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ABSTRACT 

This thesis investigates the controlled growth and vertically aligned 

ZnO/CuO core-shell heterojunction nanowires (NWs) formation by vapor deposition 

and oxidation approach. ZnO/CuO heterostructure nanowires were grown on n-type 

Si substrate using modified thermal chemical vapor deposition (TCVD) assisted by 

sputtering deposition followed by thermal oxidation under controlled growth 

conditions. The effects of fabrication parameters on structure, growth mechanism, 

optical and electrical properties of the ZnO/CuO core-shell heterojunction were 

thoroughly investigated. Structural characterization by field emission scanning 

electron microscope (FESEM), high resolution transmission electron microscope 

(HR-TEM), scanning transmission electron microscope (STEM), X-ray 

photoelectron spectroscope (XPS), X-ray diffractometer (XRD) and energy 

dispersive X-ray (EDX) reveals that a highly pure crystalline ZnO core and 

polycrystalline CuO shell were successfully fabricated in which ZnO and CuO are of 

hexagonal wurtzite and monoclinic structures, respectively. The growth of ZnO 

nanowires is along the c-axis [002] direction and the nanowires have relatively 

smooth surfaces with diameters in the range of 35-45 nm and lengths in the range of 

700-1300 nm. The CuO nanoshell with thickness of around 8-10 nm is constructed of 

nanocrystals with sizes in the range of 3–10 nm. EDX spectrum, elemental mapping 

and high angle annular dark field (HAADF) STEM confirmed that the NW 

compositions were Zn, Cu and O. Photoluminescence (PL) study shows the 

enhancement of intensity ratio and decrease in the energy band of ZnO/CuO core-

shell heterojunction NW arrays that might be very useful in photocatalysis, light 

emission devices and solar energy conversion applications. Similarly, UV-VIS-NIR 

spectroscopy study shows that the grown ZnO NW arrays have a maximum 

reflectance of approximately 42% in the 200 to 800 nm range while the ZnO/CuO 

core-shell heterojunction NW arrays have a decreased value of 24%. This means that 

the absorption efficiency of ZnO/CuO core-shell heterojunction nanowire arrays 

clearly shows a higher absorption compared to pure ZnO nanowire arrays. Besides, 

the good rectifying behavior of ZnO/CuO core-shall NW by conductive AFM (C-

AFM) showed that p-n junction was successfully fabricated. Furthermore, from the 

XPS analysis, the measured values for valence band offset (VBO) and conduction 

band offset (CBO) were found to be 2.4 eV and 0.23 eV, respectively for the 

fabrication of ZnO/CuO core-shell heterojunction NWs. It was observed that 

ZnO/CuO core-shell heterojunction NWs have type-II band alignment. This study 

obviously suggests that using the controlled growth mechanism, it is possible to 

control crystal structure, surface morphologies and orientation of the core-shell NW 

arrays. 
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ABSTRAK 

Tesis ini menyiasat pertumbuhan terkawal dan pembentukan teras-petala 

simpangan hetero dawai nano (NW) ZnO/CuO jajaran menegak dengan pendekatan 

pemendapan wap dan pengoksidaan. Dawai nano struktur hetero ZnO/CuO 

ditumbuhkan di atas substrat Si jenis-n nenggunakan pemendapan terma wap kimia 

(TCVD) yang diubah suai dibantu oleh pemendapan percikan diikuti dengan 

pengoksidaan terma di bawah keadaan pertumbuhan terkawal. Kesan parameter 

fabrikasi terhadap struktur, mekanisme pertumbuhan dan sifat-sifat optik dan elektrik 

bagi teras-petala simpangan hetero ZnO/CuO telah disiasat dengan menyeluruh. 

Pencirian struktur dengan mikroskop elektron pengimbas pemancaran medan 

(FESEM), mikroskop elektron penghantaran resolusi tinggi (HRTEM), mikroskop 

elektron penghantaran imbasan (STEM), spektroskop fotoelektron sinar-X (XPS), 

pembelau sinar-X (XRD) dan spektroskop serakan tenaga sinar-X (EDX) 

menunjukkan bahawa kristal teras ZnO yang sangat tulen dan polihabluran petala 

CuO telah berjaya difabrikasi di mana ZnO dan CuO masing-masing adalah 

berstruktur heksagon wurtzite dan monoklinik. Pertumbuhan dawai nano ZnO adalah 

sepanjang arah paksi–c [002] dan dawai nano mempunyai permukaan yang licin 

dengan diameter dalam julat 35-45 nm dan dan panjang dalam julat 700-1300 nm. 

Petala nano CuO dengan ketebalan sekitar 8-10 nm dibina daripada nanokristal 

dengan saiz dalam julat 3-10 nm. Spektrum EDX, STEM pemetaan unsur dan anulus 

medan gelap bersudut tinggi (HAADF) dan STEM mengesahkan bahawa komposisi 

NW ialah Zn, Cu dan O. Kajian photoluminescence (PL) menunjukkan peningkatan 

nisbah keamatan dan pengurangan jalur tenaga tatasusunan NW simpangan hetero  

teras-petala  ZnO/CuO yang  berkemungkinan sangat berguna dalam aplikasi 

fotomangkin, peranti pemancar cahaya dan penukaran tenaga solar. Begitu juga, 

spektroskopi UV-VIS-NIR menunjukkan bahawa  tatasusunan NW ZnO yang  

ditumbuhkan menghasilkan pantulan maksimum kira-kira 42% dalam julat 200-800 

nm manakala tatasusunan NW simpangan hetero  teras-petala ZnO/CuO telah 

berkurangan kepada 24%. Ini bermakna tatasusunan NW simpangan hetero teras-

petala ZnO/CuO menunjukkan kecekapan penyerapan lebih tinggi berbanding 

tatasusunan NW ZnO tulen. Selain itu, sifat membetulkan NW teras-petala ZnO/CuO 

yang baik menunjukkan yang persimpangan p-n telah berjaya difabrikasi. Tambahan 

pula, dari analisis XPS, telah ditemui nilai diukur bagi ofset jalur valens (VBO) dan 

ofset jalur konduksi (CBO) masing-masing ialah 2.4 eV dan 0.23 eV, untuk fabrikasi 

NW simpangan hetero teras-petala ZnO/CuO. Didapati bahawa penjajaran jalur bagi 

NW simpangan hetero teras-petala ZnO/CuO adalah jenis-II. Kajian ini jelas 

menunjukkan bahawa dengan menggunakan mekanisme pertumbuhan dikawal, 

terdapat kemungkinan untuk mengawal struktur kristal, morfologi permukaan dan 

orientasi teras-petala tatasusunan NW. 
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 CHAPTER 1

INTRODUCTION 

 Background 1.1

In recent years the research on one-dimensional (1D) nanostructures of 

different materials for their remarkable performance and properties have been 

increasing and has gained much attention for the device fabrication due to their size 

and shape dependent properties. This is the unique reason that nanostructures have 

exceptional properties as compare to the bulk materials properties. This is due to the 

dependence of the physical properties and chemical properties of one-dimensional 

nanostructures on size and shape. One-dimensional nanostructures, including 

nanowires (NWs) and nanorods (NRs) are the most studied nanomaterials for their 

important future application prospects. High aspect ratio, extremely large surface 

area as compared to volume ratio, high porosity and direct conduction path of 

nanowires and nanorods are the important key factors compared with other 

nanostructures materials. These properties of nanostructure would lead to potential 

use for advanced applications in photonic and nano-optoelectronics like field 

emission devices, nanogenerators, photovoltaics, sensing, storage devices and 

efficient energy conversion (Jie et al., 2010; Dhara and Giri, 2013; Sun, 2015). 

