalam keadaan percampuran kaya. Peningkatan CO2 

memberikan kesan yang minimum keatas emisi CO. Kandungan CO yang tinggi di 

dalam gas sintesis menyebabkan had pemadaman berada pada nisbah kesetaraan yang 

tinggi. Ujian had pemadaman cair juga menunjukkan kandungan CO yang tinggi 

menyebabkan pemadaman berlaku pada nisbah kesetaraan yang tinggi. Penambahan 

bahan api hidrokarbon seperti CH4 atau hidrogen melanjutkan had pemadaman 

memandangkan had kebolehbakaran diregangkan sehingga ke rantau ultra cair. 

Pencairan oleh komponen tidak reaktif CO2 di dalam gas sintesis meningkatkan had 

pemadaman cair. Gas sintesis yang mempunyai kandungan H2 yang paling tinggi 

menghasilkan kedua-dua NOx dan had pemadaman nyalaan cair yang rendah. Ciri 

optimum yang dimiliki oleh H2-kaya yang tinggi ini juga telah disahkan oleh kaedah 

berangka menggunakan model FGM. Kaedah pengiraan berangka juga mendapati 

peningkatan kandungan H2 di dalam gas sintesis menyebabkan penurunan suhu dan 

ketinggian nyalaan seterusnya menurunkan kandungan NOx.  
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CHAPTER 1 

INTRODUCTION 

The world energy demand and environmental concerns on pollutant emissions 

have raised an interest in development of renewable energy. Synthetic gas (or syngas) 

is considered as one of the potential alternative fuels in the future. Syngas is expected 

to play an important role in the diversification of energetic sources since it is produced 

from gasification of coal where the reserves are widely abundance [1]. It is also 

produced from gasification of multiple solid feedstocks such as organic waste and 

renewable biomass [1, 2]. Gasification involved a process where solid feedstock is 

gasified by incomplete combustion resulting in production of combustible gases [3]. 

Application of syngas as fuel reduced the emission of CO2 and other pollutant 

components as compared to conventional fuels [2]. Syngas composition typically 

varies depending on the gasification process and the feedstock type. The main 

component of syngas is H2 and CO and the volume percentages could be CO-rich or 

H2-rich. Syngas also contain diluents such as N2, CO2 and H2O, and hydrocarbon 

content, mainly CH4 [4]. Syngas is a cleaner gas but it has low calorific value which 

only accounts for 30% as compared to conventional natural gases  [2].  

 

Syngas can be directly burned in power generation sector (boiler, engine, 

furnace, gas turbine, and burner) or further processed for other gaseous or liquid 

products. For gas turbine combustion, integrated gasification combined cycle (IGCC) 

is considered as one of the significant application of syngas in power generation. IGCC 

is a technology involving an integration of gasifier system with combined cycle gas 

turbine (CCGT). In IGCC, rather than H2 alone, using syngas directly in stationary 

power generation gives high potential of economic value and cost effective [5].  

However, current existing combustor used for traditional hydrocarbon combustion 
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need substantial improvements to burn syngas [6]. Applying fuel and designing 

combustor are critical challenges to utilise the syngas fuel since the composition of 

syngas varies depending on the fuel sources and process technique. Since small scale 

power of micro turbines (<500 kWe) have the ability to burn lower calorific fuel and 

lean (premixed) combustion regimes, syngas have high potential to be used in this type 

of applications. Micro turbines are small, compact electricity generators with rated 

capacities in the 25 – 300kW range. Multiple units can be grouped to form larger 

installations often part of a micro-grid, utilizing a range of power generation 

technologies and storage capability. They typically use a high-speed generator/turbo 

alternator, resulting in high frequency AC electricity [7]. 

 

Current design of turbine burners also involves the use of swirler and 

combustion of lean premixed fuels. Swirl burners ensure efficient combustion 

conditions allowing good fluid mixing and offering long residence time for complete 

reaction to take place, typically used in the lean premixing of fuel and air to achieved 

low level of NOx emission [8]. Yet, interactions between swirling flow and operability 

issues of burning syngas are still poorly understood. Therefore, it is necessary to 

establish a framework for the combustion characteristic of syngas particularly in the 

presence of swirl [6]. 

