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ABSTRACT

Due to high gate electrostatic control and introduction of punch and plug

process technology, the gate-all-around (GAA) transistor is very promising in, and
apparently has been utilized for, flash memory applications. However, GAA Floating
Gate (GAA-FG) memory cell still requires high programming voltage that may be
susceptible to cell-to-cell interference. Scaling down the tunnel oxide can reduce
the Program/Erase (P/E) voltage but degrades the data retention capability. By
using Technology-Computer-Aided-Design (TCAD) tools, the concept of tunnel
barrier engineering using Variable Oxide Thickness (VARIOT) of low-k/high-k
stack is utilized in compensating the trade-off between P/E operation and retention
characteristics. Four high-k dielectrics (Si3N4, Al2O3, HfO2 and ZrO2) that are
commonly used in semiconductor process technology are examined with SiO2 as
its low-k dielectric. It is found that by using SiO2/Al2O3 as the tunnel layer, both
the P/E and retention characteristics of GAA-FG can be compensated. About 30%
improvement in memory window than conventional SiO2 is obtained and only 1%
of charge-loss is predicted after 10 years of applying gate stress of -3.6V. Compact
model of GAA-FG is initiated by developing a continuous explicit core model of
GAA transistor (GAA Nanowire MOSFET (GAANWFET) and Juntionless Nanowire
Transitor (JNT)). The validity of the theory and compact model is identified based on
sophisticated numerical TCAD simulator for under 10% maximum error of surface
potential. It is revealed that with the inclusion of partial-depletion conduction, the
accuracy of the core model for GAANWFET is improved by more than 50% in
the subthreshold region with doping-geometry ratio can be as high as about 0.86.
As for JNT, despite the model being accurate for doping-geometry ratio upto 0.6,
it is also independent of fitting parameters that may vary under different terminal
biases or doping-geometry cases. The compact model of GAA-FG is completed by
incorperating Charge Balance Model (CBM) into GAA transistor core model where
good agreement is obtained with TCAD simulation and published experimental work.
The CBM gives better accuracy than the conventional capacitive coupling approach
under subthreshold region with approximately 10% error of floating gate potential.
Therefore, the proposed compact model can be used to assist experimental work in
extracting experimental data.
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ABSTRAK

Oleh kerana kawalan elektrostatik get yang tinggi dan pengenalan kepada
teknologi proses tebuk dan plak, transistor get-silinder-menyeluruh (GAA) sangat
meyakinkan, dan telah digunakan dalam aplikasi memori flash. Walaubagaimanapun,
GAA get terapung (GAA-FG) masih memerlukan voltan program yang tinggi yang
mungkin terdedah kepada gangguan cell-to-cell. Pengecilan-skala terowong oksida
dapat mengurangkan voltan program/padam (P/E) tetapi menyebabkan kemerosotan
kepada daya-pengekalan datanya. Dengan menggunakan perisian rekabentuk-
berbantukan-teknologi-komputer (TCAD), konsep Kejuruteraan Terowong Pengha-
dang Oksida Boleh-ubah (VARIOT) k-rendah/k-tinggi telah digunakan dalam konteks
mengimbangi kurang-lebih antara operasi program/padam dan daya-pengekalan data.
Empat dielektrik k-tinggi (Si3N4, Al2O3, HfO2, ZrO2) yang kebiasaannya terdapat
dalam industri semikonduktor dianalisa dengan SiO2 sebagai dielektrik k-rendah.
Hasil simulasi menunjukkan gabungan SiO2/Al2O3 sebagai lapisan terowong GAA-
FG dapat mengimbangi kurang-lebih antara operasi program/padam dan daya-
pengekalan data. Sebanyak 30% peningkatan jendela memori berbanding SiO2

dan hanya 1% kehilangan cas dijangkakan selapas 10 tahun dikenakan voltan-get
setinggi -3.6V. Model kompak bagi GAA-FG dimulai dengan penghasilan model
eksplisit berterusan untuk transistor GAA (GAANWFET dan JNT). Kesahihan
antara teori dan model kompak dipastikan berdasarkan perisian simulasi TCAD
bagi ralat maksimum beza-upaya permukaan sebanyak 10%. Hasil menunjukkan,
dengan mengambil kira kesan konduksi separa-habis dapat meningkatkan ketepatan
model-teras GAANWFET sebanyak lebih daripada 50% dalam kawasan sub-ambang
untuk nisbah dopan-geometri sehingga 0.86. Bagi JNT pula, disamping model
kompaknya tepat untuk nisbah dopan-geometri sehingga 0.6, ia juga tidak bergantung
kepada parameter-cubaan yang mungkin berubah-ubah bagi voltan-terminal atau
nisbah dopan-geometri yang berbeza. Model kompak GAA-FG disempurnakan hasil
gabungan model pengimbang-cas (CBM) dan model kompak transistor GAA yang
mana ketepatannya teruji baik dengan simulasi TCAD dan hasil eksperimen yang
sudah diterbit. CBM memberikan ketepatan yang lebih baik berbanding kaedah
kapasitif-gandingan konvensional pada bahagian sub-ambang dengan ralat beza-
upaya get-terapung sebanyak 10%. Oleh itu, model kompak yang dihasilkan dapat
digunaakan untuk membantu kerja-kerja eksperimen bagi mengekstrak nilai parameter.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Moore’s law has led to the advancement of high-speed logic computing,
increasing number of electronic consumer and information technology that urge for
higher data storage capability. Memory as one of the constituent of electronic devices
has been continuously developed for providing massive data storage and high-speed
applications. It is used in many consumer electronic appliances where encoded data
is to be stored and retained as digital information inside a memory device. Memory
can be divided into two main categories, which are volatile and non-volatile memory
(NVM) as shown in Figure 1.1.

Figure 1.1: The memory device based on Complementary Metal-Oxide-
Semiconductor (CMOS) technology divided into two categories, which are volatile
and non-volatile.

Volatile memory is a form of memory that loses data when the power is off. It is
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also referred as Random-Access-Memory (RAM) with very fast read and erase time.
Dynamic-RAM (DRAM) and Static-RAM (SRAM) are the commonly known volatile
memory. Whereas, non-volatile memory is a form of memory that preserves the data
even when the power is off. It is also known as Read-Only-Memory (ROM). NVM
can retain massive amount of data but at lower write and read speed than the volatile
memory. Mask ROM, Programmable ROM (PROM), Erasable PROM (EPROM),
Electrically Erasable-Programmable ROM (EEPROM) and Flash Memory are the
types of NVM. All of these memory devices are based on metal-oxide-semiconductor
(MOS) technology. There are also other technologies that have been used to store
data. Optical devices such as compact-disk ROM (CD-ROM), digital-versatile-disc
RAM (DVD-RAM) and ferroelectric technology such as the well-known hard-disk
drive (HDD) are employed as dominant secondary memory, in which all of these are
commonly used to store digital information.

