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ABSTRACT

The presence of outlying observations is a common problem in most
statistical analysis. This case is also true when using cluster analysis techniques.
Cluster analysis basically detects homogeneous clusters with large heterogeneity
among them. To deal with outliers, a correct procedure in cluster analysis is needed
because usually outliers may appear joined together, which may lead to the wrong
structure of clusters. New method of trimming in clustering (TCLUST) known as
RTCLUST is proposed in this research that uses some information from TCLUST,
partition around medoid (PAM), doubtful cluster and local outlier factor (LOF).
TCLUST is a clustering method with constraint on the covariance matrices. For this
case the constraint used was the eigenvalues. Spurious outlier model explains how to
use the eigenvalues ratio, c for good clustering method. Good clustering is obtained
using mean of discriminant. The value of c = 50 is obtained as a better value
compared to the previous study c = 1. Trimmed likelihood is then used to determine
the trimming proportion,  and number of clusters, k. The next procedure combines
the TCLUST and PAM, which is known as MPAM. PAM is used because the mean
of silhouette explains the clustering much better. The information obtained from
MPAM are c = 50,  , and k. Different sample sizes are also used to test the
suitability of MPAM. Mean of discriminant and mean of silhouette are then used to
measure the strength of clustering. Trimmed likelihood curve is used again to check
the values of  , and k. For the next step, using the doubtful cluster method with
c = 50, the method shows the overlapping outliers that exist between clusters. In this
case, the data in the overlapping area are classified as doubtful outliers and it is
decided that the best threshold is 0.1. Lastly, the LOF is used to differentiate between
doubtful outliers and real outliers in overlapping areas. Since LOF can detect real
outliers, the deletion of this outlier is mandatory. Again, the mean of discriminant
and mean of silhouette are obtained after the deletion of real outliers. A trimmed
likelihood curve is then used to obtain the final value for  and k. This new
procedure of RTCLUST uses c = 50 and threshold value equals 0.1 to obtain the
mean of discriminant and mean of silhouette. To justify RTCLUST, medium sample
size with Monte Carlo simulation is done to check the right possibility of combining
methods, and therefore the normality of RTCLUST can be checked. Results found
that the normality assumption for RTCLUST is fulfilled and Bayesian test can be
used to significantly decide the value of k. Results for RTCLUST with having the
lowest RMSE value shows that it is better than MPAM and TCLUST for both
simulation and real data.
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ABSTRAK

Kehadiran titik terpencil adalah perkara biasa dalam analisis statistik. Kes ini
juga berlaku bagi analisis kluster. Analisis kluster secara dasarnya mengesan
kelompok homogen dengan heterogen yang besar diantaranya. Untuk menangani
titik terpencil, prosedur dalam analisis kluster diperlukan kerana biasanya titik
terpencil akan kelihatan bergabung bersama-sama, dan boleh memberikan struktur
kluster yang tidak betul. Kaedah baharu bagi pemotongan kluster (TCLUST)
dikenali sebagai RTCLUST dicadangkan menggunakan maklumat dari TCLUST,
partisi sekitar medoid (PAM), keraguan kluster dan faktor titik terpencil tempatan
(LOF). TCLUST adalah kaedah kluster dengan kekangan pada matriks kovariannya.
Untuk kes ini kekangan yang digunakan adalah nilai eigen. Model data terpencil
menjelaskan cara untuk mengira nisbah nilai eigen c bagi mendapatkan kaedah
pengklusteran yang baik. Pengklusteran yang baik dijelaskan menggunakan min
diskriminan. Nilai c = 50 diperolehi sebagai nilai yang lebih baik berbanding kajian
sebelumnya iaitu c = 1. Keluk kemungkinan dipotong digunakan untuk menentukan
 dan k. Prosedur ini diteruskan dengan menggabungan TCLUST dan PAM
dinamakan MPAM. PAM digunakan kerana min bayangan dapat menjelaskan kluster
dengan lebih baik. Maklumat yang diperoleh daripada MPAM adalah c = 50,  dan
k. Saiz sampel berbeza juga digunakan untuk menguji kesesuaian MPAM. Min
diskriminan dan min bayangan kemudiannya diperolehi untuk mengukur kekuatan
kluster. Keluk kemungkinan dipotong sekali lagi digunakan untuk mecari nilai, 
dan k. Langkah seterusnya ialah menggunakan kaedah keraguan kluster dengan
c = 50, kaedah ini boleh menentukan kewujudan titik terpencil yang bertindih antara
kluster. Dalam kes ini, data di kawasan bertindih dikelaskan sebagai titik terpencil
yang diragui dan nilai ambang terbaik yang dipilih adalah 0.1. Akhir sekali, LOF
digunakan untuk membezakan titik terpencil diragui dan titik terpencil sebenar di
kawasan bertindih. Oleh kerana LOF boleh mengesan titik terpencil sebenar,
pembuangan titik terpencil sebenar dari data adalah perlu. Sekali lagi min
diskriminan dan min bayangan diperolehi selepas pembuangan titik terpencil sebenar
dilakukan. Keluk kemungkinan dipotong kemudiannya digunakan untuk menentukan
nilai akhir bagi  dan k. Prosedur baharu RTCLUST menggunakan c = 50 dan nilai
ambang sama dengan 0.1 untuk mendapatkan nilai min diskriminan dan min
bayangan. Kewajaran RTCLUST diuji dengan menggunakan saiz sampel sederhana
melalui simulasi Monte Carlo dimana ia digunakan untuk menilai kemungkinan
gabungan bagi RTCLUST dan menilai samaada andaian taburan normal dipenuhi.
Keputusan mendapati bahawa andaian taburan normal untuk RTCLUST dipenuhi
dan ujian Bayesian boleh digunakan untuk memutuskan secara signifikan nilai k.
Keputusan bagi RTCLUST dengan nilai RMSE yang rendah menunjukkan bahawa ia
adalah lebih baik daripada MPAM dan TCLUST untuk kedua-dua simulasi dan data
sebenar.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

