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Arsenic is a mineral which is abundant in gold mining sites. It is a toxic 

substance which needs to be removed. Thus, this research investigated the problem 
of extremely high arsenic (As) concentration in effluent (water and slurry) from 
Selinsing gold mine site, Pahang, Malaysia and developed an effective operational 
remedial method using an adsorbent material (Ecomel). In this research, a new 
method for measuring As(III) and As(V), which exist in the contaminated soil and 
liquid effluents was developed using flow injection analysis (FIA) system, while the 
total As was analyzed using atomic fluorescence spectrometry (AFS) for the 
remediating samples. By using the FIA method, the As speciation detection limit of 
(S/N = 3) for both As(III) and As(V) were found to be 5 µg/L  with standard 
deviation 2.2 (n = 20). It also showed a wide dynamic range coefficient of detection 
(R

2
) of 0.999 for As(III) and 0.9989 for As(V). This portable analytical method was 

successfully applied for the determination of As speciation in the effluent collected 
from Selinsing gold mine site without further treatment. For the characterizations of 
slurry and adsorbent materials (Ecomel), X-ray diffraction (XRD), X-ray 
fluorescence (XRF), energy-dispersive X-ray spectroscopy (EDX), Field Emission 
Scanning Electron Microscopy (FESEM), Focus Ion Beam–Scanning Electron 
Microscope (FIB-SEM), Inductively Coupled Plasma Optical Emission 
Spectrophotometer (ICPOES), Elemental Analyzer (EA) and Brunauer–Emmett–
Teller (BET) were used. In the case of liquid effluent from the tailing dam, the pH 
and cyanide concentrations were measured at 11.5 and 204 mg/L, respectively. 
However, the batch experiments clearly proved that As leaching from the slurry 
(contact time: 24 h, stirring speed: 200 rpm, and S:L ratio 1:5) was extremely higher 
at pH 11.5 compared to pH 2.5 and were measured to be 8,720 and 1,010 µg/L, 
respectively. The major contributors to the exceedingly elevated levels of As 
concentration in liquid effluents were attributed to alkaline pH, high cyanide and 
silicate concentration, as well as high oxidation environment. The batch experiments 
on Ecomel revealed that maximum adsorption capacity determined at initial pH 2.5 
from the Langmuir-Freundlich isotherm model was found to be 704.7 and 122.7 
mg/g for As(III) and As(V), respectively. These results indicated that Ecomel has 
high adsorbent efficiency, cost-effective and is suitable for in-situ and ex-situ 
remediation of highly concentrated As(III) and As(V) toxicants in aqueous solutions. 
For As standard solution with initial pH 2.5 and concentration of As at 1 mg/L, it 
was observed that 0.3125 g/L of Ecomel with 2 h contact time can adequately 
remove 97.0% of As(V) and 98.1% of As(III), respectively. As a conclusion, results 
from AFS showed that the treatment of As using Ecomel at initial pH 2.5 was the 
most proficient for remediation of liquid effluent and slurry. 
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Arsenik adalah mineral yang terkandung dengan banyak dalam lombong 

emas. Ia merupakan bahan toksik yang perlu disingkirkan. Justeru itu, kajian ini 
mengkaji tentang masalah arsenik yang tinggi di dalam kandungan efluen (air dan 
lumpur) daripada tapak lombong emas Selinsing, Pahang, Malaysia dan 
membangunkan satu kaedah pemulihan berkesan menggunakan bahan penjerap 
(Ecomel). Dalam kajian ini satu kaedah baru bagi pengukuran As(III) dan As(V) 
yang terkandung di dalam tanah yang tercemar dan cecair efluen juga telah 
dibangunkan menggunakan sistem analisis suntikan aliran (FIA), manakala jumlah 
As bagi sampel pemulihan telah dianalisis dengan menggunakan spektrometri 
pendarfluor atom (AFS). Dengan menggunakan kaedah FIA ini, had pengesanan 
(S/N = 3) penspesiesan As bagi kedua-dua As(III) dan As(V) masing –masing ialah 5 
μg/L dan 2.2% (n = 20). Kaedah ini menunjukkan julat dinamik yang luas dengan 
pekali korelasi (R