Semiconductor nanowires has become one of the most active area of research 

within the science, engineering and technology (Fan and Lu, 2005; Yi et al., 2005; 
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Zhang et al., 2012; Khan and Sakrani, 2014). Many materials are under focus with 

the potential of developing nano-systems and their combine heterostructure. The 

optimization of the performance is the main challenge at the moment. The materials 

to be discussed are copper oxide (CuO), zinc oxide (ZnO), and their core-shell 

heterojunction. To grow the nanowires of these materials and their heterojunction 

nanowires both high temperature methods and low temperatures methods are being 

extensively used. 

Copper oxide (CuO) is an attractive p-type material with semiconducting 

property of direct band gap 1.2 eV and good absorption coefficient. Due to the 

intrinsic, stable, direct band gap and p-type nature properties make CuO good 

candidate for electrical, optical, sensing, catalysts, photovoltaic and optoelectronics 

devices (Xu et al., 2004b; Cheng et al., 2008; Jung et al., 2011; Liang et al., 2011; 

Wang et al., 2011a; b; Anandan et al., 2012; Chang and Yang, 2012; Filipič and 

Cvelbar, 2012; Willander et al., 2012). 1D nanowires / nanorods of CuO  synthesized 

by various growth techniques such as thermal decomposition of CuC2O4 precursors 

(Raksa et al., 2005), hydrothermal decomposition route (Kim et al., 2014), self-

catalytic growth process (Chen et al., 2003), and so forth. In comparison to various 

synthesizing methods, thermal annealing or thermal oxidation of copper foil using 

hot tube vacuum thermal evaporation method is a simple, convenient, and the fast 

method for synthesis nanostructures. Due to large surface areas CuO NWs are greatly 

desirable. In CuO NWs large surface areas need to high absorption of photons for 

greater efficiency in photovoltaic devices (Bao et al., 2009; Kargar et al., 2013a; Pal 

et al., 2015), which are used for catalysis and gas-sensing (Chang and Yang, 2012). 

In addition CuO NWs can be potentially applicable in gas sensing, magnetic storage 

media, in nano-devices for catalysis and for field emitter devices (Liang et al., 2011)  

Similarly Zinc Oxide (ZnO) is n-type metal oxide semiconductor and is very 

popular due to easiness of growing it in the nanostructure form. ZnO material 

possesses both semiconducting and piezoelectric properties (Cha et al., 2008; Aziz et 

al., 2014). ZnO due to its popular material has different growth morphology, such as 

nanowires, nanorods, nanotubes, nanofibers, nanospheres and nano-tetrapods, nano-
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cabbage, nanocombs, nanowalls and nanoprisms (Wang, 2004). These growth 

morphologies have been successfully grown by different methods. Most of the 

techniques have high temperature and long time required for the reaction. The 

growth techniques of ZnO nanostructure include Hydrothermal methods (Azlinda et 

al., 2011), vapour-liquid-solid (VLS) technique (Zhang et al., 2012), catalysed metal 

Chemical Vapour Deposition (Yi et al., 2005), thermal chemical vapour deposition 

(Cha et al., 2008), plasma enhanced CVD (Liu, 2004),  oxidation method (Khanlary 

et al., 2012),  thermal evaporation (Suhaimi et al., 2014) and laser-ablation (Son et 

al., 2007).  

ZnO nanostructures have many diverse applications in nano-optoelectronics, 

sensors, transducers, piezoelectric elements for nano-generators, sunscreens and 

biomedical science, since it is a bio-safe material (Wang, 2004; Fan and Lu, 2005; 

Schmidt-Mende and MacManus-Driscoll, 2007; Li et al., 2008; Pan and Zhu, 2009; 

Ahmad et al., 2011; Zhang et al., 2012; Wei et al., 2012; H. Asif, 2013; Sun et al., 

2014; Zhan et al., 2015). The direct wide band gap of ZnO ~ 3.4 eV is suitable for 

optoelectronic applications due to its short wavelength.  ZnO naturally exhibits n-

type semiconductor, while polarity due to native defects such as oxygen vacancies 

and zinc interstitials. P-type doping of ZnO is still a challenging problem that is 

hindering the possibility of a p-n homojunction ZnO devices (Janotti and Van de 

Walle, 2009).  

Recently the fabrication of heterostructure (HS) nanowires is being deeply 

studied in order to accomplishment the important properties of heterojunction of 

different materials. Using heterojunction nanowires approach, researchers are able to 

modify/improve the selective property of the oxide nanowires. Oxide nanowires are 

expected to have improved charge collection efficiency because of the lower interval 

and higher contact area between the p-type and n-type materials. ZnO NWs radial 

heterostructure (core-shell) have been reported using several organic/and inorganic 

materials (Plank et al., 2008; Wang et al., 2010, 2011b; Lin et al., 2012; Dhara et al., 

2013; Chu et al., 2014; Pradel et al., 2016) . Several new approaches have been used 

for the synthesis of ZnO nanowires based on the radial heterostructures. The radial 
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heterostructures of ZnO NWs basically consist of core-shell nanowires, which have 

ZnO as a core material, while a thin layer consist of a shell as a secondary material. 

The thin shell layer as a secondary element has a strong impact on the properties of 

the nanowires; however, individual property of the shell layer is not specific. These 

HS shows significant improvement on certain properties, mainly photophysical 

properties, like absorption, electron–hole pair generation and recombination rates. 

Although the HS are superior for modulation of certain properties, control on the 

external layer and formation of high quality interface between the external material 

and NW are, however, challenging issues.  

Consequently, there is a lot of interest in the fabrication of one dimensional 

(1D) ZnO/CuO core-shell heterojunction nanowires for optoelectronic and 

nanoelectronic devices applications. As these core-shell heterojunction nanowires are 

expected to have improved charge collection efficiency because of the lower interval 

and higher contact area between the p-type and n-type materials (Cao et al., 2012). 

Different techniques have been combined and developed to grow ZnO/CuO core-

shell NWs heterojunction including chemical reactions from aqueous solutions (e.g. 

electrodeposition, hydrothermal growth), and vapor phase methods (chemical vapor 

deposition through vapor-liquid-solid (VLS) or vapor-solid (VS) growth 

mechanisms), Lithography and electrospinning processes and template-directed 

methods (Mieszawska et al., 2007; Fang et al., 2009; Hochbaum and Yang, 2010; 

Cao et al., 2012). In general, to synthesize one dimensional nanoscale 

heterostructures or core-shell heterostructure all these methods can be applied very 

carefully by manipulating the experimental growth parameters, such as source 

materials, pressure, temperatures and deposition time etc. 

 Problem Statement  1.2

Research shows that ZnO/CuO core–shell nanowire (NW) heterojunction 

have been studied in recent years, with  emphasize generally on their synthesis and 
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properties which are interesting and potentially useful for developing new 

challenging devices due to their high interfacial area, allowing for more electron-hole 

formation or recombination (Wang and Lin, 2009; Wang et al., 2011b; Hsueh et al., 

2012; Kargar et al., 2013b; Sun, 2015). The shell formation of copper oxide (CuO) to 

vertically aligned ZnO NW arrays has been reported as an especially attractive 

platform for opto-electronic applications because of promising p-type semiconductor 

having narrow band gap energy (1.2 eV) and strong absorption of the solar spectrum 

(Kim et al., 2014). 