EEPROM provides with a practical usage of data storage device where the
Program/Erase (P/E) operation is performed by applying electric field to the transistor
cell’s terminals. Furthermore, it also provides with byte-wise random access capability
that made EEPROM a key figure for data storage application and to perform execute-
in-place (XiP) operation. However, each of EEPROM’s transistor cell or memory cell
is form by two-transistor (2T), which made the device highly expensive and consumes
very large circuit layout for massive storage application [1]. Flash memory is another
type of NVM that had been developed from EEPROM. Instead of having 2T per cell,
flash memory only consists of one-transistor (1T) per cell and has been a revolution in
directing the course of memory industry into sub-20nm half-pitch scaling [2]. Because
of its 1T per cell structure, the relative bit cost can be greatly reduced compared
to EEPROM and it has been vastly used in many today’s electronic appliances ever
since. This has been proven based on a statistical study as shown in Figure 1.2(a) that
the memory storage capacity exponentially increased within almost a decade (2007-
2014). The emergence of mobile smart phone and solid state drive (SSD) have rapidly
increased the storage capacity from 10,000 million GB to 70,000 million GB in a short
span of four years (2010-2014). This has led to over 20% market share increment from
the consolidation of some of the top semiconductor manufacturers such as Samsung,
Micron, Hynix, Toshiba and SanDisk in which all of these companies hugely contribute
to the manufacturing of mobile smart phone and SSD (refer Figure 1.2(b)).
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(a)

(b)

Figure 1.2: (a) Number of storage capacity exponentially increase throughout the years
with storage application devices is the highest. (Source from Forward Insight). (b)
Memory revenue on some of the companies manufacturing various memory devices
and the top five companies consolidation in memory industry, majorly dominated
by companies that sold flash memory (source from Micron 2014 Winter Analyst
Conference).

1.2 Flash Memory Scaling Challenges and Motivation

For more than two decades, floating gate (FG) memory cell has been commonly
utilized in many flash memory devices. To increase the storage capacity of flash
memory and to continue the exponential growth of the industry, scaling of FG cell
is inevitable. However, downscaling of the FG cell has reached its bottleneck as the
cell encounter physical limitations that degrade its memory performances. Figure 1.3
summarizes the issues for each component of the gate stack of the FG cell (i.e.: poly-
Si FG, poly-Si control gate, inter-poly dielectric and tunnel oxide) in understanding
the interrelation and the trade-off in their performances. These issues becoming more
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and more severe due to oppression in gate capacitance ratio (GCR) which was caused
by capacitive coupling between adjacent cells that subsequently decreases the gate
electrostatic control. In order to improve the gate control while scaling its P/E voltages,
the floating gate need to be wrap-around by the control gate and the thickness of
dielectric layers need to be reduced but at the expense of its reliability (i.e.: retention
and endurance) and add stronger coupling effect with neighboring cells. Therefore, it
has been very challenging to sustain the GCR≥0.6 as well as to scale its P/E voltages
while maintains its high-speed operation, especially for sub-20nm half-pitch.

Figure 1.3: Summarized the downscaling issues in term of performance related to the
gate stack of the conventional wraparound FG cell in NAND flash memory.

As shown in Figure 1.3, each component of the gate stack contributes to
the reduction of GCR that affect the P/E performances of the FG cell. One of
the major concerns of GCR reduction has been the scaling of its dielectric layers.
An ideal dielectric material in FG cell is to provide fast P/E operation as well
as scalable P/E voltages and to avoid from any electron leakage during program
and retention, thus, granting the non-volatile capability. International Technology
Roadmap for Semiconductor (ITRS) predicted that both the thickness of inter-poly
dielectric (IPD) and tunnel oxide layers are restrained at 10nm and 6-7nm respectively
while maintained the 4F2 cell size. This signifies the end of conventional symmetric
scaling of 2F×2F at 20nm half-pitch given the floating gate distance along the same
word-line (WL) only provides enough space for the IPD layer [2]. Continue scaling
down the IPD thickness means the distance between FG cells in the same WL is
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getting cramped; as a result, the GCR will be reduced prior to stronger coupling
with neighboring floating gates. Moreover, to maintain the 4F2 cell size also implies
that the distance between FG cells across the bit-line (BL) must be reduced creating
fringing capacitance not only across the BL but also with diagonal FG cells as well [3].
This has added the variability to the threshold voltage of the selected cell and led
to abnormal cell-to-cell interference (CTCI) effects. Such effects are the unstable
bit states of FG cell that caused disturb during P/E and read operations, and also
reducing its speed [4, 5]. Therefore, with continuous downscaling the CTCI effects
are exponentially increased towards the 20nm half-pitch as shown in Figure 1.4(a).
Other issue in scaling has been the floating gate itself as the electron charges continue
to decrease with downscaling as shown in Figure 1.4(b). The figure also depicts the
amount of critical electron charges before severe threshold voltage disturbance start
to occur leading to unstable bit-state. In the case of tunnel oxide scaling, the high-
field stress during P/E operation has caused severe wearing of the dielectric layer
due to the introduction of negative trapped charges [6]. With frequent P/E cycles the
negative trapped charges will steadily piled up and increases the threshold voltage,
which subsequently degrades its dc (e.g.: Sub-threshold slope (SS), threshold voltage
variation) and transient performances (i.e.: retention) [7].

(a) (b)

Figure 1.4: Scaling limitation of 2-D NAND flash. (a) Increments in cell-to-cell
interference of a victim cell across BL, WL and diagonal FGs [4] and (b) decrements
in number of electron in floating gate.

Due to restraints and limitations in FG cell dielectric thickness, it is difficult to
effectively scale the 2-D NAND flash memory. Figure 1.5 shows the scaling projection
from some of the top flash memory manufacturers. In mid-2012, SanDisk defies the
symmetric 4F2 scaling of the FG cell and introduced the asymmetric 19nm×26nm per
cell to provide enough space for IPD layer and retain the wrap-around poly-Si control
gate technology. As flash memory continue to scale, it will only be a matter of time
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before it reaches the horizon and stops at 10-12nm half-pitch due to the statistical limits
of charge stored inside the floating gate for beyond 10nm node. Therefore, an indefinite
increase of memory storage may not be possible through device scaling. Instead, it
has been increased by stacking multiple layers of planar NAND array to form three-
dimensional (3-D) NAND flash architecture [8]. However, stacking the conventional
planar structure to form 3-D NAND flash requires additional photolithography process
depending on the number of layers, which is technically challenging and can be very
expensive.