2
) 0.999 untuk As(III) dan 0.9989 untuk As(V). Analisis mudah 

alih ini telah berjaya digunakan untuk penspesiesan As di dalam efluen yang diambil 
dari lombong emas Selinsing tanpa memerlukan rawatan lanjut. Untuk pencirian 
buburan dan bahan penjerap (Ecomel), pembelauan sinar-x (XRD), pendarfluor 
sinar-x (XRF), tenaga serakan sinar-x spektroskopi (EDX), mikroskopi medan 
pemancaran pengimbasan elektron (FESEM), mikroskop fokus ion alur-pengimbasan 
elektron (FIB-SEM), spektrofotometer plasma gandingan aruhan pemancaran optik 
(ICPOES), penganalisa unsur (EA) dan Brunauer-Emmett-Teller (BET) telah 
digunakan. Dalam kes efluen cecair dari empangan tailing, ukuran pH dan kepekatan 
sianida masing-masing adalah 11.5 dan 204 mg/L. Walau bagaimanapun, eksperimen 
kelompok jelas membuktikan bahawa ketelarutan lesap As dari buburan (masa 
sentuhan: 24 h, kelajuan kacau: 200 rpm, dan nisbah S:L 1:5) adalah amat tinggi 
pada pH 11.5 berbanding pada pH 2.5, masing-masing dengan ukuran 8,720 dan 
1,010 μg/L. Penyumbang utama kepada tahap kepekatan As yang sangat tinggi 
dalam efluen cecair adalah disebabkan oleh pH beralkali, kepekatan sianida dan 
silikat yang tinggi, dan di tambah dengan keadaan pengoksidaan sekeliling yang 
tinggi. Eksperimen kelompok menggunakan Ecomel menunjukkan bahawa kapasiti 
penjerapan maksimum pada pH awal 2.5 dari model isoterma Langmuir-Freundlich 
masing-masing adalah 704.7 dan 122.7 mg/g untuk As(III) dan As(V). Dapatan ini 
menunjukkan bahawa Ecomel mempunyai kecekapan penjerapan yang tinggi, kos 
efektif dan sangat sesuai digunakan untuk pemulihan in-situ dan ex-situ bagi larutan 
yang mengandungi bahan toksik As(III) dan As(V) dalam  kepekatan yang tinggi. 
Bagi larutan standard yang mengandungi As pada pH awal 2.5 dengan kepekatan 1 
mg/L, didapati bahawa Ecomel dengan kepekatan 0.3125 g/L dan dengan masa 
sentuhan 2 h, dapat menyingkirkan 97.0% As(V) dan 98.1% As(III). Sebagai 
kesimpulan, dapatan daripada AFS menunjukkan rawatan As menggunakan Ecomel 
pada pH awal 2.5 adalah yang paling berkesan bagi pemulihan cecair efluen dan 
buburan.  
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INTRODUCTION 

 Background of the study 1.1

Gold mining sites are mostly associated with positive economic development 

of any country; however extraction of gold could also generate negative impacts on 

the ecosystem and human health.  Mining and ore-processing activities generate huge 

quantities of tailing that could have severe and widespread impacts on ecosystem 

over a long period of time [1].  Gold mining is considered as a significant source of 

environmental pollution by trace elements especially high arsenic (As) concentration 

arising from ore excavation, transportation, mineral processing, and disposal of huge 

quantities of waste around the mining site [2,3].  Recently, ecosystem deterioration is 

regarded as an important problem, and both active and expected mining exploitations 

are legally compelled to minimize the contamination impact and to restore the 

exploited sites after their abandonment.  The serious environmental problem and 

public-health concerns associated with gold mining activities is As, which is released 

from the oxidation of sulfide minerals such as pyrite (FeS2) and arsenopyrite (FeAsS) 

[4]. 

