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ABSTRACT 

Human industrial undertakings have rendered carbon dioxide (CO2) and methane 

(CH4) as key greenhouse gas constituents. Greenhouse gases aggravate global warming 

considerably along with the greenhouse effect. Catalyzed reaction of CO2 with CH4 to 

produce valuable chemicals has received increasing attention from both environmental and 

industrial players. Photocatalysis seems to be an encouraging method of realizing green 

chemistry objectives through reducing the concentrations of predominant greenhouse gases, 

especially CO2 and CH4. One of the biggest challenges in the study of photocatalysts is to 

achieve new catalysts with high activity in the visible light range. Noble metal nanoparticles 

are known to absorb visible light extremely well due to the surface plasmon resonance (SPR) 

effect characterized by the strong field enhancement at the interface. Therefore, it is possible 

to attain chemical reactions with a significant fraction of the entire solar spectrum. In this 

study, immobilized silver/titania (Ag/TiO2) nanoparticles were coated on stainless steel 

webnet by dip-coating method to enhance the visible light plasmonic photocatalyst and reduce 

CO2 in the presence of CH4 under ultraviolet-visible (UV-Vis) light irradiation. The 

synthesized catalysts were characterized using x-ray diffraction, field emission scanning 

electron microscopy, energy dispersive x-ray, transmission electron microscopy, Fourier 

transform infrared, nitrogen adsorption-desorption isotherm, UV-Vis spectrophotometry, 

Raman spectrometry, temperature programmed desorption of carbon dioxide and 

photoluminescence analysis techniques. P25 titania nanoparticle model served as the 

photocatalyst due to the large surface area with CO2, CH4 and nitrogen as feeds in the batch 

photoreactor. Experimental results revealed that the photocatalytic activity for the conversion 

of CH4 and CO2 under UV-Vis light irradiation over Ag-loaded TiO2 was better than that of 

pure TiO2 due to the synergistic effect between light excitation and SPR enhancement. 

Response surface methodology was applied for analysis and optimization to achieve the 

highest conversion of CO2 and CH4. The optimal process parameter values were 9 h for 

irradiation time, 4 wt% for Ag-loaded, an equal initial ratio of CO2:CH4 and 100 mesh size. 

The maximum conversion of CO2 and CH4 in optimal condition was achieved at 29.05% and 

34.85%, respectively. In addition, the photon energy in the UV-Vis range was high enough to 

excite the electron transition in Ag/TiO2 to produce some hydrocarbons and oxygenates, such 

as ethane (C2H6), ethylene (C2H4), acetic acid and formic acid. During the reaction, the 

maximum yields of C2H6 and C2H4 achieved were 1500.52 and 1050.50 μmole.gcat-1, 

respectively. Furthermore, the Ag/TiO2 plasmon photocatalyst exhibited great reusability 

with almost no change after three runs. Finally, a kinetic model was developed based on the 

Langmuir–Hinshelwood mechanism to model the hydrocarbon formation rates through the 

photocatalytic reduction of CO2 with CH4. The experimental data fit well with the kinetic 

model. Based on the findings, these nanostructured materials are considered promising and 

effective photocatalysts for conversion of CO2 and CH4 into high-value products. 
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ABSTRAK 

Kerja-kerja perindustrian manusia menyebabkan pengeluaran karbon dioksida (CO2) 

dan metana (CH4), juzuk utama gas rumah hijau. Gas rumah hijau memburukkan lagi 

pemanasan global bersama dengan kesan rumah hijau. Tindak balas bermangkin CO2 dengan 

CH4 untuk menghasilkan bahan kimia berharga semakin mendapat perhatian daripada    

kedua-dua perspektif alam sekitar dan industri. Fotopemangkinan tampak seperti satu kaedah 

yang menggalakkan perealisasian objektif kimia hijau melalui pengurangan kepekatan        

gas-gas rumah hijau utama, terutamanya CO2 dan CH4. Salah satu cabaran terbesar bagi kajian 

fotopemangkinan adalah untuk menyediakan pemangkin baharu dengan aktiviti yang tinggi 

dalam penyinaran cahaya nampak. Nanozarah logam adi diketahui menyerap cahaya nampak 

dengan sangat baik kerana kesan permukaan plasmon resonans (SPR) dicirikan oleh 

peningkatan medan kuat pada antara muka. Oleh itu, untuk menjalankan tindak balas kimia 