Figure 1.5: Roadmap from top semiconductor foundries for scaling 2-D and 3-D
NAND flash architectures (source from ICinsight, 2014).

The emergence of Bit-Cost Scalable (BiCS) technology using ‘punch’ and
‘plug’ process offers cheaper and higher number of vertical stack than conventional
planar NAND flash memory [9]. Figure 1.6(a) depicts cheaper relative bit-cost for
higher number of stack compared to 3-D stacked planar NAND. The ‘punch’ and ‘plug’
terms refer to the fabrication method that punch through multi-layer of electrodes and
insulators with single lithography process before plug holes with channel films to form
Gate-All-Around (GAA) transistor (refer Figure 1.6(b)). There are various types of
3-D NAND flash being manufactured nowadays, in which all of these architectures
implemented the GAA structure as their cell transistor and employed either floating
gate (FG) or charge-trapping (CT) as their memory element. Samsung and Toshiba
have adopted the CT cell for their 3-D NAND namely the Terabit Cell Array Transistor
(TCAT) and pipe-shaped Bit-Cost Scalable (p-BiCS) respectively [10, 11]. However,
3-D CT NANDs are known to be susceptible to charge-spreading in the nitride-
trapping layer that led to poor distribution of cell-state and degrades the retention
characteristics [12]. Therefore, some of the top semiconductor companies, such as
Hynix and Intel/Micron Flash Technologies (IMFT) preferred FG cell for their 3-D
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NAND flash [13,14]. The reasons for maintaining floating gate as the memory element
in 3-D vertical NAND architectures are due to:

1. The 3-D stacked architecture with surrounding FG can circumvent the lateral
charge spreading that occurs in the charge trapping layer along the BL.

2. The poly-Si FG provides high energy barrier (3.15eV) from electron tunneling
during retention.

(a) (b)

Figure 1.6: (a) Comparison of relative bit cost of 3-D architecture NAND flash between
the stacking of conventional 2-D planar NAND and Bit-Cost Scalable (BiCS) NAND
technology as the number of layer increases. (b) BiCS fabrication method [9].

SK Hynix has been actively developing their 3-D FG NAND flash. Various
form of 3-D FG cells was proposed such as the Dual-Control Gate Surrounding-
Floating Gate (DC-SF), the Separated-Sidewall Control Gate (S-SCG) and the
Sidewall Control Pillar (SCP). The most notable has been the SCP cell due to
its capability of suppressing the interference effects, cell disturbances, fast P/E
operation and accommodate downscaling to 20nm half-pitch. However, in early
2016, it was IMFT that caught the attention of computer consumers by announcing
their first generation 3-D vertical NAND [14]. The 3-D NAND cell is based on
Conventional-Floating Gate (C-FG) structure that uses the double poly-Si technology
and conventional P/E schemes. Due to its large physical cell size compared to the
20nm NAND, better performance can be achieved. The wide memory window of
approximately >10V is obtained indicating a greater number of electron stored in
the floating gate. This gives a good indication for Multi-Level Cell (MLC) and Tri-
Level Cell (TLC) applications, where 256Gbit (MLC)/384Gbit (TLC) data per die
is expected to be stored in 32-layers vertical stack. The GAA structure also plays
an important role in giving strong electrostatic gate control to improve the coupling
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effects by aggressively reducing the total interference effects and threshold voltage
distribution in planar 20nm 2-D NAND by ~80% and ~50% respectively [14]. Larger
gate width/length ratio also added to its gate control capability to compensate the low
mobility of polysilicon channel and increases the string on-current. In addition, it is
reported that the IMFT 3-D cell with 32-layer vertical stack has the highest bit density
of 1.52Gb/mm2 compared to Samsung CT cell of 1.01 Gb/mm2.

1.3 Problem Statements

Although the 3-D FG cell possesses relevant number of reliability advantages
and high bit density compared to the 3-D CT cell, it also co-exists with cell-to-cell
interference causes by poor coupling at the floating gate and become more severe when
it comes to 3-D stacked architecture that led to higher programming voltage than its CT
counterpart [15]. As can be seen from Figure 1.7(a), C-FG cell requires higher program
voltage to yield wide threshold shift compared to SCP and S-SCG cells. Applying
high program voltage on a select cell can induce high-field at channel interface and
speedup the programming time, but this may eventually cause over-programming to its
neighboring cells. Thinning the tunnel oxide thickness can also boost the programming
speed and provides scalable P/E voltages but increases the rate of electrons tunneling
back into the channel during retention. Figure1.7(b) depicts dramatic charge-loss in
planar CT cell for tunnel oxide thickness below 4nm. As for the case of FG cell, the
tunnel oxide can hardly be scaled below 6-7nm to prevent from severe charge loss [2].
Therefore, there has been a trade-off between scaling the tunnel oxide for scalable
program voltage with data retention.

Nonetheless, given its conventional P/E schemes and less number of variability
issues, the C-FG cell with GAA structure seems has been utilized as 3-D NAND flash
memory [14]. In order to provide fast program operation and 10 years data retention,
the tunnel dielectric layer must be scaled. A tunnel barrier engineering concept known
as Variable Oxide Thickness (VARIOT) has been proposed through combinations of
low-k/high-k stack to deal with the trade-off of P/E characteristics performance without
severely jeopardizing the data retention capability [16, 17]. Govoreanu et. al., (2003)
have shown that by stacking the high-k material such as ZrO2 on top of the low-k
SiO2 can increase the gate tunneling current while very low current is observed at low
gate bias due to its thick physical thickness [16]. However, this method has yet to be
utilized in 3-D FG cell leaving question marks to what combination of low-k/high-
k that is suitable for boosting the P/E operation speed and retention characteristics.
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Considering the characteristics of VARIOT that yield high electric field in its layer and
thicker physical thickness than SiO2, it is expected that the performances of P/E and
reliability of GAA-FG can be compensated.

(a) (b)

Figure 1.7: (a) Comparison of threshold voltage shift after program with control gate
voltage (Vcg) and after bulk erase between C-FG, S-SCG and SCP 3-D NAND cells
[18]. (b) Trade-off between P/E scalability and retention characteristics for differents
tunnel oxide thickness [19].

Computer Aided Design (CAD) tools have been vital for Integrated Circuit
(IC) design. Circuit simulator is one of the CAD tools that have been widely used by
designers in understanding circuit behavior and details of its operation. It allows quick
evaluation of circuit performance without costly having to fabricate the integrated
prototype. However, one should bear in mind that the accuracy of the results computed
by the simulator depends on the quality of discrete device models. Thus, to acquire
an accurate compact model, serve as the critical component for circuit designers in
assessing the performance of mixed analog-digital circuit and play a crucial role in
chip design productivity for semiconductor foundries.