Gold is often occurring as encapsulated in other minerals such as FeS2, 

quartz, FeAsS, etc.  The particles of gold are generally extracted via ore leaching 

using cyanide (CN
-
) ion solution.  Throughout the cyanidation process, the metal ore 
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reacts with CN
-
 ion solution under highly alkaline conditions (pH > 11) for duration 

of up to 36 h, thus, releasing high As concentration. The As-bearing tailings from 

sulfide ore mines are usually chemically reactive because of their content of Fe-

sulfide minerals, like as FeS2 and FeAsS.  The weathering of Fe-sulfide minerals is a 

strong acidifying process, and regarded to be the major reason for acid mine drainage 

(AMD) [5,6].  Arsenic can't form stable complexes together with CN
- 

ion such as 

gold (Au), however, it is well-known that As are very soluble at the highly alkaline 

conditions observed for the cyanidation process.  Thus, the water used in this process 

is highly contaminated with dissolved As and CN
-
 ion. 

Consequently, the huge amount of water used in this process must be 

remediated to remove dissolved As prior to its discharge into tailings dam.  The 

management of As-bearing tailings generated through gold extraction processes 

usually concentrates on the stability of secondary As-phases mainly because As-

sulfides such as, realgar (AsS), orpiment (As2S3), FeAsS are assumed to be oxidized 

during gold extraction.  However, As could be existing in two major redox states, 

namely; arsenite As(III) and arsenate As(V) in aqueous effluent, both having 

differences in solubility and mobility according to the oxidation-reduction potential 

(ORP) and pH conditions in the ecosystem [7].  The major secondary As minerals 

existing in tailing dam after cyanidation process are supposed to be As(V), due to the 

addition of high hydrogen peroxide concentration during the gold extraction process.  

At oxidizing conditions, As(V) generally forms complexes with metals such as Fe, 

Al and Ca [7,8].  However, the stability and formation of these As(V)-metal 

complexes is based on several important factors, such as, pH, Fe/As or Al/As ratio, 

redox potential conditions, availability of O2 and CO2 as well as the presence of 

anions, such as SO4
2-

 ion, phosphorus (PO4
3-

) and silicate (SiO3
2-

) that compete with 

As(V) for sorption surfaces [9,10].  Fe and Al-As(V) are the dominating phases in 

acidic condition during gold mining and are less soluble than Ca-As(V), such as 

schwertmannite or ferrihydrite.  Gold mine tailings slurries after gold extraction 

containing As-enriched sulfide ores are usually remediated by lime and Fe2(SO)3 to 
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enhance the formation of stable Fe-As-precipitates and increase the solution to 

prevent the formation of acid mine drainage.  Furthermore, As-bearing tailings 

slurries are usually pre-remediated with H2O2 and O2 in order to enhance the 

oxidation of As(III) complexes into less mobile As(V) species [6,11].  

However, in recent years the world have witnessed the emergent cases of As 

contamination in water and aqueous effluent as a big global environmental problem, 

associated the rapid growth of modern industries and mining process [12]. In many 

cases, the As concentration in aqueous samples from gold mining site are determined 

within the range of 10-100 mg/L at acidic settings, especially in FeAsS-rich areas 

[4,13].  Whilst in soil, As was detected ranging from 2,000-390,970 mg/kg in acid 

mine drainages [14,15].  These highly elevated concentration of As should be 

effectively remediated using highly efficient adsorbent to reduce its environmental 

impact. 

Due to the high toxicity of As, the world health organization (WHO) 

announced the maximum permissible limit of As in drinking water to be 10 µg/L 

[16].  And also U.S. Environmental Protection Agency (EPA) adopted a lower 

standard limit from 50 to 10 μg/L of As concentration in drinking water [17].  

Therefore, there is great concern for As contaminations for human health, plants, 

soil, and water to prevent the ecosystem from deteriorations caused by the high 

toxicity of As presence. 