The term outlier refers to data that deviates significantly from the normal data

as if generated by a different mechanism (Hawkins, 1980). Outliers are different

from noise data. Noise is a random error and should be removed before outlier

detection (Davies PL and Gather U, 1993). Unusual observations may be categorized

into three types, namely outliers, high leverage points, and influential observation.

Outliers could represent the indicative measurement of error and heavy tailed

distribution. In some literature, outliers may come from a mixture of two

distributions, or one might say they come from two distinct sub populations.

Outlier detection for non-hierarchical clustering is a procedure to classify

objects into meaningful partitions while having strong structures with respect to the

presence of outliers. Non-hierarchical cluster analysis will form into a pre-determined

number of groups, so that the method generates a classification by partitioning a

dataset. The existence of outliers is critical because even one outlier may provoke

failure of clustering algorithms. To overcome these limitations in clustering

procedures determining the number of clusters, k and trimming proportion  , and

constraints ratio, c becomes vital. In recent years, detecting outliers by trimming the

portion of outliers has become helpful to make k-mean as a good clustering method.

The spurious outlier model used trimming and was able to handle different types of

constraints for the group scatter matrices. This spurious outlier model was introduced
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by Garcia and Gordaliza (2005a) and is known as Trimming Cluster (TCLUST)

analysis. Spurious outlier model assumes that there are non-regular observations

(outliers) generated by other probability function. Generally a few criteria will be

considered on how we could determine the number of clusters, k and trimming

proportion, .

Kaufman and Rousseeuw (1990) introduced Partition Around Medoid (PAM),

using k-clustering on medoids to identify clusters. PAM works efficiently on small

data set. TCLUST used the mean of discriminant while PAM used the mean of

silhouette to explain the structures. Mean of silhouette is necessary to explain how

good the clusters are. PAM is more robust to noise and outliers compared to k-

means , because it minimizes the sum of pairwise dissimilarities instead of the sum

of squared Euclidean distances. However, the weakness of PAM is that it is only

suitable for a small sample size. In spurious outlier model, the problem occurs when

outliers exist in between overlapping clusters. In this case, the classification of

outliers may be due to the swamping effect. Swamping occurs when there appears to

be a larger proportion of outliers than there really is. The importance of threshold

value in clustering procedure is to minimize the swamping effect. This threshold

values can also determine which cluster the data belongs to in the overlapping

clusters. Generally, a few criteria should be considered in terms of how one may

determine the outliers between overlapping clusters.

1.2 Significant of Study

In cluster analysis, finding outliers is not new. Finding uncommon cases is

more interesting and useful than finding the common cases, such as detecting

criminal activities in E-commerce or detecting abnormal cells pattern in health

science. Identification of potential outliers is important for the following reasons. An

outlier may indicate bad data. For example, the data may have been coded

incorrectly, or an experiment may not have been run correctly. In some cases, the

outlying data resembles a unique pattern, which can be scientific evidence that really

exists in nature. Therefore it is logical to develop a robust outlier detection technique.
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Modification of existing methods or proposing new idea will be beneficial especially

in critical area such as in Health Science study.