dengan sebahagian besar keseluruhan spektrum matahari adalah tidak mustahil. Dalam kajian 

ini, nanozarah argentum/titania (Ag/TiO2) tersekat gerak disalut pada webnet keluli tahan 

karat disediakan dengan kaedah celup-salutan untuk meningkatkan fotopemangkin plasmonik 

cahaya nampak bagi mengurangkan CO2 dengan kehadiran CH4 di bawah penyinaran cahaya 

nampak-ultraungu (UV-Vis). Bahan-bahan disintesis dicirikan dengan menggunakan analisis 

teknik-teknik pembelauan sinar-x, mikroskop elektron pengimbas pancaran medan, tenaga 

serakan sinar-x, mikroskop penghantaran elektron, inframerah transformasi Fourier, isoterma 

penjerapan-nyahjerapan nitrogen, spektrofotometer UV-Vis, spektrometer Raman, suhu 

nyahjerapan diprogramkan karbon dioksida, dan fotopendarkilau. Nanozarah titania model 

P25 digunakan sebagai fotopemangkin kerana luas permukaan yang besar dengan CO2, CH4 

dan nitrogen sebagai suapan dalam reaktor foto kelompok. Hasil kajian menunjukkan aktiviti 

fotopemangkin bagi penukaran CH4 dan CO2 di bawah penyinaran cahaya UV-Vis 

menunjukkan TiO2 Ag-dimuatkan adalah lebih baik daripada TiO2 tulen kerana kesan sinergi 

antara pengujaan cahaya dan peningkatan SPR. Kaedah permukaan tindak balas digunakan 

untuk menganalisis dan pengoptimuman bagi mencapai penukaran CO2 dan CH4 tertinggi. 

Nilai-nilai optimum parameter proses adalah 9 jam masa penyinaran, 4 wt% bagi                     

Ag-dimuatkan, nisbah permulaan yang sama bagi CO2:CH4, dan saiz mesh 100. Penukaran 

maksimum CO2 dan CH4 pada keadaan optimum masing-masing dicapai pada 29.05% dan 

34.85%. Di samping itu, tenaga foton dalam julat UV-Vis cukup untuk merangsang peralihan 

elektron dalam Ag/TiO2 bagi menghasilkan beberapa hidrokarbon dan oksigenat yang 

dihasilkan seperti etana (C2H6), etilena (C2H4), asid asetik, dan asid formik. Pada masa tindak 

balas, hasil maksimum C2H6 dan C2H4 masing-masing dicapai pada 1500.52 dan 1050.50 

μmol.gcat-1. Selain itu, fotopemangkin plasmon Ag/TiO2 menunjukkan kebolehgunaan  

semula dengan hampir tiada perubahan selepas tiga larian. Akhir sekali, model kinetik dibina 

berdasarkan mekanisme Langmuir-Hinshelwood untuk memodelkan kadar pembentukan 

hidrokarbon melalui pengurangan fotopemangkin CO2 dengan CH4. Data uji kaji dalam kajian 

ini mempunyai padanan yang baik dengan model kinetik. Berdasarkan dapatan kajian,    

bahan-bahan berstruktur nano dapat dianggap sebagai fotomangkin berpotensi dan berkesan 

untuk penukaran CO2 dan CH4 kepada produk bernilai tinggi. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Research  

Environmental pollution comes from many different sources and most 

governments are taking environmental protection very seriously. The situation is such 

that people in a particular city or even country may even be affected by pollution from 

neighboring countries. Carbon dioxide (CO2) emission has become a major challenge 

worldwide due to the rising CO2 levels in the atmosphere. Greenhouse gases (GHG) 

trap heat in the atmosphere, causing global warming. Recent human-induced impact 

on forestry and other land use has led to the addition of several types of greenhouse 

gases in the atmosphere. The main GHGs in the Earth's atmosphere are carbon dioxide 

(CO2), methane (CH4), nitrous oxide, water vapor and ozone. CO2 is considered the 

largest contributor to GHG. Figure 1.1 presents details about the major greenhouse 

gases. In this chart, the size of a part represents the amount of warming contributed by 

each type of gas to the atmosphere as a result of current emissions from human 

activities (IPCC, 2014). According to the IPCC, average greenhouse gas 

concentrations have reached the highest global levels documented and are not ceasing 

to rise. Figure 1.2 demonstrates atmospheric concentrations of CO2 (green), CH4 

(orange) and N2O (red) from direct atmospheric measurements of GHG until 2010. 