Different techniques have been developed to grow ZnO/CuO core-shell NWs 

heterojunction including chemical reactions from aqueous solutions (e.g. 

electrodeposition, hydrothermal growth) and chemical vapor deposition (CVD) 

through vapor liquid solid (VLS)  or vapor-solid (VS) growth mechanisms (Wang 

and Lin, 2009; Liao et al., 2011; Wang et al., 2011b; Wu et al., 2013). However, 

these techniques have limitations to develop cost-effective and efficient 

nanomaterials at commercial levels. The chemical reaction method in aqueous 

solution needs a predeposited seed layer, and the aqueous environment tends to 

produce very short nanowires with low crystallinity, which is not suitable for high 

performance nano-devices fabrication (Zhan et al., 2015). Similarly, to grow high-

crystallinity core-shell nanowires heterojunction using high-temperature methods  on 

a Si substrate needed a layer of gold film as a catalyst (Pan et al., 2011). The usage 

of metal catalyst tends to make impure the final synthetic products and potentially 

impacting the electrical and optical performance. 

The limited combined use of core-shell compositions in nanostructured 

materials highlights the lack of versatility in current synthetic techniques and 

emphasizes the need for new synthetic techniques to address unmet challenges facing 

the photovoltaic community. Further examination showed that less study has been 

available on CuO absorber layers (shell formation) synthesized by thermal oxidation 

of copper nanofilm by a thermal chemical vapor deposition method in a horizontal 

quartz glass reactor compared to widely used chemical methods. Therefore, it is of 

great importance to explore new approach to improve the properties of CuO shell 
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formation or absorber layer properties under vapor solid (VS) grown mechanism. 

This would be helpful to produce good p-n junction with ZnO NW arrays with 

controlled morphology. A modified thermal CVD followed by sputtering and thermal 

oxidation methods are proposed which will result in quality of the controlled growth 

and vertically aligned large-area ZnO/CuO core–shell nanowire (NW) 

heterojunction. The corresponding structural, optical, electrical and their band offsets 

properties are expected to improve significantly.  

 Research Objectives 1.3

The objectives of this research are: 

i) To synthesize ZnO and CuO nanowires by thermal CVD and thermal 

oxidation methods respectively and measures its properties. 

ii) To produce ZnO/CuO core-shell heterojunction nanowire arrays using 

thermal CVD followed by sputtering and thermal oxidation methods.  

iii) To measure current-voltage (I-V) of this nanowire heterojunction. 

iv) To measured valance band offset of ZnO/CuO heterojunction by X-ray 

photoelectron spectroscopy (XPS). 

 Scope of the Study 1.4

The scope of this research are devoted to the development of controlled 

growth, vertically aligned ZnO, CuO and their core-shell (ZnO/CuO) heterojunction 

nanowires (NWs) and investigation of structural, optical, electrical and their valance 

band offset measurement properties at ZnO/CuO heterointerface. 
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The research work has been carried out for the selected materials keeping in 

view of their technological importance and mainly focus on the growth of ZnO and 

ZnO/CuO NWs. To produce vertically aligned ZnO/CuO core-shell heterojunction 

nanowires (NWs), several steps are used and each step is need on benefits and boost 

on the information bring into being in the previous steps. These are highlighted in the 

experimental section. Modified thermal chemical vapor deposition (CVD) assisted 

sputtering techniques followed by thermal oxidation method under controlled growth 

conditions are employed to prepare ZnO/CuO core-shell heterojunction nanowires on 

n-type Si substrate. Different deposition parameters such as; sputtering deposition 

time, oxygen partial pressure and oxygen flow rate are applied to investigate the 

growth process and surface evolution of ZnO/CuO core-shell heterojunction 

nanowires. The morphology and crystal structure of the as-grown ZnO nanowires 

and core-shell heterojunction NW arrays were characterized by field emission 

scanning electron microscope (FESEM, SU8020, HITACHI), high-resolution 

transmission electron microscopy (HRTEM, TECNAI G2 20 S-TWIN, FEI 200kV) 

including special feature of STEM and EDX, X-ray diffractometer (XRD) (Bruker 

AXS D5005, Cu Kα radiation), X-ray photoelectron spectroscopy (XPS, AXIS 

ULTRA DLD) and Raman spectrometer (HORIBA). 

The optical property of the ZnO NWs and their core-shell heterojunction 

NWs has been analyzed for the prepared samples at room temperature by using 

Photoluminescence (PL), UV visible Reflectance spectroscopy (UV-Vis-NIR 

Spectrometer). The electrical measurements (I-V characteristic) and rectifying 

behavior of ZnO/CuO core-shell heterojunction NWs about the junction development 

at interface were studied by Conductive Atomic Force Microscopy (CAFM). Also 

the energy band alignment of the core-shell heterostructure nanowire i.e valance 

band offset (VBO) and conduction band offset (CBO) were found experimentally 

from X-ray photoelectron spectroscopy.  
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 Significance of the Study 1.5

Semiconductor nanowires are exclusively interesting having deep impact on 

nanoscience studies and nanotechnology application. It has been determined that one 

dimensional (1-D) materials exhibit remarkable nano-optoelectronic, thermal and 

mechanical properties as compared to bulk materials/ two dimensional thin film 

semiconductors. This is the unique reason that nanostructures have exceptional   

properties as compare to the bulk materials properties. This is due to the dependence 

of the physical properties and chemical properties of one-dimensional nanostructures 

on size and shape. Among the 1-D nanostructures, 1-D heterostructures with 

modulated compositions and interfaces have recently become of particular interest 

with respect to potential applications in nanoscale building blocks of future 

optoelectronic devices and systems. Consequently, there is a lot of interest in the 

fabrication of one dimensional (1D) ZnO/CuO core-shell heterojunction nanowires 

for optoelectronic and nanoelectronic devices applications. As these core-shell 

heterojunction nanowires are expected to have improved charge collection efficiency 

because of the lower interval and higher contact area between the p-type and n-type 

materials. The results of this dissertation research will be benefit for understanding in 

the properties of ZnO/CuO core-shell heterojuction nanowires to meet the 

requirements of using heterostructure nanaowires in developing high performance 

opto-electronic devices. 

 Organization of Thesis 1.6

The complete research work of this dissertation is organized into a five-

chapter. Chapter 1 begins with the introduction, followed by the research 

background, the statement of the research problem, research objectives, scope of the 

study, and significance of this research and organization of the study.  



9 

Chapter 2 presents literature survey of ZnO, CuO and their heterostructure 

nanowires, growth techniques including vapour transport growth, chemical vapour 

deposition, thermal chemical vapour deposition and physical vapour deposition. 

Then it‟s followed by electrical properties of semiconductor nanowires by 

conductive AFM and valance band offset measurement by X-ray photoelectron 

spectroscopy for these heterostructure nanowires. 

Chapter 3 is focused on the details of the experimental procedures, which 

cover sample preparations of ZnO and CuO NWs fabricated by thermal chemical 

vapour deposition (CVD) and thermal oxidation techniques respectively, while 

ZnO/CuO Core-Shell heterojunction nanowire arrays were fabricated on a silicon 

substrate through vapor-solid (VS) mechanism without using any catalyst or seed 

layer via thermal CVD followed by sputtering and thermal oxidation. A brief 

description of sample characterization is also discussed in chapter 3. 

In the next Chapter 4, reports on the results and discussion of the 

characterization part of the synthesised nanowires (CuO, ZnO and their ZnO/CuO 

core-shell heterojunction NWs) are presented. To grow these nanowires and their 

core-shell heterojunction nanowires successfully, various growth parameter were 

studied. The growth mechanism were explained, and the structural, electrical, optical 

and their energy band offsets properties of ZnO/CuO core-shell heterojunction NWs 

were performed 

Finally, in chapter 5, conclusions that are evident from the work results are 

summarized and accompanied by a short outlook, which may boost additional efforts 

in this exciting and promising field. 