1.3 Problem of Statement

In cluster analysis, trimming the data simply means removing the outlying

observations. Researchers sometimes view isolated data or small groups of data as

outliers. In TCLUST, trimming plays a major role in discarding true outliers based

on proportion. The problem then is how to obtain the best estimate of the true

proportion of outliers.

In cluster analysis, it is known that TCLUST works most efficiently on large

data sets, while PAM works efficiently on small data sets. TCLUST uses mean of

discriminant while PAM uses mean of silhouette. The combination of both methods

named as MPAM is proposed because this will explain or produce better clusters.

In many (nearly all) cases we do not know the true proportion of outliers that

exist in the data. However by using TCLUST, and Partition Around Medoid (PAM),

one may get a close estimate of the percentage of true outliers that exist. Gallegos

and Ritter (2005) suggested that the doubtful assignment in cluster analysis as an

indication of outliers or bad trimming proportion (false trimming). In such a case, the

correct threshold values are very important to determine the data that can be

classified as doubtful outliers. Doubtful outliers may arise when there is overlapping

clusters. By using Local Outlier Factor (LOF), the doubtful outliers and real outliers

can be distinguished. The combination of MPAM and LOF will be named as

RTCLUST.
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1.4 Objectives

The objectives of this study consist of four sections:

1. To determine the trimming proportion and number of cluster using TCLUST.

2. To analyze cluster analysis using PAM and modified version of PAM.

3. To use the doubtful assignment method and LOF to identify outliers between

clusters.

4. To propose and demonstrate the RTCLUST procedure using simulated and

real hypertension data

1.5 Research Interest

Figure 1.1 shows the research flow and contributions of this research step by

step. The procedures begins by using TCLUST with the correct c value obtained

using trimmed likelihood curve k and  . Next is proceeded by simulation for PAM.

A modification of PAM is done and this will be known as MPAM. MPAM is done

using c from TCLUST, different threshold value also used to identify the doubtful

data. Apart from that, LOF may be used to distinguish between real and doubtful

outliers. In Figure 1.1, the blue color indicate the contributions of this research.

1.6 Outline of Thesis

The research in this thesis uses a procedure to detect outliers in cluster

analysis. There are 7 chapters in this thesis. Chapter 1 contains the introduction of

the procedures for detecting outliers and methods available currently. After that it

focuses more on cluster analysis, specifically on using spurious model of TCLUST.

Problem statement and objective of the study is also clarified. Sec 1.10 states the

contributions in this research.
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Chapter 2 contains the literature review. It concerns previous works on

cluster analysis. The details and discussions are summarized at the end of Chapter 2.

In the summary table, the strength and weakness of the previous researches are

discussed. Detailed discussions on the procedures used in the proposed method are

carried out in Chapter 3, Chapter 4, and Chapter 5.

Chapter 3 is about trimming in cluster analysis. At the end of Chapter 3 it will

answer the first objective of this thesis as mentioned in Section 1.4. The methods

discussed in Chapter 3 include the trimming of the cluster with different proportion

of outliers. The Chapter also contains discussion of the strength of cluster assignment

when using eigenvalue as the constraint. This Chapter explains how the eigenvalues

have been used so that the c value of cluster matrices can be obtained. c may be

defined as the highest ratio of eigenvalues. A trimmed likelihood curve is used to

decide the best number of outliers (trimming proportion) and the number of clusters.

Chapter 4 refers to modification of PAM. This modified PAM later will be

renamed as MPAM. MPAM is a hybrid technique that combines the TCLUST and

PAM method. At the end of Chapter 4 this unique technique is be able to detect

outliers with more accuracy. However, the comparison between TCLUST, PAM, and

MPAM will be discussed in detail in Chapter 6. MPAM is analyzed using TCLUST

as the initial step. After that the value of c,  and k are chosen. After the initial step,

PAM has been used to find the value of new alpha and k. In this step, mean

silhouette is used to justify the value of k chosen. In this chapter objective number

two is answered. In Chapter 5, doubtful assignment method is used in MPAM to

detect doubtful outliers between overlapping clusters. Threshold value in doubtful

assignment is the key to detecting outliers in the mentioned area. Different threshold

values are used and will be explained in terms of the mean discriminant factor. A

case study is contained in Chapter 6. In the introduction part of Chapter 6, the ability

of LOF in differentiating real and doubtful outliers in overlapping clusters is

discussed. In Chapter 7, RTCLUST is test for normality assumption and Bayesian

criteria is use to decide the choice of k. Monte Carlo simulation is used for medium

sample size to obtain the RMSE, mean of discriminant and mean of silhouette.

Lastly, Chapter 8 contains the conclusion.
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Figure 1.1: The diagram of thesis outline
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