The concentration of CO2 as a major component of GHG reached 389 ppm in 2010 

and 391 ppm in 2011, but these values are not included in the chart (Allen et al., 2014). 
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Figure 1.1 Major Greenhouse gases (IPCC, 2014) 

 

 

Figure 1.2 Globally averaged greenhouse gas concentrations (Allen et al., 2014) 

 

IPCC reported that fossil fuel use has led to increasing environmental 

pollution, with greenhouse gas concentrations rising over time (Qin et al., 2011). 

Human activities release carbon dioxide mainly through greenhouse gas emissions, 

but the human impact on other gases such as methane is not negligible. Figure 1.3 

shows the global anthropogenic CO2 emissions from forestry and other land use, fossil 

fuel burning, cement production and flaring. On the other hand, IPPC has stated that 

the global GHG emissions should be reduced by 50 to 80% by 2050 (Change, 2007). 

In the current circumstances, 80% of primary energy consumption is fulfilled by fossil 

fuels, of which 58% alone are consumed by the transportation sector (Nam et al., 2011; 

Nigam and Singh, 2011). Fossil fuel combustion generates greenhouse gases (GHG), 
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especially carbon dioxide (CO2), which leads to global warming (Mohammed et al., 

2011). Moreover, GHG contribute many negative effects like rising sea levels, acid 

rain and biodiversity losses (Beer et al., 2002; Howarth et al., 2011). Hence, it is 

necessary to furnish processes, methods and applications suitable for returning CO2 to 

prior lower levels. Three means of reducing the CO2 amount in the atmosphere 

include: (i) direct CO2 emission reduction; (ii) CO2 capture and storage (CCS); and 

(iii) CO2 consumption (Hurst et al., 2012; Windle and Perutz, 2012). CO2 emission 

reduction appears unrealistic owing to the current human lifestyle and evolving fossil 

fuel utilization. CCS technology potential is controllable on account of environmental 

leakage hazards as well as the energy utilized to compress and transport fuel. Solar 

energy is the most exploitable of all renewable resources, as it provides the most 

energy on Earth. Harvesting sunlight to mitigate environmental concerns is a favorable 

approach besides one of the fundamental aims for global development sustainability 

(Sato et al., 2015). Nonetheless, amongst all the existing technologies to reduce CO2 

emissions, photocatalysis has been extensively applied to tackle this problem as well 

as to provide sufficient energy for the future. Nonetheless, amongst all existing 

technologies to reduce CO2 emissions, photocatalysis has been extensively applied to 

tackle this problem as well as to provide sufficient energy for the future. The 

photocatalytic CO2 reduction technique is very effective, since it does not require extra 

energy nor has a negative environmental impact. Due to the low cost involved, 

utilizing the abundant, free sunlight in converting CO2 into different products 

comprising carbon is another excellent approach. This research field has started 

attracted interest with Fujishima and Honda’s work in 1972 . Progress in research has 

witnessed nanotechnology advances, notably synthesizing nanomaterials with varying 

structures and morphologies. The most current means involves utilizing noble metals 

like Au or Ag with surface plasmon resonance (SPR) to improve TiO2 photocatalytic 

efficiency (An et al., 2012; Li et al., 2012a). The current study presents a review of 

the fundamental principles of CO2 photocatalysis and photocatalytic CO2 reduction in 

the presence of CH4 using a plasmonic photocatalyst and sunlight irradiation. The 

photocatalytic efficiency measures are discussed as well. 
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Figure 1.3 Global anthropogenic CO2 emissions (Allen et al., 2014) 

1.2 Fundamentals of Photocatalysis 

The word "photocatalysis" is of Greek origin and comprises two sections: 

photo (phos: light) and catalysis (katalyo: break apart, decompose) (Kondarides, 

2005). Photocatalysis is defined as the change in the rate of a photonic reaction by 

means of a catalyst in the presence of either UV or visible light to boost the reaction. 