These increasing trend of growth of interest in As remediation is in 

agreement with the result of the study performed in 2007 where an estimate of more 

than 137 million people in over 70 countries, including Argentina, Bangladesh, 

China, Hungary, India, Japan, Malaysia, Mexico, Romania, United  States  and 

Vietnam are exposed As toxicity via water sources [18–20].  Thus, the great harm to 

human health for As was affirmed and for this reason, As was categorized as class 



4 

 

 

one carcinogen by the International Agency for Research on Cancer (IARC) [21].  

Additionally, more than 200,000 people suffered death due to As poisoning every 

year after being subject to a variety of cancerous growths such liver, lungs, bladder, 

kidney and prostate cancers [22,23].  Similarly, As has also been related to non-

cancerous multi-systemic health problems such as renal failure, diabetes mellitus, 

dermatological diseases, respiratory disorder, cardiovascular disease, hypertension 

and so forth [18,24].  Unfortunately, As contamination removal is not easy as well, 

as it can easily pass through food chains and drinking water into the body.  

Moreover, As exhibits a strong tendency for accumulation in the human body and 

hence threatens prolong health risks [12].  

Due to gold mining processes, high As concentrations are generated for both 

tailing and aqueous effluents.  These highly elevated As must be remediated before 

discharge into the water bodies.  The remediation of As-bearing tailings or As 

contaminated area is a considerable challenge to the scientific community, especially 

at mining sites that have dramatically impacted the water resources and soils in the 

environment [25].  In other hand, As removal from aqueous effluent can be a very 

costly process.  The costs for As removal could exceed the benefited, needing very 

careful selection of the technology to be used.  First of all, the selection must 

consider the water characteristics to be remediated [26].  To date, there are various 

technologies applied to remediate As from natural waters and industrial effluents 

including coagulation-precipitation, oxidation, coagulation, ion-exchange, membrane 

separation, adsorption, reverse osmosis and electro-kinetic methods.  However, these 

technologies have several drawbacks such as high waste remediation and operating 

costs, high consumption of reagents as well as large amounts of toxic sludge 

formation.  Among these processes, adsorption technique is considered as one of the 

most promising technologies for mitigating As in aqueous effluent scenario, due to 

its low cost, operational simplicity, high concentration efficiency, and environmental 

friendliness [27,28].  Consequently, it is vital to properly remediate this aqueous 
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effluent utilizing techniques that involve, for example, adsorption in a 

complementary way or as alternatives for conventional techniques. 

Nowadays, As remediation from aqueous effluent has become a major active 

research focus.  Numerous approaches and studies are applied to obtain abundant, 

porous structure and chemically-stable inexpensive adsorbent with high surface area 

[18].  These includes adsorbents such as iron oxide, iron oxyhydroxides, aluminum 

oxide/oxyhydroxides, activated  carbon, activated  alumina, rare earth oxides, fly ash, 

manganese green sand, iron-containing mesoporous carbon, natural material, both 

Fe2O3 and Fe3O4 nanomaterials, red mud, zeolite, zero valent iron nanoparticles, 

granulated ferric oxide, manganese oxides, transition metal sulfides, magnetic wheat 

straw, titanium dioxide, iron-oxide@carbon and  cellulose@Fe2O3 composites, etc.  

The effectiveness of adsorption technique selection is mostly dependent on the 

adsorbent’s removal efficiency and their economic value.  Due to the tremendous 

adsorption potential,  magnetic properties, and strong affinity of  iron toward As, iron 

oxide compounds or embedded iron have high sorption affinity toward As species, 

therefore, iron based materials are commonly used in various methods for the 

remediation of As contaminated water and soil [17,20,28]. 