 

As a conclusion, developing a practical applications technology such as gas 

turbines, boilers and furnaces which capable to combust H2-rich and CO-rich syngas 

requires understanding of more fundamental combustion properties.  The fundamental 

characteristic of combustion, emission and extinction of syngas flames are then 

requires extensive investigations. Previous works focused on premixed, non-premixed 

and diffusion flames in integration with the studies of syngas laminar flame speed. 

Research efforts in syngas turbulence flame (or swirling flame) are still not well 

understood, particularly on the flame structures, characteristic and emission with 

consideration of various syngas composition and operational condition. 
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1.1 Problem statement 

 

The challenge of using syngas is the composition variability in production of 

syngas from coal and biomass through the gasification process which complicates the 

design and operation of modern combustor for boiler, furnace or gas turbine [8]. Most 

gasification processes typically produce syngases that are CO-rich or H2-rich 

depending on feedstock. CO-rich syngas has been produced by coal gasification with 

blends comprising 60% CO and 30% H2 by volume [9]. The relative molar fraction of 

H2 to CO for coal-derived syngas ranges from 0.4 to 1.0 [10]. The use of catalytic 

gasification techniques to gasify biomass was shown to produce H2-rich syngas with a 

composition of up to 50% H2 and 17% CO by volume [11]. The volume ratio of H2/CO 

in most syngas mixtures typically exceeds 0.25, where chemical kinetic and reaction 

mechanisms of hydrogen play a dominant role in syngas combustion. Hence, syngas 

generally exhibits large burning rates with small autoignition time, comparable to 

those of pure hydrogen combustion [4].  

 

Apart from feedstock, the quality of syngas also depends on the gasifier type, 

processing technique and operating conditions of gasification process [12]. For 

example, slurry-feed and dry-feed syngases are CO-enriched syngases typically 

produced by gasifying pulverized coal/slurry water. While H2-rich syngases are mainly 

produced from catalytic gasification process maximized by water-gas shift reactions 

and CO2 removal [13]. H2 and CO aside, syngas also contains diluents such as carbon 

dioxide, nitrogen, and methane which may affect the thermodynamic properties of the 

mixture if the amount is significant, leading to different combustion properties which 

may pose operational issues to some combustion system. Detail of some of the 

previous researchs which representing the different techniques and syngas 

composition produced were summarised as in Table 1.
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Table 1.1 Previous researchs of gasification with different composition of syngas produced 

 

 

 

 

 

 

Biomass 

type 

Reactor 

type 

Gasify-

ing 

agent 

Reaction 

temp. 

(oC) 

Finding factors 
CO 

% 

H2 

% 

CH4

% 

CO2

% 

N2 

% 

LHV 

(MJ/N

m3) 

Ref. 

Oil palm 

frond 

Down-draft 

fixed-bed 

Preheat

ed air 
985 

Preheating air improved the 

composition for all component 

(H2, CO and CH4) 

24.9 8.5 2.02 11.8 <50 4.7 [14] 

Empty 

fruit 

bunch 

Fluidized 

bed 
Air 

700-

1000 

As temperature increased from 

700 to 1000 oC, the H2 content 

increased from 10.27 to 38.02 

vol.%, CH4 increased from 5.84 

to 14.72 vol.%., CO increased 

from 21.87 to 36.36%. 

36.4 38 14.7 10 n.a 15.6 [15] 

Coal dry  

powder 

2-stage 

entrained 

flow 

O2& 

H2O 
1700 

The consumption of oxygen  

and coal consumption are lower 

than with the single stage gasifier 

60.5 31.4 0.8 2.8 3.74 16.7  [9] 
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Table 1.1 (cont.) 

 

 

Biomass 

type 

Reactor 

type 

Gasify-

ing 

agent 

Reaction 

temp. 

(oC) 

Finding factors 
CO 

% 

H2 

% 

CH4

% 

CO

2% 

N2 

% 

LHV 

(MJ/ 

Nm3) 

Ref. 

Rice 

husk,  

sawdust 

and 

camphor

wood 

High 

temperature  

entrained 

flow 

O2 1400 

Higher temperature favoured H2 and CO 

production.  

Cold gas efficiency was improved by N10% 

when the temperature was increased from 1000 

to 1400 °C. 
>5

0 

>3

0 
<5 

 

 

5-

15 

 

 

n.a 16  [16] The presence of oxygen  

strengthened the gasification  

and improved the carbon  

conversion, but lowered the  

lower heating value and the  

H2/CO ratio of the syngas. 