In such reactions, upon impact of the high energy photons onto the semiconductor 

surface, the electrons in the valence bands obtain enough energy to move to higher-

energy conduction bands. The energy required is called the band gap energy and it is 

the difference between the energies of the valence and conduction bands. The 

conduction bands are unoccupied, hence the entering electrons move freely between 

molecules, creating positively charged holes. The negatively charged electrons and 

positively charged holes can each start a series of reactions like contaminant 

degradation (Demeestere et al., 2007). The valence band (VB) is the highest electron 

energy range at which all energy levels are filled by electrons, while the conduction 

band (CB) is the lowest range of vacant electronic states, which is unfilled by 

electrons. However, the VB redox potential must be more positive than that of the 

adsorbates. Similarly, CB electrons must have more negative redox potential to reduce 

the adsorbate species. On the other hand, it is possible for e-/h+ to recombine in the 

semiconductor catalyst volume (called volume recombination) to create unproductive 

products or heat (Sachs et al., 2016). Fujishima (1972) initially studied photocatalysis 

and discovered the photocatalytic activity of TiO2 electrodes in the decomposition of 
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water into hydrogen and oxygen. This is the beginning of a new field of heterogeneous 

photocatalysis. 

1.3 Fundamental Role of Photocatalysis in Reducing GHG 

Over the past few decades, photocatalytic reactions have had an significant role 

in various fields, such as water splitting, environmental pollution control, water and 

air purification, self-cleaning surfaces, and CO2 concentration reduction, the last of 

which is deemed the most important concern regarding global warming and also 

overcoming human health problems (Bourikas et al., 2005). Greenhouse gases are the 

main reason for global warming, which is now the main concern worldwide. Fossil 

fuels are dramatically depleting globally every year owing to the high energy demand 

of humans. Consequently, to fulfill energy demands and prevent global heating, 

numerous strategies have been proposed by researchers, scientists and investigators 

over the past four decades or more. Therefore, CO2 reduction into valuable compounds 

or chemicals is the most widely utilized technology to overcome these issues and 

provide future energy simultaneously. Previous work on photocatalysis by Honda-

Fujishima has sparked an abundance of research on exploring new ways to apply CO2 

reduction, such as self-cleaning coatings (Blossey, 2003; Xin et al., 2016), 

electrochronic display devices (Liu et al., 2013), electrochemical CO2 reduction 

(Wang et al., 2015b) and photovoltaic (Schreier et al., 2015). Moreover, biological 

reduction by plants (Zang et al., 2015),  thermal CO2 photocatalytic reduction (Marxer 

et al., 2015) and photoelectrochemical reduction of CO2 reported by Halmann et al. 

(1978) have been carried out using electrochemical cells. Unfortunately, 

electrochemical cells for CO2 conversion have disadvantages owing to their very slow 

kinetics as well as very high energy intensity (Cole and Bocarsly, 2010). In addition 

to the above-mentioned methods, photocatalysis technology has been extensively 

studied for CO2 reduction into valuable fuel products owing to its advantages including 

low input energy consumption and renewable energy use (Usubharatana et al., 2006; 

Wen et al., 2015). Photocatalysts can be solids or in suspension and can stimulate 

reactions in the presence of a light source like UV or solar light without the catalyst 

itself being consumed. However, several photocatalysts, such as TiO2, ZrO2, CdS, 
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ZnO, ZnS, SiC, CeO2 and Fe2O3 can often be used for the photoreduction of GHG and 

photo-excited electron reduction of CO2 with other compound reductants to create 

energy-bearing products like carbon monoxide, methanol, ethylene, ethane, acetic 

acid, etc. (Hernández-Alonso et al., 2009). Amongst all abovementioned 

photocatalysts, titanium dioxide is the most extensively investigated due to its unique 

properties. Owing to its high levels of photoconductivity, ready availability, 

environmentally friendliness, non-toxicity, low cost and high stability, titanium 

dioxide is the most frequently employed semiconductor in heterogeneous 

photocatalytic reactions (Gupta and Tripathi, 2011; Zúñiga-Benítez and Peñuela, 

2016). Of the semiconductors mentioned above, TiO2 exhibits higher photocatalytic 

activity. ZnO and CdS have lower photoactivity than Titania but pose the disadvantage 

of releasing Cd2+ and Zn2+ ions into the solution (Piumetti et al., 2014). 