A physics-based compact model is indispensable for device characterization,
optimization and circuit simulation. A good compact model should meet several
requirements, which are [20]:- the model is physically accurate, independent of fitting
parameters, and also to ensure numerical convergence in Simulation Program with
Integrated Circuit Emphasis (SPICE) simulator, the models must be described by an
explicit and continuous expression over the entire operating regions [21]. Therefore,
in order to accommodate experimental works for parameter extraction and to allow for
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quick evaluation of circuitry or even discrete device performances, it is essential to
develop a compact model for GAA-FG.

To model the electrical behaviour of GAA-FG cell, the GAA nanowire-
FET (GAANWFET) core models must be comprehended. There are two types
of GAANWFET which are the conventional GAANWFET and the most recent,
junctionless-based GAANWFET or known as Junctionless Nanowire Transistor (JNT).
Although there have been numerous works on compact modeling of GAANWFETs,
especially for the conventional one, there are opportunities for further refinement. It
can be described as follows;

For conventional GAANWFET:-

1. Several attempts are made to explicitly solve the arbitrary body-doped
GAANWFET [22–24]. But the models are limited for dopant concentration
up to 5×1018 cm-3 despite having empirical parameters being used [23] and
neglected the importance of trap states along the channel for a realistic compact
model. Furthermore, some of the models have also assumed zero flat-band
voltage to fit the numerical TCAD simulation, which is physically unreasonable
[24, 25].

2. Another important feature in GAANWFET is the partial-depletion conduction
in highly-doped condition. Most of the models developed for GAANWFET
invoked the full-depletion approximation to simplify the nonlinearity of
Poisson’s equation so that it can be integrated across the channel length. Thus,
the model is accurate only for fully-depleted device and limited to doping-
geometry ratio up to 0.45 [23, 26–31] that can lead to misinterpretation of
its subthreshold performance. An attempt to include the partial-depletion
conduction and to extend the validity of doping-geometry ratio only results in
poor accuracy to its low-doped body condition [32].

For Junctionless Nanowire Transistor (JNT):-

1. Most models reported for JNT are regional, and the current expressions are
piecewise continuous, where additional smoothing functions that rely on fitting
parameters are required to unify between regions [33–38]. In addition, there
are other JNT models that are continuous but took an implicit form [39–41].
The implicit form solution requires iterative numerical method, which either
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converges very slowly or does not converge due to imaginary value [42].
Therefore, a nonpiecewise continuous and explicit model is required for JNT.

2. Quasi-static terminal charges and capacitance are essential for ac and transient
simulation. As far as this work is concerned, there are very few works that
provide with analytical solution of terminal charges and capacitnace for JNT [20,
43]. The developed solution for these parameters involves additional smoothing
functions and rely on fitting parameters to fit the graph despite suffering in terms
of accuracy as much as 16% [43]. While other, requires demanding derivation
processes using partial derivative in solving the capacitance [20].

1.4 Research Objectives

The mutual target of this research is to design and enhance the performance
of GAA-FG cell by implementing the concept of VARIOT and to develop its compact
model using charge-based explicit expression. Based on the limitations and trade-
offs in C-FG cell, also considering the performance expectation of VARIOT as the
tunnel oxide layer, and the modeling issues in GAANWFET devices, the objectives
are summarized as follow:

1. To optimize and determine a suitable VARIOT combination of low-k/high-k
stack for GAA-FG cell in compensating the trade-off between P/E and retention
characteristics.

2. Compact model of conventional GAANWFET:-

(a) To explicitly solve the mobile charge density for arbitrary body doping
including the trap state effects.

(b) To analytically model the partial-depletion conduction.

3. Compact model of Junctionless Nanowire Transistor:-

(a) To explicitly solve the mobile charge density that is continuous for all
operating regions.

(b) To obtain a continuous drain current, terminal charges and capacitance
expressions.

4. To model the floating gate potential of GAA-FG.
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1.5 Research Scopes

The scopes of this research will be confined as follows:

1. GAA-FG Design: The dimension and physical parameters of GAA-FG are
based on experimental work performed by Lee et al., (2013) [44]. Although
the experimental data by Lee et al., (2013) has used triangular nanowire as
the channel, but in order to comply with vertical channel fabrication process
the cylindrical channel has been used in this simulation work. In addition,
the physical transport between triangular and cylindrical channels remain the
same. Barrier Engineered of VARIOT tunnel oxide is limited to asymmetric
combinations of low-k/high-k stack given the relevance for enhancing program
operation and retention performances.

2. Simulation Work: Technological-Computer-Aided-Design (TCAD) simulation
work is divided into two parts; parameters optimization and device simulation of
GAA-FG. Based on MOS capacitor (MOS-C) structure and for a given flash
memory constraint, extensive parameter optimization is conducted to obtain
optimum parameter settings. Device simulation is performed to observe and
analyze the transfer characteristics and transient memory performances of a
discrete single-cell/transistor GAA-FG. Under this condition, the effects from
neighbouring cell are omitted.

3. Analytical Modeling: Device compact modeling of GAA-FG, which involves
obtaining the explicit expression of mobile charge densities for GAA nanowire-
FET, and the floating gate potential model. The compact model is limited to the
essence of core model, which are long-channel and constant mobility. Therefore,
the compact model does not include advanced physical effects. The accuracy
of the explicit expression is discussed based on the accuracy of previously
published works and 3-D device simulation over practical terminal voltages.

1.6 Research Contribution

The significant contribution of this work can be highlighted as follow:-

1. Optimization of VARIOT: The optimization of VARIOT tunnel layer that consists
of low-k/high-k stack is performed for various high-k materials in order to
determine their optimum thickness and to extract its tunneling properties. The
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extracted optimum thickness for various low-k/high-k stack can be used as a
tunnel oxide layer in a memory cell devices. Given the nonlinear behaviour of
tunnel barrier engineering, the tunneling properties of VARIOT such as Fowler-
Nordheim (F-N) coefficients can be exploited by circuit designer in analyzing
the P/E performances of a memory cell or even to analyze the effect of gate
leakage in a MOSFET device that uses VARIOT as its gate oxide.

2. GAA-FG with VARIOT tunnel layer: Subsequent to the optimization of VARIOT,
the optimized thickness of low-k/high-k stacks are employed as a tunnel layer in
GAA-FG cell to improve its P/E characteristics as well as its data retention.