 



132 

 

REFERENCES 

 

 

Ahmad, M., Pan, C., Iqbal, J., Gan, L., and Zhu, J. (2009) Bulk synthesis route of the 

oriented arrays of tip-shape ZnO nanowires and an investigation of their sensing 

capabilities. Chemical Physics Letters, 480, 105–109. 

Ahmad, M., Pan, C., Yan, W., and Zhu, J. (2010) Effect of Pb-doping on the 

morphology, structural and optical properties of ZnO nanowires synthesized via 

modified thermal evaporation. Materials Science and Engineering: B, 174, 55–

58. 

Ahmad, M., Sun, H., and Zhu, J. (2011) Enhanced photoluminescence and field-

emission behavior of vertically well aligned arrays of In-doped ZnO Nanowires. 

ACS applied materials & interfaces, 3, 1299–305. 

Ahmad, Z. and Sayyad, M.H. (2009) Electrical characteristics of a high rectification 

ratio organic Schottky diode based on methyl red. Optoelectronics and 

Advanced Materials, Rapid Communications, 3, 509–512. 

Aleszkiewicz, M. and Fronc, K. (2007) Mechanical and Electrical Properties of ZnO-

Nanowire/Si-Substrate Junctions Studied by Scanning Probe Microscopy. Acta 

Physica Polonica- A, 112, 255–260. 

Alvi, N.H., Usman Ali, S.M., Hussain, S., Nur, O., and Willander, M. (2011) 

Fabrication and comparative optical characterization of n-ZnO nanostructures 

(nanowalls, nanorods, nanoflowers and nanotubes)/p-GaN white-light-emitting 

diodes. Scripta Materialia, 64, 697–700. 

Amin, G., Hussain, I., Zaman, S., Bano, N., Nur, O., and Willander, M. (2010) 

Current-transport studies and trap extraction of hydrothermally grown ZnO 

nanotubes using gold Schottky diode. Physica Status Solidi (A) Applications 

and Materials Science, 207, 748–752. 

Anandan, S., Lee, G.J., and Wu, J.J. (2012) Sonochemical synthesis of CuO 



133 

nanostructures with different morphology. Ultrasonics Sonochemistry, 19, 682–

686. 

Ashkarran, A.A., Afshar, S.A.A., Aghigh, S.M., and Kavianipour, M. (2010) 

Photocatalytic activity of ZnO nanoparticles prepared by electrical arc discharge 

method in water. Polyhedron, 29, 1370–1374. 

Ashkenov, N., Mbenkum, B.N., Bundesmann, C., Riede, V., Lorenz, M., Spemann, 

D., Kaidashev, E.M., Kasic, A., Schubert, M., and Grundmann, M. (2003) 

Infrared dielectric functions and phonon modes of high-quality ZnO films. 

Journal of Applied Physics, 93, 126. 

Aziz, N.S.A., Mahmood, M.R., Yasui, K., and Hashim, A.M. (2014) Seed/catalyst-

free vertical growth of high-density electrodeposited zinc oxide nanostructures 

on a single-layer graphene. Nanoscale research letters, 9, 1–7. 

Azlinda, A., Khusaimi, Z., Abdullah, S., and Bin Mahmood, M.R. (2011) 

Characterization of Urea versus HMTA in the Preparation of Zinc Oxide 

Nanostructures by Solution-Immersion Method Grown on Gold-Seeded Silicon 

Substrate. Advanced Materials Research, 364, 45–49. 

Baek, K.K. and Tuller, H.L. (1993) Electronic characterization of ZnO/CuO 

heterojunctions. Sensors and Actuators: B. Chemical, 13, 238–240. 

Bao, Q., Li, C.M., Liao, L., Yang, H., Wang, W., Ke, C., Song, Q., Bao, H., Yu, T., 

Loh, K.P., and Guo, J. (2009) Electrical transport and photovoltaic effects of 

core-shell CuO/C60 nanowire heterostructure. Nanotechnology, 20, 1–8. 

Bastard, G., Brum, J. a, and Ferreira, R. (1991) Electronic States in Semiconductor 

Heterostructures. Solid State Physics-Advances in Research and Applications, 

44, 229–415. 

Behrisch, R. (1981). Sputtering by Particle bombardment. Springer, Berlin. ISBN 

978-3-540-10521-3 

Bu, I.Y.Y. (2013) Novel all solution processed heterojunction using p-type cupric 

oxide and n-type zinc oxide nanowires for solar cell applications. Ceramics 

International, 39, 8073–8078. 

Bushan B. (2007). Springer Handbook of Nano-technology. 2nd edition, Springer 

Berlin Heidelberg; New York.  



134 

C. K. Ghosh, S. R. Popuri, T. U. Mahesh, K.K.C. (2009) Preparation of 

nanocrystalline CuAlO2 through sol–gel route. J Sol-Gel Sci Technol, 52, 75–

81. 

Cao, Y., Wu, Z., and Ni, J. (2012) Type-II Core / Shell Nanowire Heterostructures 

and Their Photovoltaic Applications. Nano-Micro Letters, 4, 135–141. 

Cha, S.N., Song, B.G., Jang, J.E., Jung, J.E., Han, I.T., Ha, J.H., Hong, J.P., Kang, 

D.J., and Kim, J.M. (2008) Controlled growth of vertically aligned ZnO 

nanowires with different crystal orientation of the ZnO seed layer. 

Nanotechnology, 19, 235601. 

Chambers, S.A., Droubay, T., Kaspar, T.C., Gutowski, M., Chambers, S.A., 

Droubay, T., Kaspar, T.C., and Gutowski, M. (2004) Experimental 

determination of valence band maxima for SrTiO3 , TiO2 , and SrO and the 

associated valence band offsets with Si ( 001 ). J. Vac. Sci. Technol. B, 22, 

2205–2015. 

Chang, S. and Yang, T. (2012) Sensing Performance of EGFET pH Sensors with 

CuO Nanowires Fabricated on Glass Substrate. International Journal of 

Electrochemical Science, 7, 5020–5027. 

Chen, D., Shen, G., Tang, K., and Qian, Y. (2003) Large-scale synthesis of CuO 

shuttle-like crystals via a convenient hydrothermal decomposition route. 

Journal of Crystal Growth, 254, 225–228. 

Chen, J.T., Zhang, F., Wang, J., Zhang, G. a., Miao, B.B., Fan, X.Y., Yan, D., and 

Yan, P.X. (2008) CuO nanowires synthesized by thermal oxidation route. 

Journal of Alloys and Compounds, 454, 268–273. 

Chen, Y., Jia, Q., Shen, Z., Zhao, J., Zhao, Z., Ji, H., and Technology, M. (2016) A 

CuO-ZnO Nanostructured p-n Junction Sensor for Enhanced n-butanol 

Detection. RSC Adv, 6, 2504–2511. 

Chen, Y.S., Liao, C.H., Chueh, Y.L., Lai, C.C., Chen, L.Y., Chu, A.K., Kuo, C.T., 

and Wang, H.C. (2014) High performance Cu2O/ZnO core-shell nanorod arrays 

synthesized using a nanoimprint GaN template by the hydrothermal growth 

technique. Optical Materials Express, 4, 1473–1486. 

Cheng, G., Wang, S., Cheng, K., Jiang, X., Wang, L., Li, L., Du, Z., and Zou, G. 

(2008) The current image of a single CuO nanowire studied by conductive 



135 

atomic force microscopy. Applied Physics Letters, 92, 90–93. 