1.4 Problem Statement 

CO2 and CH4, respectively, are the most significant components of greenhouse 

gases. The emission of GHG into the environment causes a lot of problems regarding 

safety and the health of the environment itself. The key CO2 emission source is the 

burning of fossil fuels, such as oil, natural gas, coal, etc., which not only accelerate the 

greenhouse effect but are generated by human activity, at about 37 billion tons of CO2 

emissions each year, about 30 gigatons (Gt) of this being from energy-related 

emissions. However, burning 1 t of carbon from fossil fuels releases more than 3.5 t 

of carbon dioxide (Jiang et al., 2010). Therefore, environmental pollution due to fossil 

fuel use is the main reason for the increasing application of new clean energy sources 

like sunlight. As a result, means of transforming natural gas into useful fuels have been 

deliberated. Among these methods, which is also the focus of this study, is the 

photocatalytic reduction of methane and carbon dioxide into high-value products. The 

major challenges addressed in this study are: 

• The reaction between CH4 and CO2 is an uphill type reaction due to the 

conversion of CO2 and CH4 into hydrocarbon fuels in a two-step process. 

This process requires higher input energy, which exacerbates greenhouse 
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gas emissions, leading to uneconomical as well as environmentally 

unfriendly processes. 

• The simultaneous conversion of CO2 and CH4 is considered a perfect redox 

reaction. 

• Photocatalysis processes encounter low quantum efficiencies using 

traditional TiO2 photocatalysts, which is the primary limitation of using 

sunlight energy. For instance, traditional photocatalysts almost exclusively 

focus on TiO2-based semiconductors that can access only UV light (< 4% 

sunlight) and thus cannot take advantage of visible light (400-800nm 

wavelengths). Visible light constitutes approximately 43% of solar energy. 

 

In this research, a new photocatalytic conversion of CO2 into materials of 

higher value is attempted, such that the reaction can occur in the visible region for 

economic affordability. Plasmonic photocatalysis has recently facilitated rapid 

progress in amending photocatalytic efficiency under visible light irradiation, raising 

the prospect of utilizing sunlight for energy and environmental applications, such as 

wastewater treatment, water splitting and carbon dioxide reduction. Plasmonic 

photocatalysis is done utilizing noble metal nanoparticles dispersed in semiconductor 

photocatalyst and has two prominent features: the Schottky junction and local surface 

plasmonic resonance (LSPR). The novelty of this study is summarized as follows. By 

harvesting visible light, novel plasmonic photocatalysts offer potential solutions for 

some of the main drawbacks in this reduction process. Hence, stainless steel webnet 

was selected as a photocatalyst support due to its large surface area that provides more 

active sites for TiO2 deposition than general supports. This highlights the activities of 

the plasmonic photocatalysts reduction of CO2 with CH4 under visible light irradiation 

at ambient temperature and low pressure. 

1.5 Research Hypothesis 

The focus of the present study is on designing a visible-light-active plasmonic 

photocatalyst to enhance visible light absorption and reduce the electron-hole 

recombination rate, which can result in high photocatalytic efficiency as well as the 



 8 

conversion of stable CO2 molecules in the presence of CH4 into other value-added 

chemicals. Accordingly, the catalyst nanoparticles and best reactor designed can 

significantly contribute to the efficiency of photocatalytic reactions. This research is 

different from several other studies in using plasmonic photocatalyst construction to 

benefit from sunlight. For this purpose, the following assumptions are made: 

I. Semiconductors are especially valuable as photocatalysts due to a combination 

of their electronic structure, light absorption, charge transport property and 

excited-state lifetime characteristics. Consequently, titanium dioxide 

nanoparticles can facilitate solving problems of photocatalysis and help improve 

photocatalytic activity and selectivity. In addition, smaller particles result in a 

lower probability of recombination. 

II. With intensive light absorption and charge-separation efficiency, plasmonic 

photocatalysts seem encouraging for mitigating future energy and environmental 

concerns. Plasmonic nanostructures can drive direct photocatalysis with visible 

photons, where the nanostructures act as the light absorbers and catalytic-active 

sites. Plasmonic photocatalysts have been synthesized successfully by 

modifying TiO2 nanoparticles with noble metal nanoparticles (NPs) via simple 

impregnation. Ag nanoparticle sensitizers display a strong photoelectrochemical 

response in the visible-light region (400−800 nm) due to their surface plasmon 

resonance. 

III. Higher CO2 and CH4 reduction and improved photocatalytic activity under UV-

visible light irradiation is possible by introducing immobilized Ag/TiO2 

nanoparticles coated on webnet stainless steel. The stainless steel webnet is a 

photocatalyst support of choice owing to the extensive surface area, which offers 

more active sites for TiO2 deposition than common supports. It also enables 

optimum ventilation for transient gases.  Large surface areas may thus greatly 

improve the photoconversion of CH4 and CO2 into high-value products. 