 Problem statement  1.2

Nowadays, many instruments used for measuring As includes hydride 

generation coupled with atomic fluorescence spectrometry (HG-AFS), hydride 

generation coupled with atomic absorption spectrometry (HG-AAS), electrothermal 

absorption spectrometry (ET-AAS), inductively coupled plasma with atomic 

emission spectrometry/inductively coupled plasma with mass spectrometry (ICP-

AES; ICP-MS), high performance liquid chromatography with atomic fluorescence 
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spectrometry (HPLC-AFS), high performance liquid chromatography with 

inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) etc. [29–31]. These 

analytical techniques cannot be considered as portable instruments for on-site 

applications as they required complicated sample pre-treatment process, and skilled 

personnel [32].  As(III) dominates the gold mining site due to FeS2 or FeAsS 

oxidation.  As(III) can commonly get oxidized and transformed to As(V) during the 

sampling to laboratory.  Therefore, the result of the test is often biased and does not 

express the exact As speciation of the samples [33].  Consequently, there is a need to 

develop a simple, sensitive and accurate method for on-site analysis of As speciation 

in environmental water sources. 

In the gold mining site, great amount of water is used for gold extraction                                      

For example, in Selinsing gold mining site, about 6000 m
3
/d of effluent are 

discharged into the tailing dam.  This aqueous effluent contained extremely high 

concentration of As and CN
-
 ion as well as high alkaline pH and oxygen 

concentration.  Consequently, the water resources near the gold mine are 

contaminated.  Thus, exposing the inhabitants to severe health risks such as 

arsenicosis, cancers, diabetes, hearing loss, hematological disorders, keratosis, 

neurobehavioral disorders, and pulmonary fibrosis [30,34,35].  

In our visit to Selinsing gold mine site, the site engineer informed us that they 

had problem in the management of the aqueous effluent (and not the sediment which 

according to him is stable).  We were informed that the As concentration in first 

tailing pond is generally between 10-17 mg/L which was extremely high in 

comparison with the effluent standard for As in Malaysia (0.1 mg/L). 
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 Research objective 1.3

The main objectives of this research are as follows: 

a) To develop a new technical method for measuring As speciation. 

b) To determine the As concentration in soil and aqueous effluent from 

Selinsing gold mining site (Malaysia), and identify the problems associated 

with the elevated As concentration in its discharge effluent. 

c) To investigate the applicability of Ecomel (Iron ion enrich materials) for 

removal of As(III) and As(V) in standard aqueous solutions and treating the 

slurry from gold mine site using batch method. 

 Scope of research 1.4

For measuring As speciation, redox–FIA system was developed.  The 

remediation of As in liquid effluents was carried out using Ecomel under acidic 

condition without the addition of oxidants.  The experimental flow of the research is 

shown in Figure 1.1.  Thus, this research thesis was divided into three phases as 

follows: 

Phase I: Developing new technical method for As speciation measurement in   

water samples co-existing with phosphorus (PO4
3-

) and silicate (SiO3
2-

) using 

FIA. 
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The first phase focused on developing new method for measuring As 

speciation and includes: 

a) Investigation of the simple As speciation analysis for As (III), As (V) and in 

PO4
3-

 and SiO3
2-

 contaminated environmental sample.  

b)  Optimization of the oxidant concentration that can complete oxidation of 

As(III).  

c) Optimization of the reductant concentration that can complete reduction of 

As(V).  

d) Investigating techniques to eliminate the effect of PO4
3-

 and SiO3
2 

as 

interference to As analysis by molybdenum blue. 

e) Testing the accuracy of Flow Injection Analysis (FIA) for measuring As 

based on comparison with atomic fluorescence spectrometry (AFS). 

f) The system performance of FIA for As speciation determination in real 

sample. 

Phase II:  Sampling field works at Selinsing gold mining site in Pahang 

Malaysia 

The second phase focused on obtaining the environmental assessment for the 

mining site as the background of the study. Activities done during this phase 

includes; 

a) Case study of Selinsing gold mining site problems in aqueous effluent and 

tailings. 
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b) All aqueous effluent and As-bearing tailings were collected from 

Selinsing gold mining site at 17-7-2015 and 3-1-2016. 

c) Characterizations of soil from tailing dam using XRD, XRF, pH, pHpzc, 

FESEM-EDX, nitrogen-adsorption analysis, ICPOES, AFS. 

d) Onsite water quality measurements such as, pH, DO, ORP, EC, and 

temperature with ICPOES, AFS, and As speciation by FIA. 

e) Studying the characterizations of soil such as pH, particle size 

distribution, classification of soil and Loss on ignition (LOI). 

f)  Studying the effect of pH and L/S on As leaching. 