Cheng, K., Li, Q., Meng, J., Han, X., Wu, Y., Wang, S., Qian, L., and Du, Z. (2013) 

Interface engineering for efficient charge collection in Cu2O/ZnO 

heterojunction solar cells with ordered ZnO cavity-like nanopatterns. Solar 

Energy Materials and Solar Cells, 116, 120–125. 

Chiu, H.M., Chang, Y.T., Wu, W.W., and Wu, J.M. (2014) Synthesis and 

characterization of one-dimensional Ag-doped ZnO/Ga-doped ZnO coaxial 

nanostructure diodes. ACS Applied Materials and Interfaces, 6, 5183–5191. 

Cho, S. (2013) Optical and Electrical Properties of CuO Thin Films Deposited at 

Several Growth Temperatures by Reactive RF Magnetron Sputtering. Met. 

Mater. Int, 19, 1327–1331. 

Chu, L., Li, L., Ahmad, W., Wang, Z., Xie, X., Rao, J., Liu, N., Su, J., and Gao, Y. 

(2014) Bandgap-graded ZnO/(CdS)1− x (ZnS)x coaxial nanowire arrays for 

semiconductor-sensitized solar cells. Materials Research Express, 1, 1–12. 

Coleman, V.A. and Jagadish, C. (2006). Basic Properties and Applications of ZnO. 

In: Chennupati Jagadish, Stephen J. Pearton. Zinc Oxide Bulk, Thin Films and 

Nanostructures: Processing, Properties, and Applications (pp. 1 - 20). Oxford, 

UK: Elsevier. 

Dalal, S.H., Baptista, D.L., Teo, K.B.K., Lacerda, R.G., Jefferson, D. a, and Milne, 

W.I. (2006) Controllable growth of vertically aligned zinc oxide nanowires 

using vapour deposition. Nanotechnology, 17, 4811. 

Dhara, S. and Giri, P.K. (2013) ZnO Nanowire Heterostructures: Intriguing 

Photophysics and Emerging Applications. Reviews in Nanoscience and 

Nanotechnology, 2, 147–170. 

Dhara, S., Imakita, K., Giri, P.K., Mizuhata, M., and Fujii, M. (2013) Aluminum 

doped core-shell ZnO/ZnS nanowires: Doping and shell layer induced 

modification on structural and photoluminescence properties. Journal of 

Applied Physics, 114. 

Donatini, F., Levy, F., Dussaigne, A., Ferret, P., and Pernot, J. (2014) Direct Imaging 

of p − n Junction in Core − Shell GaN Wires. NANO LETTERS, 14, 3491–3498. 

Etgar, L., Yanover, D., Capek, R.K., Vaxenburg, R., Xue, Z., Liu, B., Nazeeruddin, 



136 

M.K., Lifshitz, E., and Gratzel, M. (2013) Core/shell PbSe/PbS QDs TiO2 

heterojunction solar cell. Advanced Functional Materials, 23, 2736–2741. 

F. M. CAPECE, V. DI CASTRO, C.F. and G.M. (1982) “Copper Chrcmite” 

Catalysts: XPS Structure and Correlation with Catalytic Activity. Journal of 

Electron Spectroscopy and Related Phenomena, 27, 119–128. 

F. ÖZYURT KUŞ, T. SERİN, N.S. (2009) Current transport mechanisms of n-ZnO / 

p-CuO heterojunctions. 11, 1855–1859. 

Fan, Z. and Lu, J.G. (2005) Zinc oxide nanostructures: synthesis and properties. 

Journal of nanoscience and nanotechnology, 5, 1561–73. 

Fang, X., Bando, Y., Gautam, U.K., Zhai, T., Gradečak, S., and Golberg, D. (2009) 

Heterostructures and superlattices in one-dimensional nanoscale 

semiconductors. Journal of Materials Chemistry, 19, 5683. 

Filipič, G. and Cvelbar, U. (2012) Copper oxide nanowires: a review of growth. 

Nanotechnology, 23, 194001. 

Fumagalli L., Casuso I., Ferrari G. and Gomila G. (2008). Probing electrical 

transport properties at the nanoscale by current-sensing atomic force 

microscopy. Applied Scanning Probe Methods. Vol VIII. Springer-Verlag: 

Heidelberg. p 421 – 450. 

G. Shen, D.Chen, Y.Bando,  and D.G. (2008) One-Dimensional Nanoscale 

Heterostructures. J. Mater. Sci. Technol., 24, 541–549. 

Gacem K., Hdiy A. E, Troyon M., Berbezier I. and Rhonda A. (2010). Conductive 

AFM microscopy study of the carrier transport and storage in Ge nanocrystal 

grown by dewetting. Nanotechnology, 21, 065706, 1 - 6. 

Guangtian Zou (2008). The current image of a single CuO NW studied by 

conductive atomic force microscopy. Applied Physics Letter, 92, 223116. 

Gao, P., Wang, L., Wang, Y., Chen, Y., Wang, X., and Zhang, G. (2012) One-pot 

hydrothermal synthesis of heterostructured ZnO/ZnS nanorod arrays with high 

ethanol-sensing properties. Chemistry - A European Journal, 18, 4681–4686. 

Gu G., Burghard M., Kim G. T, Dusberg G. S, Chiu P. W., Krstic V., Roth S.and 

Han W. Q. (2001). Growth and electrical transport of germanium NWs. Journal 

of Applied Physics, 90, 5747-5751 



137 

Guo, Z., Zhao, D., Liu, Y., Shen, D., Zhang, J., and Li, B. (2008) Visible and 

ultraviolet light alternative photodetector based on ZnO nanowire/n-Si 

heterojunction. Applied Physics Letters, 93, 163501. 

Guozhong Cao (2005). Nanostructures & nanomaterials-synthesis, properties & 

applications. 2nd edition. USA: Imperial College Press. World scientific 

publishing. p 67 - 69 

H. Asif, M. (2013) Electrochemical Biosensors Based on ZnO Nanostructures to 

Measure Intracellular Metal Ions and Glucose. Journal of Analytical & 

Bioanalytical Techniques, 7, 1-9 

He, J.H. and Ho, C.H. (2007) The study of electrical characteristics of heterojunction 

based on ZnO nanowires using ultrahigh-vacuum conducting atomic force 

microscopy. Applied Physics Letters, 91, 233105,1-3. 

Ho, S.-T., Wang, C.-Y., Liu, H.-L., and Lin, H.-N. (2008) Catalyst-free selective-

area growth of vertically aligned zinc oxide nanowires. Chemical Physics 

Letters, 463, 141–144. 

Hochbaum, A.I. and Yang, P. (2010) Semiconductor nanowires for energy 

conversion. Chemical reviews, 110, 527–46. 

Hsueh, H.T., Chang, S.J., Weng, W.Y., Hsu, C.L., and Hsueh, T.J. (2012) 

Fabrication and Characterization of Coaxial p- Fabrication and Characterization 

of Coaxial p-Copper Oxide / n-ZnO Nanowire Photodiodes. IEEE Transactions 

on Nanotechnology, 11, 127–133. 

Hsueh, T., Hsu, C., Chang, S., and Guo, P. (2007) Cu2O / n-ZnO nanowire solar cells 

on ZnO : Ga / glass templates. Scripta MATERILIA, 57, 53–56. 

Hullavarad, S., Hullavarad, N., Look, D., and Claflin, B. (2009) Persistent 

photoconductivity studies in nanostructured ZnO UV sensors. Nanoscale 

Research Letters, 4, 1421–1427. 

Hussain, M., Ibupoto, Z.H., Abbassi, M.A., Khan, A., Pozina, G., Nur, O., and 

Willander, M. (2014) Synthesis of CuO/ZnO Composite Nanostructures, Their 

Optical Characterization and Valence Band Offset Determination by X-Ray 

Photoelectron Spectroscopy. Journal of Nanoelectronics and Optoelectronics, 

9, 348–356. 