3. Explicit and continuous compact model of GAA devices: To the relevance of
GAA-FG cell that adopted nanowire structure, the compact model of nanowire
devices, which are the GAANWFET and the JNT are developed. In this
study, due to the importance of highly-doped body of GAANWFET, the partial-
depletion conduction is considered in improving the accuracy of the compact
model. For the sake of avoiding numerical convergence and piecewise model,
an explicit nonpiecewise and continuous compact model of JNT is developed.

1.7 Thesis Organization

Chapter 1 is the foundation of this research. A brief background on memory
devices and its development throughout the years in highlighting on memory storage
demand due to rapid technology advancement that prompt to the importance of flash
memory. Then, scaling challenges and motivations of flash memory are highlighted
that deduced the problem statements. Based on the problem statements, research
objectives are identified. The scope of work has been clarified depending on the
existing experimental and tools provided. Finally, the contributions of this work are
highlighted.

Chapter 2 covers broad overview on 3-D NAND cell structures, where
advantages and disadvantages from each structure are being highlighted. In
conjunction with VARIOT tunnel layer, the concept of barrier engineering is discussed
based on the types of dielectric stacking as well as its physical transport. Device
modeling is briefly described before in-depth review on modeling approach of GAA
nanowire-FET and floating gate potential modeling are discussed.

Chapter 3 discusses the research method of this work starting from general flow
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and technical works that are being conducted in achieving the objectives. The tools that
were used in this research are also highlighted. Furthermore, details on the approach
taken in simulation work such as dielectric material, optimization method and physical
models, and also compact modeling work such as model-flow and approximation
techniques are presented in the form flowchart and discussed.

In Chapter 4, all the simulation results are presented, which includes
optimization of VARIOT and characterization of GAA-FG in determining which
VARIOT combination is the most prowess for its application as memory cell in
providing fast P/E operation as well as 10 years data retention. As a consequent to
simulation work of GAA-FG, Chapter 5 provides with a comprehensive explanation on
analytical modeling with regards to all the issues highlighted in the research problem,
until the compact model for GAA-FG is concluded.

Finally, Chapter 6 summarizes all the findings in this research and the
contributions are highlighted. In addition, to ensure the continuation of this research
and to add more promising contributions to compact model society, future works are
provided.
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APPENDIX A

PARAMETER OPTIMIZATION OF ASYMMETRIC VARIOT

Table A.1: Parameters and data for SiO2/Si3N4 extracted from TCAD simulation.
EOT (nm) Tox(nm) Thk(nm) Vprog(V) Vread_dis(V) Vret(V) Vtr (V) Vfn (V)

4

1 5.8 3.7 2.1 -2.3 8.0 12.8
2 3.8 3.6 1.9 -1.5 4.0 6.4
3 1.9 4.8 1.8 -0.8 2.7 4.3
4 0.0 4.7 1.7 0 2.0 3.2

5

1 7.7 4.5 2.5 -3.2 10.0 16.0
2 5.8 4.5 2.4 -3.9 5.0 8.0
3 3.8 6.0 2.3 -3.9 3.3 5.3
4 1.9 6 2.5 -3.2 2.5 4.0
5 0.0 5.9 3.2 -1.7 2.0 3.2

6

1 9.6 5.4 3.0 -3.4 12.0 19.2
2 7.7 5.3 2.9 -4.0 6.0 9.6
3 5.8 7.2 2.8 -4.5 4.0 6.4
4 3.8 7.1 3.0 -4.6 3.0 4.8
5 1.9 7.0 3.8 -4.5 2.4 3.8
6 0.0 7.0 3.8 -4.2 2.0 3.2

7

1 11.5 6.3 3.5 -3.8 14.0 22.4
2 9.6 6.2 3.3 -4.0 7.0 11.2
3 7.7 8.4 3.3 -4.2 4.7 7.5
4 5.7 8.3 3.5 -5.1 3.5 5.6
5 3.8 8.1 4.4 -5.2 2.8 4.5
6 1.9 8.2 4.4 -4.9 2.3 3.7
7 0.0 8.2 4.4 -4.6 2.0 3.2

8

1 13.5 7.2 4.0 -4.3 16.0 25.6
2 11.5 7.1 3.8 -4.2 8.0 12.8
3 9.6 9.6 3.7 -4.3 5.3 8.5
4 7.7 9.5 4.0 -4.6 4.0 6.4
5 5.8 9.3 5.0 -5.7 3.2 5.1
6 3.8 9.4 5.0 -5.8 2.7 4.3
7 1.9 9.4 5.0 -5.5 2.3 3.7
8 0.0 9.4 5.0 -5.1 2.0 3.2
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(a) (b)

(c) (d)

(e)

Figure A.1: Jg − Vg characteristics of SiO2/Si3N4 for EOT (a) 4nm (b) 5nm (c) 6nm
(d) 7nm and (e) 8nm.
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Table A.2: Parameters and data for SiO2/Al2O3 extracted from TCAD simulation.
EOT (nm) Tox(nm) Thk(nm) Vprog(V) Vread_dis(V) Vret(V) Vtr (V) Vfn (V)

4

1 7.2 5.5 3.1 -4.6 9.6 12.8

2 4.8 4.7 2.9 -4.1 4.8 6.4

3 2.4 4.8 2.5 -1.8 3.2 4.3

4 0.0 4.8 1.7 0 2.4 3.2

5

1 9.5 6.7 4.1 -5.3 12.0 16.0

2 7.2 5.8 3.3 -5.3 6.0 8.0

3 4.8 6.0 3.1 -5.0 4.0 5.3

4 2.4 6.0 2.8 -4.3 3.0 4.0

5 0.0 5.9 3.2 -1.8 2.4 3.2

6

1 11.9 8.2 4.9 -6.1 14.4 19.2

2 9.5 6.9 4.3 -6.0 7.2 9.6

3 7.2 7.2 4.0 -6.2 4.8 6.4

4 4.8 7.2 3.7 -5.6 3.6 4.8

5 2.4 7.2 3.8 -4.9 2.9 3.8

6 0.0 7.1 3.8 -4.2 2.4 3.2

7

1 14.3 9.4 5.7 -6.9 16.8 22.4

2 11.9 8.1 5.0 -6.9 8.4 11.2

3 9.5 8.3 4.6 -6.9 5.6 7.5

4 7.2 8.4 4.3 -7.0 4.2 5.6

5 4.8 8.2 4.4 -6.5 3.4 4.5

6 2.4 8.3 4.4 -5.5 2.8 3.7

7 0.0 8.2 4.4 -4.6 2.4 3.2

8

1 16.7 10.8 6.5 -7.7 19.2 25.6

2 14.3 9.2 5.7 -7.7 9.6 12.8

3 11.9 9.5 5.2 -7.7 6.4 8.5

4 9.5 9.5 4.9 -7.7 4.8 6.4

5 7.2 9.4 5.0 -7.8 3.8 5.1

6 4.8 9.4 5.0 -7.2 3.2 4.3

7 2.4 9.4 5.0 -6.2 2.7 3.7

8 0.0 9.5 5.0 -5.1 2.4 3.2
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(a) (b)