Phase III: Batch experimental set using Ecomel adsorbent, a new application 

for As remediation in aqueous solution and slurry waste. 

This phase focused on the preparations, testing and characterizations of 

Ecomel before and after adsorption. The processes include: 

a) Characterizations using XRD, FESEM-EDX, pH, pHpzc, TGA-DTA, 

nitrogen-adsorption analysis. 

b) Adsorbent kinetics and isotherms. 

c) Study the mechanism of As removal. 

d) Cost analysis study for Ecomel. 

e) Studying the optimum dosage of Ecomel for remediation As-bearing 



10 

 

 

tailings. 

f) Studying the optimum dosage of Ecomel for remediation As(III) and As(V)     

from water. 

g) Studying the optimum dosage of Ecomel for remediation As from slurry. 

h) Model suggestion for slurry remediation. 

 

Figure 1.1 Experimental flow 
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 Significance of research 1.5

The significance of this research is to resolve an actual problem in Malaysia 

and many other developing and developed countries resulting from high As 

concentration. This explores the viability of a proposed model for As remediation in 

aqueous effluent in gold mining site. 

The present research focuses on Selinsing gold mining site, Pahang–

Malaysia.  Field studies were performed to identify the problem of high As leaching 

from tailing. Adsorption under acidic conditions in laboratory batch scale was used 

for the remediation of queues effluent.  Generally, the present study provides a 

complete view on the cause of As leaching in aqueous solution and suggest the 

reliable system to remediate As and overcome any potential problems associated 

with As leaching. 

Even though the aqueous effluents were remediated by adding hydrogen 

peroxide (H2O2) for the oxidation of As(III) to As(V) and as well integrating high 

concentration of iron impregnated sand to adsorb As(V), As concentration in treated 

effluents were still extremely high and does not meet Malaysia’s As effluent 

discharge standards (0.1 mg/L).  Thus, this study introduces a new application of 

super-adsorbent namely Ecomel with low-cost and high adsorption capacity to 

adsorb As especially As(III) without any further pre-remediation.  Ecomel can 

remediate high As concentration in both aqueous effluent and slurry.  

The success of this research will consider Malaysia as a contributing nation 

for sustainable mining policy and as well create higher reputation to the Malaysian’s 

research activity and applied novelty of low-cost technology for on-site remediation 

in As-bearing tailings.  This enables Malaysia to have within their domain, a recent 
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technology for remediating As from gold mining sediment and protect its water 

resources from As contaminations.  Therefore, this study provides a promising 

alternative technique for the remediation of As-bearing tailings in view of its low-

cost and long term application as a sustainable mitigation technology. 

Similarly, a simple, selective and stable on-site Flow Injection Analysis (FIA) 

redox analytical method was developed to determine As speciation in water samples 

constituted with phosphate (P) and silicate (Si).  The developed method senses the 

As(V), P and Si by reacting with ammonium molybdenum, which forms a 

molybdenum blue complex under acidic condition.  This study was carried out to 

define an alternative method to remediate As contamination in aqueous effluent.  As 

mobility in As-bearing tailings can be controlled by two important processes:  (i) 

adsorption and desorption processes and (ii) solid-phase precipitation and 

dissolution. 

 Limitation of research 1.6

Briefly, the limitation of this research can be summarized by the following: 

a) Difficulty to get information about the industrial process, 

concentration on the influent/effluent and adsorbent material that was 

used for As remediation in aqueous effluent in Selinsing gold mining 

site. 

b) Limitation of sampling frequency due to stringent regulation from the 

management and the location of sampling site is far from UTM. 
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c) Difficulty to apply the research on-site for remediating both aqueous 

and slurry effluents. 
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