138 

Hussain, S., Cao, C., Nabi, G., Khan, W.S., Usman, Z., and Mahmood, T. (2011) 

Effect of electrodeposition and annealing of ZnO on optical and photovoltaic 

properties of the p-Cu2O/n-ZnO solar cells. Electrochimica Acta, 56, 8342–

8346.  

Igor Beinik. Electrical Characterization of Semiconductor Nanostructures by 

Conductive Probe Based Atomic Force Microscopy Techniques. Ph.D. Thesis.  

Montanuniversitat Leoben; 2011 

Janotti, A. and Van de Walle, C.G. (2009) Fundamentals of zinc oxide as a 

semiconductor. Reports on Progress in Physics, 72, 126501,1-29. 

Jiang, X., Herricks, T., and Xia, Y. (2002) CuO Nanowires Can Be Synthesized by 

Heating Copper Substrates in Air. Nano Letters, 2, 1333–1338. 

Jie, J., Zhang, W., Bello, I., Lee, C.S., and Lee, S.T. (2010) One-dimensional II-VI 

nanostructures: Synthesis, properties and optoelectronic applications. Nano 

Today, 5, 313–336.  

Jung, S., Jeon, S., and Yong, K. (2011) Fabrication and characterization of flower-

like CuO-ZnO heterostructure nanowire arrays by photochemical deposition. 

Nanotechnology, 22, 015606,1-9. 

Kargar, A., Jing, Y., Kim, S.J., Riley, C.T., Pan, X., and Wang, D. (2013) ZnO/CuO 

heterojunction branched nanowires for photoelectrochemical hydrogen 

generation. ACS Nano, 7, 11112–11120. 

Kamran ul Hasan. Graphene and ZnO Nanostructures for Nano- Optoelectronic & 

Biosensing Applications.  Ph.D. Thesis.  Linköpings University Sweden; 2012. 

Khan, M.A. and Sakrani, S. (2014) Synthesis of Cu2O and ZnO Nanowires and their 

Heterojunction Nanowires by Thermal Evaporation : A Short Review. Jurnal 

Teknologi, 5, 83–88. 

Khanlary, M.R., Vahedi, V., and Reyhani, A. (2012) Synthesis and characterization 

of ZnO nanowires by thermal oxidation of zn thin films at various temperatures. 

Molecules, 17, 5021–5029. 

Kim, S., Lee, Y., Gu, A., You, C., Oh, K., Lee, S., and Im, Y. (2014) Synthesis of 

vertically conformal ZnO/CuO core-shell nanowire arrays by electrophoresis-

assisted electroless deposition. Journal of Physical Chemistry C, 118, 7377–



139 

7385. 

Ko, K.Y., Kang, H., Park, J., Min, B.W., Lee, H.S., Im, S., Kang, J.Y., Myoung, 

J.M., Jung, J.H., Kim, S.H., and Kim, H. (2014) ZnO homojunction core-shell 

nanorods ultraviolet photo-detecting diodes prepared by atomic layer 

deposition. Sensors and Actuators, A: Physical, 210, 197–204. 

Kong X. Y. and Wang Z. L., (2003). Spontaneous Polarization-Induced Nanohelixes, 

Nanosprings, and Nanorings of Piezoelectric Nanobelts. Nano Lett., 3, 1625-

1631. 

Kouklin N., (2008). Cu-Doped ZnO Nanowires for Efficient and Multospectral 

Photodetection Applications. Adv. Matter, 20, 2190-2194. 

Kraut, E.A., Grant, R.W., Waldrop, J.R., and Kowalczyk, S.P. (1980) Precise 

determination of the valence-band edge in X-Ray photoemission spectra: 

Application to measurement of semiconductor interface potentials. Physical 

Review Letters, 44, 1620–1623. 

Kraut, E.A., Grant, R.W., Waldrop, J.R., and Kowalczyk, S.P. (1983) Semiconductor 

core-level to valence-band maximum binding-energy differences: Precise 

determination by x-ray photoelectron spectroscopy. Physical Review B, 28, 

1965–1977. 

Kuo T. J., Lin C. N., Kuo C. L., and Huang M. H. (2007). Growth of Ultralong ZnO 

Nanowires on Silicon Substrates by Vapor Transport and Their Use as 

Recyclable Photocatalysts. Chemistry Materials, 19, 5143-5147 

Lai, F., Lin, S., Chen, Z., Hu, H., and Lin, L. (2013) Wrinkling and Growth 

Mechanism of CuO Nanowires in Thermal Oxidation of Copper Foil. Chinese 

Journal of Chemical Physics, 26, 585 

Law, M., Greene, L.E., Johnson, J.C., Saykally, R., and Yang, P.D. (2005) Nanowire 

dye-sensitized solar cells. Nature Materials, 4, 455–459. 

Li, H., Huang, Y., Zhang, Q., Qiao, Y., Gu, Y., Liu, J., and Zhang, Y. (2011) Facile 

synthesis of highly uniform Mn/Co-codoped ZnO nanowires: optical, electrical, 

and magnetic properties. Nanoscale, 3, 654–60. 

Li, J., Fang, G.J., Li, C., Yuan, L.Y., Ai, L., Liu, N.S., Zhao, D.S., Ding, K., Li, 

G.H., and Zhao, X.Z. (2008) Synthesis and photoluminescence, field emission 



140 

properties of stalactite-like ZnS-ZnO composite nanostructures. Applied Physics 

A: Materials Science and Processing, 90, 759–763. 

Liang, J., Kishi, N., Soga, T., and Jimbo, T. (2011) The Synthesis of Highly Aligned 

Cupric Oxide Nanowires by Heating Copper Foil. Journal of Nanomaterials, 

2011, 1–8. 

Liao, K., Shimpi, P., and Gao, P.-X. (2011) Thermal oxidation of Cu nanofilm on 

three-dimensional ZnO nanorod arrays. Journal of Materials Chemistry, 21, 

9564. 

Lin, Y., Chen, W.-J., Lu, J., Chang, Y., Liang, C.-T., Chen, Y., and Lu, J.-Y. (2012) 

Growth and characterization of ZnO/ZnTe core/shell nanowire arrays on 

transparent conducting oxide glass substrates. Nanoscale Research Letters, 7, 

401,1-5. 

Liu, X., Wu, X., Cao, H., and Chang, R.P.H. (2004) Growth mechanism and 

properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor 

deposition. Journal of Applied Physics, 95, 3141–3147. 

Liu, X., Du, H., Wang, P., Lim, T.-T., and Sun, X.W. (2014) A high-performance 

UV/visible photodetector of Cu2O/ZnO hybrid nanofilms on SWNT-based 

flexible conducting substrates. J. Mater. Chem. C, 2, 9536–9542. 

López-Romero, S. and García-H, M. (2013) Photoluminescence and Structural 

Properties of ZnO Nanorods Growth by Assisted-Hydrothermal Method. World 

Journal of Condensed Matter Physics, 3, 152–157. 

Mahmood, K., Park, S. Bin, and Sung, H.J. (2013) Enhanced photoluminescence, 

Raman spectra and field-emission behavior of indium-doped ZnO 

nanostructures. Journal of Materials Chemistry C, 1, 3138. 

Maiti, U.N., Maiti, S., Goswami, S., Sarkar, D., and Chattopadhyay, K.K. (2011) 

Room temperature deposition of ultra sharp ZnO nanospike arrays on metallic, 

non-metallic and flexible carbon fabrics: Efficient field emitters. 

CrystEngComm, 13, 1976. 