(c) (d)

(e)

Figure A.2: Jg − Vg characteristics of SiO2/Al2O3 for EOT (a) 4nm (b) 5nm (c) 6nm
(d) 7nm and (e) 8nm.
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Table A.3: Parameters and data for SiO2/HfO2 extracted from TCAD simulation.
EOT (nm) Tox(nm) Thk(nm) Vprog(V) Vread_dis(V) Vret(V) Vtr (V) Vfn (V)

4

1 14.6 3.0 1.7 -2.2 6.0 12.8

2 9.7 2.8 1.5 -3.5 3.0 6.4

3 4.9 4.9 1.5 -3.1 2.0 4.3

4 0.0 4.8 1.7 0.0 1.5 3.2

5

1 19.5 3.8 2.1 -2.7 7.5 16.0

2 14.6 3.5 1.8 -3.5 3.8 8.0

3 9.7 6.4 1.8 -4.1 2.5 5.3

4 4.9 6.3 2.2 -4.5 1.9 4.0

5 0.0 5.9 3.2 -1.7 1.5 3.2

6

1 24.4 4.5 2.5 -3.2 9.0 19.2

2 19.5 4.2 2.2 -3.5 4.5 9.6

3 14.6 7.5 2.2 -3.7 3.0 6.4

4 9.7 7.3 2.7 -4.8 2.3 4.8

5 4.9 7.0 3.9 -4.9 1.8 3.8

6 0.0 7.0 3.8 -4.1 1.5 3.2

7

1 29.2 5.2 2.9 -3.5 10.5 22.4

2 24.4 5.0 2.6 -3.6 5.3 11.2

3 19.5 8.7 2.5 -4.0 3.5 7.5

4 14.6 8.4 3.1 -4.4 2.6 5.6

5 9.7 8.0 4.5 -5.4 2.1 4.5

6 4.9 8.2 4.4 -5.6 1.8 3.7

7 0.0 8.2 4.4 -4.6 1.5 3.2

8

1 34.1 5.9 3.3 -3.9 12.0 25.6

2 29.2 5.6 2.9 -3.9 6.0 12.8

3 24.4 9.9 2.9 -3.9 4.0 8.5

4 19.5 9.6 3.5 -4.5 3.0 6.4

5 14.6 9.2 5.0 -5.1 2.4 5.1

6 9.7 9.2 5./0 -6.0 2.0 4.3

7 4.9 9.5 5.0 -6.6 1.7 3.7

8 0.0 9.4 5.0 -5.2 1.5 3.2
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(a) (b)

(c) (d)

(e)

Figure A.3: Jg − Vg characteristics of SiO2/HfO2 for EOT (a) 4nm (b) 5nm (c) 6nm
(d) 7nm and (e) 8nm.
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Table A.4: Parameters and data for SiO2/ZrO2 extracted from TCAD simulation.
EOT (nm) Tox(nm) Thk(nm) Vprog(V) Vread_dis(V) Vret(V) Vtr (V) Vfn (V)

4

1 19.2 3.0 1.7 -2.6 5.6 12.8

2 12.8 2.8 1.4 -3.5 2.8 6.4

3 6.4 4.9 1.4 -4.0 1.9 4.3

4 0.0 4.8 1.7 0.0 1.4 3.2

5

1 25.4 3.7 2.1 -3.2 7.0 16.0

2 19.2 3.4 1.8 -3.8 3.5 8.0

3 12.8 6.2 1.7 -4.4 2.3 5.3

4 6.4 6.1 2.2 -4.8 1.8 4.0

5 0.0 5.9 3.2 -1.7 1.4 3.2

6

1 32.1 4.5 2.5 -3.6 8.4 19.2

2 25.6 4.1 2.1 -3.9 4.2 9.6

3 19.2 7.2 2.1 -4.4 2.8 6.4

4 12.8 7.3 2.6 -5.0 2.1 4.8

5 6.4 7.1 3.8 -5.5 1.7 3.8

6 0.0 7.2 3.8 -4.1 1.4 3.2

7

1 38.5 5.2 2.9 -4.0 9.8 22.4

2 32.1 4.8 2.5 -4.0 4.9 11.2

3 25.6 8.5 2.4 -4.3 3.3 7.5

4 19.2 8.4 3.1 -4.9 2.5 5.6

5 12.8 8.2 4.5 -5.3 2.0 4.5

6 6.4 8.3 4.4 -6.2 1.6 3.7

7 0.0 8.2 4.4 -4.6 1.4 3.2

8

1 44.9 5.7 3.3 -4.4 11.2 25.6

2 38.5 5.4 2.8 -4.4 5.6 12.8

3 32.1 9.8 2.7 -4.4 3.7 8.5

4 25.6 9.6 3.5 -4.9 2.8 6.4

5 19.2 9.4 5.1 -5.4 2.2 5.1

6 12.8 9.4 5.0 -6.2 1.9 4.3

7 6.4 9.4 5.0 -7.0 1.6 3.7

8 0.0 9.4 5.0 -5.1 1.4 3.2
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(a) (b)

(c) (d)

(e)

Figure A.4: Jg−Vg characteristics of SiO2/ZrO2 for EOT (a) 4nm (b) 5nm (c) 6nm (d)
7nm and (e) 8nm.
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(a)

(b) (c)

Figure A.5: (a) JV characteristics for the optimized parameters of all asymmetric
VARIOTs conducted. F-N plot of all asymmetric VARIOTs conducted for (b)
programming and (c) erase operations.



APPENDIX B

DERIVATION OF CHARGE-BASED COMPACT MODEL

B.1 Charge-Based Compact Model for Partially-Depleted GAANWFETs

Derivation for UCCM Expression;

Poisson’s equation in 1-D for a semiconductor system given as

∇2φ = − ρ

εsi
= −

q
(
p− n+N+

D −N
−
A

)
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(B.1)

1

r

d

dr
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given the boundary condition in GAANWFET as

dφ

dr

∣∣∣
r=0

= 0, φ (r = 0) = φ0, φ (r = R) = φs (B.4)

The Poisson has no analytical solution due to potential being dependence to r. In
order to integrate the expression, Following [26], it need to be initially solved for weak
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inversion and fully-depleted case before latter the moderate and the strong inversion
are included. In weak inversion the potential at the surface and the center body is same
(φ0 = φs), similar goes to its carrier concentration (n0 = ns).