Lignite 

coal 

Multiple 

swirl 

burners  

in entrained 

flow 

gasifier 

O2 
1200- 

1600 

Effects of rigorous mixing of oxygen and 

pulverized coal by the strong swirl flow 

complete the reactivity gasification reaction 

within a short residence time for low-rank coal 

of high reactivity. 

45-

55 

15-

20 
n.a 

5-

15 
n.a 11-14  [17] 

5
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The volumetric H2/CO ratio of syngas is typically varies from 0.33 to 4.0. H2 

component in syngas exhibits clean combustion, high flame propagation speed and 

wide flammability limits. H2 has laminar combustion speed approximately eight times 

to that of natural gas, hence reduces residence time of combustion and thereby the 

efficiency [3]. However, high hydrogen content also resulting high production of NOx 

correspondingly to the increasing temperature of flame [10]. The presence of diluent 

gases, such as N2, CO2 and H2O, is significantly representing 4 to 60% of the final 

compositions [2]. For pre-mixed flames, the addition of diluent in fuel effectively 

results in the reduction of NOx emission [18]. However, diluent components slow 

down the chemical reaction rate as well as calorific value, thus reducing laminar flame 

speed, increase flame thickness and reduce the flame temperature [18]. Additionally, 

the degree of the diluent effectiveness and the presence purpose are not thoroughly 

investigated. Lack in study of diluent with various percentages caused the effect on the 

syngas flame and emission not well understood. Therefore, it is important to develop 

flexible combustion system which capable to operate at a broad range of syngas 

composition with high efficiency and low pollutant emissions.  

 

Swirl technology in combustion has long being studied as an effective way to 

induce flow recirculation to provide better mixing of fuel and air, hence perfect 

combustion. However, high swirl could also increase the production of NOx since high 

recirculation zone increase local temperature especially for H2-enrich gases [19]. 

Therefore it is necessary to study the effect of H2 and diluent compositions in syngas 

with the presence of swirling features on the combustion performance. 

 

1.2 Objectives 

 

The main objectives of the present research are  

 

1. To experimentally evaluate the effects of syngas composition variability on 

emission performance and investigates the effect of dilution component on 

reduction of emission. 
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2. To study the stability limit of syngas flame through the lean blowout limit test 

and investigate the effect of dilution component on stability performances.  

 

3. To evaluate the characteristic of combustion model by performing a 

computational fluid dynamic (CFD) simulation analysis on combustion of 

syngas and validate with experimental results 

 

4. To fundamentally investigate the characteristic of syngas flame in reaction 

zone through CFD simulation analysis.  

 

1.3 Scopes 

 

In this study, the first section investigate the effects of variability composition 

of simulated syngas on combustion characteristic using experimental and numerical 

method. Composition of syngas (H2/CO) varied from H2-rich to CO-rich syngas. 

H2/CO ratio are 100/0, 75/25 and 55/45 for H2-rich and 0/100, 25/75 and 45/55 for 

CO-rich. The presence of dilution species including CO2 and CH4 are used to improve 

the characteristic of combustion including emission and lean blowout limit. The degree 

of dilution ranges from 0 to 25%. In general, the experiment is conducted into three 

parts. The first part focuses on emission measurement by using gas analyzer. The 

second part evaluate the flame structure and the third part is investigation on lean 

blowout limit for each of the syngas composition. All results from the syngas 

combustion are compared with pure gases of H2, CO and CH4 for baseline. 

Experimental study is conducted using lab scaled combustor which operates at 

atmospheric condition. CFD simulation is used to validate the experimental data with 

numerical data. In this study, combustion of syngas is modelled using chemical 

equilibrium (CE) and flamelet generated manifold (FGM) model. The accuracy for 

both modeled are evaluated with experimental result as a baseline. The study focused 

on fuel variability performance. The effect of combustor design and system on 

combustion performance is out of scope. 
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The second section investigated the effect of various biomass feed on 

variability composition of syngas produced via gasification. Downdraft fixed bed was 

used as a gasification method. Treated and untreated biomasses were used as a 

feedstock and the variability composition of syngas produced was compared. The last 

section was an evaluation of syngas variability composition produced from various 

type of treated biomass. The study only evaluated the quality of syngas produced 

whereas the reactor system performance was not in research interest. 