Manjon, F.J., Mari, B., Serrano, J., and Romero, A.H. (2005) Silent Raman modes in 

zinc oxide and related nitrides. Journal of Applied Physics, 97, 1–4. 

Mema, R., Yuan, L., Du, Q., Wang, Y., and Zhou, G. (2011) Effect of surface 



141 

stresses on CuO nanowire growth in the thermal oxidation of copper. Chemical 

Physics Letters, 512, 87–91. 

Michelle J.S. Spencer. (2012) Gas sensing applications of 1D-nanostructured zinc 

oxide: Insights from density functional theory calculations. Progress in 

Materials Science, 57, 6425. 

Mieszawska, A.J., Jalilian, R., Sumanasekera, G.U., and Zamborini, F.P. (2007) The 

synthesis and fabrication of one-dimensional nanoscale heterojunctions. Small, 

3, 722–756. 

Milton Ohring (2001). Materials Science of Thin Films, Deposition and Structure. 

2nd Edition. Academic Press: USA 

Modeshia, D.R., Dunnill, C.W., Suzuki, Y., Al-Ghamdi, A. a., El-Mossalamy, E.H., 

Obaid, A.Y., Basahel, S.N., Alyoubi, A.O., and Parkin, I.P. (2012) Control of 

ZnO Nanostructures via Vapor Transport. Chemical Vapor Deposition, 18, 282–

288. 

Muhammad H. Asif, F.E. and M.W. (2011) Electrochemical Biosensors Based on 

ZnO Nanostructures to Measure Intracellular Metal Ions and Glucose. Journal 

of Analytical & Bioanalytical Techniques, 7, 1–9. 

Nasibulin, A., Richard, O., Kauppinen, E., Brown, D., Jokiniemi, J., and Altman, I. 

(2002) Nanoparticle Synthesis by Copper (II) Acetylacetonate Vapor 

Decomposition in the Presence of Oxygen. Aerosol Science and Technology, 36, 

899–911. 

Niebelschutz M., Cimalla V., Ambacher O., Machleidt T., Ristic J., Calleja E. (2007) 

Electrical performance of gallium nitride nanocolumns. Physica E, 37, 200-203 

Pal, S., Maiti, S., Maiti, U.N., and Chattopadhyay, K.K. (2015) Low temperature 

solution processed ZnO/CuO heterojunction photocatalyst for visible light 

induced photo-degradation of organic pollutants. CrystEngComm, 17, 1464–

1476. 

Pan, C. and Zhu, J. (2009) The syntheses, properties and applications of Si, ZnO, 

metal, and heterojunction nanowires. Journal of Materials Chemistry, 19, 869. 

Pan, J., Shen, H., Werner, U., Prades, J.D., Hernandez-Ramirez, F., Soldera, F., 

Mucklich, F., and Mathur, S. (2011) Heteroepitaxy of SnO2 nanowire arrays on 



142 

TiO2 single crystals: Growth patterns and tomographic studies. Journal of 

Physical Chemistry C, 115, 15191–15197. 

Pan, J., Ke, C., Zhu, W., Zhang, Z., Tok, S., and Pan, J. (2015) Energy band 

alignment of SnO2 / SrTiO3 epitaxial heterojunction studied by X-ray 

photoelectron spectroscopy. surface and interface analysis, 47, 824–827. 

Pecharsky V. and Zavalij P. (2005). Fundamentals of Powder Diffraction and 

Structural Characterisation of Materials. 2nd Edition. Springer: New York 

Peksu, E. and Karaagac, H. (2015) Synthesis of ZnO Nanowires and Their 

Photovoltaic Application : ZnO Nanowires / AgGaSe2 Thin Film Core-Shell 

Solar Cell. 2015. 

Plank, N.O. V, Snaith, H.J., Ducati, C., Bendall, J.S., Schmidt-Mende, L., and 

Welland, M.E. (2008) A simple low temperature synthesis route for ZnO-MgO 

core-shell nanowires. Nanotechnology, 19, 465603. 

Pradel, K.C., Ding, Y., Wu, W., Bando, Y., Fukata, N., and Wang, Z.L. (2016) 

Optoelectronic Properties of Solution Grown ZnO n ‑ p or p ‑ n Core − Shell 

Nanowire Arrays. ACS Applied Materials & Interfaces, 8, 4287–4291. 

Raksa, P., Kittikunodom, S., Choopun, S., Chairuangsri, T., Mangkorntong, P., and 

Mangkorntong, N. (2005) CuO Nanowires by Oxidation Reaction. CMU. 

Journal Special Issue on Nanotechnology, 4, 1–5. 

Schmidt-Mende, L. and MacManus-Driscoll, J.L. (2007) ZnO - nanostructures, 

defects, and devices. Materials Today, 10, 40–48. 

Seghier, D. and Gislason, H.P. (2008) Shallow and deep donors in n-type ZnO 

characterized by admittance spectroscopy. Journal of Materials Science: 

Materials in Electronics, 19, 687–691. 

Shen, G. and Chen, D. (2010) One-dimensional nanostructures for electronic and 

optoelectronic devices. Frontiers of Optoelectronics in China, 3, 125–138. 

Shinde, S.K., Dubal, D.P., Ghodake, G.S., and Fulari, V.J. (2014) Hierarchical 3D-

flower-like CuO nanostructure on copper foil for supercapacitors. RSC Adv., 5, 

4443–4447.  

Son, H.J., Jeon, K.A., Kim, C.E., Kim, J.H., Yoo, K.H., and Lee, S.Y. (2007) 

Synthesis of ZnO nanowires by pulsed laser deposition in furnace. Applied 



143 

Surface Science, 253, 7848–7850. 

Sreedharan, R.S., Ganesan, V., Sudarsanakumar, C.P., Bhavsar, K., Prabhu, R., and 

Mahadevan Pillai, V.P.P. (2015) Highly textured and transparent RF sputtered 

Eu2O3 doped ZnO films. Nano Reviews, 6, 1–16. 

Suhaimi, S., Sakrani, S., Dorji, T., and Ismail, A.K. (2014) A catalyst-free growth of 

aluminum-doped ZnO nanorods by thermal evaporation. Nanoscale Research 

Letters, 9, 256. 

Sun, S. (2015) Recent advances in hybrid Cu2O-based heterogeneous nanostructures. 

Nanoscale, 7, 10850–10882. 

Sun, S., Sun, Y., Chen, A., Zhang, X., and Yang, Z. (2015) Nanoporous copper oxide 

ribbon assembly of free-standing nanoneedles as biosensors for glucose. The 

Analyst, 140, 5205–5215.  

Sun, X., Li, Q., Jiang, J., and Mao, Y. (2014) Morphology-tunable synthesis of ZnO 

nanoforest and its photoelectrochemical performance. Nanoscale, 6, 8769–80. 

Tian, B., Zheng, X., Kempa, T.J., Fang, Y., Yu, N., Yu, G., Huang, J., and Lieber, 

C.M. (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power 

sources. Nature, 449, 885–889. 

Thomas Martensson. Semiconductor Nanowires: Epitaxy and Applications. Ph.D. 

Thesis. Lund University Sweden; 2008 

Wang, G., San, X., Bing, L., Song, Y., Gao, S., Zhang, J., and Meng, F. (2015) 

Catalyst-free growth of one-dimensional ZnO nanostructures on SiO2 substrate 

and in situ investigation of their H2 sensing properties. Journal of Alloys and 

Compounds, 622, 73–78.  

Wang, J.X., Sun, X.W., Yang, Y., Kyaw, K.K. a, Huang, X.Y., Yin, J.Z., Wei, J., and 

Demir, H. V. (2011) Free-standing ZnO-CuO composite nanowire array films 

and their gas sensing properties. Nanotechnology, 22, 325704. 