1

r

d

dr

(
r
dφ (r)

dr

)
=
qNA

εsi

(
1 + exp

(
φ0 − 2φf − V

φt

))
(B.5)

Perform the 1st integral for any value of r

r
dφ (r)

dr
=

ˆ r

0

qNA

εsi

(
1 + exp

(
φ0 − 2φf − V

φt

))
r · dr (B.6)

dφ (r)

dr
=
qNAr

2εsi
+
qn0r

2εsi
(B.7)

Multiply with R/R

dφ (r)

dr
=

(
qNAR

2Rεsi
+
qn0R

2Rεsi

)
· r (B.8)

By replacing Qdep = qNAR/2 and Qm = qn0R/2

dφ (r) =

(
Qdep +Qm

Rεsi

)
r · dr (B.9)

Replace r · dr into Poisson equation without the weak inversion assumption

r
dφ (r)

dr
=
qNAr

2

2εsi
+

ˆ φ

φ0

(
qNA

εsi
exp

(
φ (r)− 2φf − V

φt

))(
Rεsi

Qdep +Qm

)
· dφ (r)

(B.10)
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Solve for RHS from φ (r = 0) = φ0 to φ (r = r) = φ and using the boundary condition
of dφ

dr

∣∣∣
r=R

= −Es , the Poisson can be obtained as

dφ

dr

∣∣∣
r=R

=
Qdep

εsi
+
φt
R

(
2Qdep

Qdep +Qm

)(
1− exp

(
φ0 − φs
φt

))
× exp

(
φs − 2φf − V

φt

)
(B.11)

The second term is actually the total mobile charge, Qm at the channel interface

Qm

εsi
=
φt
R

(
2Qdep

Qdep +Qm

)(
1− exp

(
φ0 − φs
φt

))
· exp

(
φs − 2φf − V

φt

)
(B.12)

Using full-depletion approximation of (φ0 − φs) /φt = qNAR
2/4εsi. Taking logarithm

to both side and solve for φs

φs = 2φf + V + φt ln

(
R

2φtεsi

)
− φt ln

(
1− exp

(
−RQdep

2φtεsi

))
+φt ln (Qm) + φt ln

(
1 +

Qm

Qdep

)
(B.13)

However, Qdep in the last term will results in overestimation of the surface potential in
strong inversion region due to the weak inversion approximation. Therefore, following
[26], parameter Qdep is changed to Coxφt/H .

φs = 2φf + V + φt ln

(
R

2φtεsi

)
− φt ln

(
1− exp

(
−RQdep

2φtεsi

))
+φt ln (Qm) + φt ln

(
1 +H

Qm

Coxφt

)
(B.14)
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Replacing the surface potential expression into Gauss’s law that enclosed across the
gate stack

Cox (Vg −∆ϕ− φs) = Qdep +Qm −Qf + qDitφs (B.15)

Vg − Vth −∆Vth − ηV =
Qm

Cox
+ ηφt ln

(
Qm

Q0

)
+ ηφt ln

(
1 +

Qm

Q0

)
(B.16)

where Q0 = Coxφt/H with

Vth = ∆ϕ+ 2ηφf +
Qdep

Cox
− Qf

Cox
− ηφt ln

(
4φtεsiQdep

RQ0

)
(B.17)

and

∆Vth = −ηφt ln

(
1

Q0

)
(B.18)

Derivation for partial-depletion conduction;

1

r

d

dr

(
r
dφ2 (r)

dr

)
=
qNA

εsi
(B.19)

In partial-depletion conduction, the boundary conditions are given as

dφ2 (r = rdep)

dr
= 0, φ2 (r = rdep) = 0, φ2 (r = R) = φ2 . (B.20)

Solving for its first derivative
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1

r

d

dr

(
r
dφ2 (r)

dr

)(
dφ2 (r)

dr

)
=
qNA

εsi

(
dφ2 (r)

dr

)
(B.21)

1

r

d

dr

(
r
dφ2 (r)

dr

)(
dφ2 (r)

dr

)
=
qNA

εsi

(
dφ2 (r)

dr

)
(B.22)

(
dφ2 (r)

dr

)2

=

ˆ R

rdep

qNA

εsi
· dφ2 (r) (B.23)

dφ2

dr

∣∣∣
r=R

=

√
qNA

εsi
· φ2 =

√
qNA

εsi
· φc; (B.24)

Solution for channel charge;

Qch = −2πR

L̂

0

Qm dy = −µ(2πR)2

Ids

Vdˆ

0

Q2
m dV (B.25)

Qch = µ
(2πR)2

Ids

[
Qm

3Cox
+
ηφtQ

2
m

2
+ (B.26)

ηφt

(
Q2

0 ln (Qm +Q0) +
Q2
m

2
−Q0Qm

)] ∣∣∣∣∣
QmL

Qm0

Solution for drain charge;

Qd = −2πR

L̂

0

y

L
Qm

dy

dQm

dQm (B.27)

from current continuity equation
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Ids = 2πRµQm
dV

dy
= 2πRµQm

dV

dQm

· dQm

dy
(B.28)

replacing dy/dQm of the current continuity equation into Qd with dV/dQm is
differentiate from UCCM expression

Qd = −(2πR)2

Ids

L̂

0

y

L
Q2
m

[
− 1

Cox
− ηφt

(
1

Qm

+
1

Qm +Q0

)]
dQm (B.29)

the distance along channel y is again obtained from current continuity equation by
rearranging it to be in a function of dy as

dy =
2πRµ

Ids
Qm

[
− 1

Cox
− ηφt

(
1

Qm

+
1

Qm +Q0

)]
· dQm (B.30)

integrating y from 0 to distance of y and Qm from Qm0 to Qm, distance y is obtained

y =
2πRµ

Ids

[
Q2
m −Q2

m0

2Cox
+ ηφt

(
2 (Qm −Qm0)−Q0 · log

[
Qm +Q0

Qm0 +Q0

])]
(B.31)

replace y into expression Qd

Qd =

QmLˆ

Qm0

−((2πR)3µ2)

I2dsL
·

[
Q2
m

(
ηφt

(
2(Qm −Qm0)−Q0 log

(
Qm +Q0

Q0 +Qm0

))
+
Q2
m −Q2

m0

2Cox

)
(
ηφt

(
1

Qm +Q0

+
1

Qm

)
+

1

Cox

)]
dQ (B.32)

Solution to integration
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Qd =
−4π3R3µ2