   

1.4 Limitation of the research 

 

The research aims to evaluate how variety in composition of syngas would 

affect the combustion performance. Hence, composition of syngas is modelled using 

standard gas to carefully study each of the component changes. The standard gas is 

however limited for four types of main gases (CO, H2, CO2 and CH4) which normally 

dominant in most typical syngas. Other component such as Ar, H2S and COS are 

difficult to model as the concentration is typically very small in syngas. Small 

concentration complicates the flow setup. Apart of four dominant components of gases 

in syngas, other dominant component such as H2O, O2 and N2 were not involved in 

this model. The presence of H2O and O2 components are not consistent in syngas. 

Therefore, both components are not considered as frequently existed component of 

syngas in this study. The concentration of N2 is very high (>50%) in a syngas which 

typically produced by air-blown gasification. High concentration of N2 limiting the 

concentration of other reactive gases in a total volumetric percentage. Hence, the 

concentration setup allows only a small change for reactive gases. The small changes 

is thus caused the different in a combustion performance is insignificant and difficult 

to observe. Thus, syngas is modeled using most prevalent and reactive component 

only. 

 

A simulation for syngas combustion is using only one type of turbulence model 

which is standard k-epsilon. Other model such as realizable k-epsilon, RMS and LES 

are not conducted due to time constraint and requirement of high performance 

computer to run such a complicated fuel with different composition like syngas.  
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For production of syngas, a small scale downdraft reactor is employed to gasify 

different type of biomass. The gasification process uses both untreated and treated 

(torrefied) biomass. The same temperature of torrefaction is used for all type of 

biomass in this study. Hence, the variable of feedstock type only restricted for biomass 

type rather than torrefaction level. In addition, the biomass is feeding to the gasifier by 

batch rather than continuous feeding systems. Hence, fuel flowrate is measured 

manually as the system does not require a flow controller.  

    

1.5 Research Flowchart 

 

Figure 1.1 and Figure 1.2 show a flowchart of research work. Current study 

will be conducted into two major parts. The first part focused on experimental works 

and numerical study of emission test, lean blowout limit and flame shape which were 

investigated using different type of syngas composition at various condition of 

equivalence ratio. Characteristic of syngas combustion will be evaluated numerically 

by Ansys Fluent software. Result of temperature profile and species product will be 

compared with experimental result for validation.  The second part focused on 

gasification process to produced different composition of syngas using different type 

of biomass feed.   

 

1.6 Thesis outline 

 

The present thesis consists of 5 main chapters. Chapter 1 described briefly the 

Introduction, problem statement, objectives, scopes, limitation of the research, 

research flowchart and thesis outline. The background study of syngas composition 

was thoroughly reviewed in this section. The structures and plan of research also 

illustrated through objectives, scopes, limitation and flowchart. 

 

 Chapter 2 performed a critical literature study on both combustion and 

production of syngas. For combustion of syngas, previous works involving the effects 

of composition variability on emission and lean blowout (LBO) limit were reviewed. 

In CFD section, performance of flamelet generated method (FGM) in modelling 

syngas combustion was also reviewed. The production of syngas section critically 
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reviewed different type of gasifier and feedstock which have been used in the previous 

research.  

 

 Chapter 3 presented a method of research for both experimental and numerical 

works. Detail burner and gasifier setup are described briefly in this section. 

Measurement equipment and method are also presented for both combustion and 

gasification process. The different combustion modelling are thoroughly described for 

numerical simulation section. 

 Chapter 4 described the results and discussion for all experimental and 

numerical test conducted. Experimental test on combustion of syngas presented a 

result of emission, LBO limit and a flame structure. Whereas numerical simulation 

focuses on predicting the experimental results with different types of combustion 

model including chemical equilibrium (CE) and FGM method. For production of 

syngas section, the composition of product gases produced by gasification were 

characterized and compared among different type of biomasses. 

            

Finally, conclusion and a summary of the research study are comprised in 

chapter 5. This chapter also includes a recommendation of future work of 

implementing clean syngas fuel in various combustion techniques.  Various 

gasification technique and improving biomass properties are also suggested to increase 

the production of syngas. 
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                                                                                                       Figure 1.1 Research flowchart of syngas combustion
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