Wang, K., Chen, J.J., Zeng, Z.M., Tarr, J., Zhou, W.L., Zhang, Y., Yan, Y.F., Jiang, 

C.S., Pern, J., and Mascarenhas,  A. (2010) Synthesis and photovoltaic effect of 

vertically aligned ZnO/ZnS core/shell nanowire arrays. Applied Physics Letters, 

96, 1–4. 

Wang, P., Zhao, X., and Li, B. (2011) ZnO-coated CuO nanowire arrays: 



144 

fabrications, optoelectronic properties, and photovoltaic applications. Optics 

express, 19, 11271–11279. 

Wang, R.C. and Lin, H.Y. (2009) ZnO-CuO core-shell nanorods and CuO-

nanoparticle-ZnO-nanorod integrated structures. Applied Physics A: Materials 

Science and Processing, 95, 813–818. 

Wang, S.B., Hsiao, C.H., Chang, S.J., Jiao, Z.Y., Young, S.J., Hung, S.C., and 

Huang, B.R. (2013) ZnO branched nanowires and the p-CuO/n-ZnO 

heterojunction nanostructured photodetector. IEEE Transactions on 

Nanotechnology, 12, 263–269. 

Wang, Z., Jia, C., Chen, Y., Guo, Y., Liu, X., Yang, S., Zhang, W., and Wang, Z. 

(2011) Valence band offset of InN / BaTiO3 heterojunction measured by X-ray 

photoelectron spectroscopy. Nanoscale Research Letters, 6, 1–5. 

Wang, Z.L. (2004) Zinc oxide nanostructures: growth, properties and applications. 

Journal of Physics: Condensed Matter, 16, R829–R858. 

Wei, A., Xiong, L., Sun, L., Liu, Y.-J., and Li, W.-W. (2013) CuO Nanoparticle 

Modified ZnO Nanorods with Improved Photocatalytic Activity. Chinese 

Physics Letters, 30, 46202. 

Wei, H., Gong, H., Wang, Y., Hu, X., Chen, L., Xu, H., Liu, P., and Cao, B. (2011) 

Three kinds of Cu2O/ZnO heterostructure solar cells fabricated with 

electrochemical deposition and their structure-related photovoltaic properties. 

CrystEngComm, 13, 6065. 

Wei, Y., Ke, L., Kong, J., Liu, H., Jiao, Z., Lu, X., Du, H., and Sun, X.W. (2012) 

Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod 

photoanode decorated with Ag nanoparticles. Nanotechnology, 23, 235401. 

Willander, M., Yang, L.L., Wadeasa,  a., Ali, S.U., Asif, M.H., Zhao, Q.X., and Nur, 

O. (2009) Zinc oxide nanowires: controlled low temperature growth and some 

electrochemical and optical nano-devices. Journal of Materials Chemistry, 19, 

1006. 

Willander, M., ul Hasan, K., Nur, O., Zainelabdin, A., Zaman, S., and Amin, G. 

(2012) Recent progress on growth and device development of ZnO and CuO 

nanostructures and graphene nanosheets. Journal of Materials Chemistry, 22, 

2337. 



145 

Wilson, S.S., Tolstova, Y., Scanlon, D.O., Watson, G.W., and Atwater, H.A. (2014) 

Interface stoichiometry control to improve device voltage and modify band 

alignment in ZnO / Cu2O heterojunction solar cells. Energy & Environmental 

Science, 7, 3606–3610. 

Wu, J.-K., Chen, W.-J., Chang, Y.H., Chen, Y.F., Hang, D.-R., Liang, C.-T., and Lu, 

J.-Y. (2013) Fabrication and photoresponse of ZnO nanowires/CuO coaxial 

heterojunction. Nanoscale research letters, 8, 387.  

Xu, C.H., Woo, C.H., and Shi, S.Q. (2004a) Formation of CuO nanowires on Cu foil. 

Chemical Physics Letters, 399, 62–66. 

Xu, C.H., Woo, C.H., and Shi, S.Q. (2004b) The effects of oxidative environments 

on the synthesis of CuO nanowires on Cu substrates. Superlattices and 

Microstructures, 36, 31–38. 

Xu, J.F., Ji, W., Shen, Z.X., Li, W.S., Tang, S.H., Ye, X.R., Jia, D.Z., and Xin, X.Q. 

(1999) Raman spectra of CuO nanocrystals. Journal of Raman Spectroscopy, 

30, 413–415. 

Xu, S. and Wang, Z.L. (2011) One-dimensional ZnO nanostructures: Solution 

growth and functional properties. Nano Research, 4, 1013–1098.  

Yang, Z., Zhu, L., Guo, Y., Tian, W., Ye, Z., and Zhao, B. (2011) Valence-band 

offset of p-NiO / n-ZnO heterojunction measured by X-ray photoelectron 

spectroscopy. Physics Letters A, 375, 1760–1763.  

Yi, G.-C., Wang, C., and Park, W. Il. (2005) ZnO nanorods: synthesis, 

characterization and applications. Semiconductor Science and Technology, 20, 

S22–S34. 

Yu, B. and Meyyappan, M. (2006) Nanotechnology: Role in emerging 

nanoelectronics. Solid-State Electronics, 50, 536–544. 

Yuan, Z., Yu, J., Ma, W., and Jiang, Y. (2012) A photodiode with high rectification 

ratio based on well-aligned ZnO nanowire arrays and regioregular poly(3-

hexylthiophene-2,5-diyl) hybrid heterojunction. Applied Physics A: Materials 

Science and Processing, 106, 511–515. 

Zainelabdin, A., Zaman, S., Amin, G., Nur, O., and Willander, M. (2012) Optical and 

current transport properties of CuO/ZnO nanocoral p-n heterostructure 



146 

hydrothermally synthesized at low temperature. Applied Physics A: Materials 

Science and Processing, 108, 921–928. 

Zeng, H., Xu, X., Bando, Y., Gautam, U.K., Zhai, T., Fang, X., Liu, B., and Golberg, 

D. (2009) Template deformation-tailored ZnO nanorod/nanowire arrays: Full 

growth control and optimization of field-emission. Advanced Functional 

Materials, 19, 3165–3172. 

Zhan, Z., Xu, L., Li, X., Wang, L., Feng, S., Chai, X., Lu, W., Shen, J., Weng, Z., 

and Sun, J. (2015) Catalyst-Free, Selective Growth of ZnO Nanowires on SiO2 

by Chemical Vapor Deposition for Transfer-Free Fabrication of UV 

Photodetectors. ACS Applied Materials & Interfaces, 7, 20264–20271. 

Zhang, Y., Ram, M.K., Stefanakos, E.K., and Goswami, D.Y. (2012) Synthesis, 

characterization, and applications of ZnO nanowires. Journal of Nanomaterials, 

2012, 1–22. 

Zhao, R., Zhu, L., Cai, F., Yang, Z., Gu, X., Huang, J., and Cao, L. (2013) ZnO/TiO2 

core-shell nanowire arrays for enhanced dye-sensitized solar cell efficiency. 

Applied Physics A: Materials Science and Processing, 113, 67–73. 

Zhu, H., Iqbal, J., Xu, H., and Yu, D. (2008) Raman and photoluminescence 

properties of highly Cu doped ZnO nanowires fabricated by vapor-liquid-solid 

process. Journal of Chemical Physics, 129, 1–5. 

 

 

 

 

 

 

 

 

  


	27-08-2017 final abstract
	(22-08-2017) Editted Table of Contents
	(23-08-2017) FINAL  THESIS