C2
oxI

2
dsL

[
Qm0

90

(
12Q4

m0 + 30ηCoxQ
3
0φt + 75ηCoxQ

3
m0φt

]
+40ηCoxQ

2
m0φt (−2Q0 + 3ηCoxφt)− 15ηCoxQ0Qm0φt

(Q0 + 18ηCoxφt)) +
1

90
QmL

(
18Q4

mL + 135ηCoxQ
3
mLφt − 10Q2

mL(
3Q2

m0 + 12ηCoxQm0φt + ηCoxφt(Q0 − 24ηCoxφt)
)

+

30ηCoxQ0φt(−Q2
0 + 3Qm0(Qm0 + 4ηCoxφt))− 15ηCoxQmLφt

(−Q2
0 + 6ηCoxQ0φt + 6Qm0(Qm0 + 4ηCoxφt))

)
−1

3
ηCoxQ

2
0φt(−Q2

0 + 3Qm0(Qm0 + 4ηCoxφt)) log (Q0 +QmL)

+
2

3
ηCoxQ0QmLφt(−Q2

mL + 3ηCoxQ0φt − 3ηCoxQmLφt) ·

log

(
Q0 +QmL

Q0 +Qm0

)
− η2C2

oxQ
3
0φ

2
t log

(
Q0 +QmL

Q0 +Qm0

)2

+
1

3
ηCoxQ

2
0φt · (−Q2

0 + 3Qm0(Qm0 + 4ηCoxφt))

log (Q0 +Qm0)) (B.33)

B.2 Charge-Based Compact Model for Junctionless Nanowire Transistor

Derivation for UCCM Expression;

Poisson’s equation in 1-D for a semiconductor system given as

∇2φ = − ρ

εsi
= −

q
(
p− n+N+

D −N
−
A

)
εsi

(B.34)

1

r

d

dr

(
r
dφ (r)

dr

)
= −qND

εsi

(
1− exp

(
φ (r)− V

φt

))
(B.35)

r
dφ (r)

dr
= −qNDr

2

2εsi
+

ˆ r

0

(
qND

εsi
exp

(
φ0 − V
φt

))
r · dr (B.36)
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given the boundary condition in JNT as

dφ

dr

∣∣∣
r=0

= 0, φ (r = 0) = φ0, φ (r = R) = φs (B.37)

The Poisson has no analytical solution due to potential being dependence to r. In
order to integrate the expression, Following [26], it need to be initially solved for weak
inversion and fully-depleted case. In weak inversion the potential at the surface and
the center body is same (φ0 = φs), similar goes to its carrier concentration (n0 = ns).

1

r

d

dr

(
r
dφ (r)

dr

)
= −qND

εsi

(
1− exp

(
φ0 − V
φt

))
(B.38)

Perform the 1st integral for any value of r

r
dφ (r)

dr
=

ˆ r

0

qND

εsi

(
−1 + exp

(
φ0 − V
φt

))
r · dr (B.39)

dφ (r)

dr
= −qNAr

2εsi
+
qn0r

2εsi
(B.40)

Multiply with R/R

dφ (r)

dr
=

(
−qNAR

2Rεsi
+
qn0R

2Rεsi

)
· r (B.41)

By replacing Qdep = qNDR/2 and Qm = qn0R/2

dφ (r) =

(
−Qdep +Qm

Rεsi

)
r · dr (B.42)
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Replace r · dr into Poisson equation without the weak inversion assumption

r
dφ (r)

dr
= −qNDr

2

2εsi
+

ˆ φ

φ0

(
qND

εsi
exp

(
φ (r)− V

φt

))(
Rεsi

−Qdep +Qm

)
· dφ (r)

(B.43)

Solve for RHS from φ (r = 0) = φ0 to φ (r = r) = φ and using the boundary condition
of dφ

dr

∣∣∣
r=R

= −Es , the Poisson can be obtained as

dφ

dr

∣∣∣
r=R

= −Qdep

εsi
+
φt
R

(
2Qdep

−Qdep +Qm

)(
1− exp

(
φ0 − φs
φt

))
× exp

(
φs − V
φt

)
(B.44)

The second term is actually the total mobile charge, Qm at the channel interface

Qm

εsi
=
φt
R

(
2Qdep

−Qdep +Qm

)(
1− exp

(
φ0 − φs
φt

))
· exp

(
φs − V
φt

)
(B.45)

The potential relation is replaced by using parabolic potential profile of φ (r) =

(φs − φ0) r
2/R2 + φ0, where (φs − φ0) /φt = (−Qdep +Qm) /Qsc. Taking logarithm

to both side and solve for φs

φs = φt ln

(
−Qdep +Qm

QdepQsc

)
+ φt ln (Qm) + V

−φt ln

(
1− exp

[
−
(
−Qdep +Qm

Qsc

)])
. (B.46)

Given Gauss’s law at channel interface as
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Cox (Vg − VFB − ηφs) = −Qdep +Qm (B.47)

where η is the interface trap parameter and by substituting the surface potential into
the Gauss’s law, the UCCM expression for JNT is finally deduced as

Vg−Vth−ηV =
Qm

Cox
+ηφt ln

(
Qm

Qsc

)
−ηφt ln

(
Qdep [1− exp (−QT/Qsc)]

QT

)
(B.48)

The total charge, QT is inferred as −Qdep + Qm and threshold voltage, Vth = VFB −
Qdep/Cox.

Solution to drain charge Qd

Qd = QdDP +QdC (B.49)

Qd = −2πR

L̂

0

y

L
QDP

dy

dQDP

dQDP − 2πR

L̂

0

y

L
QC

dy

dQC

dQC (B.50)

Solution to integration of Equation (5.73)

QdDP = −(QDPL −QDP0)
2 (12Q3

DPL + 24Q2
DPLQDP0 + 16QDPLQ

2
DP0 + 8Q3

DP0)

120Q2
eff

−Qeff (QDPL −QDP0)
2 (45Q2

DPL + 50QDPLQDP0 + 25Q2
DP0)

120QEQ2

−(QDPL −QDP0)
2 (40QDPL + 20QDP0)

120
(B.51)

Solution to integration of Equation (5.75)
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QdC = −(QCL −QC0)
2 (6Q3

CL + 12Q2
CLQC0 + 8QCLQ

2
C0 + 4Q3

C0)

60C2
Cη

2φ2
t

−η (QCL −QC0)
2 (45CCφtQ

2
CL + 50CCφtQCLQC0 + 25CCφtQ

2
C0)

60C2
Cη

2φ2
t

−(QCL −QC0)
2 (80C2

CQCLφ
2
t + 40C2

CQC0φ
2
t )

60C2
Cφ

2
t

(B.52)
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