Attaining novel multi-phase photocatalysts with heterojunctions is supported 

by basic knowledge, such as the theory of the structure of atoms and 

photoelectrochemistry knowledge. The investigation of highly-active visible-light-

driven photocatalysts relies on exploring synthesis methods modified with various 
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conditions, which results in highly-active photocatalysis in terms of CO2 reduction in 

the presence of CH4. 

1.6 Research Objectives 

The main aim of this work is to reduce the greenhouse gases (CO2 and CH4) 

by applying plasmonic photocatalysis technology under UV-visible light irradiation. 

For this aim, the following specific objectives of the research are: 

1. To synthesize and characterize Ag/TiO2 NP supported on stainless 

steel webnet. 

2. To evaluate the effect of various process parameters on photocatalytic 

reduction of CO2 and CH4. 

3. To determine the optimum reaction condition for higher conversion of 

CO2 and CH4 using response surface methodology (RSM). 

4. To study the kinetic and reaction rate parameters of photoreduction 

over the catalyst. 

 

The principal contribution of this project to research lies in the development of 

visible-light-driven photocatalysts with enhanced photocatalytic activity for CO2 

reduction in ambient temperature. 

1.7 Research Scope 

The photocatalytic reduction of pollutants is a traditional means with a long 

history. At the moment, nano titania is the most widely explored photocatalyst due to 

its non-toxicity, low cost and high stability, although it cannot absorb light in the 

visible region of the solar spectrum. Accordingly, the main disadvantage of TiO2 in 

applications for this purpose is its low product yield. As a result, numerous methods 

have been proposed in literature for the development of visible-light-active TiO2 with 

high photocatalytic efficiency, such as noble metal loading. In this study, Ag/TiO2 is 
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coated on a mesh webnet by the simple and efficient dip coating method. This can 

improve the overall photocatalysis of semiconductors under UV-visible illumination 

as well as noble metal nanoparticles combined with semiconductors in order to 

enhance the charge separation of photogenerated electron-hole pairs. In addition, the 

stainless steel webnet is an excellent substrate material due to its large surface area 

that provides more active sites for TiO2 deposition. 

Nanocatalyst characterization of samples is conducted using XRD, FE-SEM, 

EDX, TEM, FTIR, BET, Raman, TPD-CO2, PL and UV-Vis spectrophotometry to 

investigate the purity, crystallography, surface morphology, mesoporosity, pore size 

distribution, pore value and optical properties of catalysts. 

A batch-type stainless steel cube reactor in gas phase is used with a quartz 

window at the top. The lamp is positioned so as to irradiate the catalyst surface at the 

top of the reactor. The light source utilized is a 500W high pressure Xenon lamp with 

320-700 nm irradiation operated by a high voltage power supply. Xenon lamps are 

widely used for sun simulation. Afterwards, a reaction with gas feed containing CH4, 

CO2 and N2 is applied, where the feed ratio values influence selectivity for the desired 

product formation. 

In this study, an attempt is made to determine the functional relationship 

between four operating parameters, including irradiation time, feed ratio, catalyst 

loading amount and stainless steel mesh size, based on Response Surface Methodology 

(RSM) in conjunction with the Box-Behnken design. To generate the design of 

experiments (DOE), statistical analysis is employed and a regression model is created 

using STATISTICA software. Optimization is also done for the CO2 and CH4 

conversion responses. 

The Langmuir-Hinshelwood analysis is the most commonly employed kinetic 

expression, which explains the kinetics of heterogeneous catalytic processes. The 

reaction mechanism and kinetic model were developed to determine the key 

parameters in CO2 and CH4 reduction applications. 
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The focus of our research is to design efficient TiO2-based photocatalysts to 

reduce the concentration of GHG. The strategy is to develop and improve the 

photocatalytic performance of TiO2 as mentioned above. The titania nanoparticles 

(TNPs) are combined with noble metal NPs, small band gap semiconductors, and 

plasmonic metal to significantly enhance the visible-light region absorption, charge 

transfer efficiency and surface area. This study presents an encouraging technique of 

developing SPR effect-enhanced photocatalysis, with potentially intense implications 

for solar light utilization in future. 

1.8 Organization of Thesis 

This thesis consists of seven chapters. 

Chapter 1: Introduction; a general overview and discussion related to the 

research is provided and problem statement, research hypothesis, 

objectives and scope of this study are defined. 

Chapter 2: Literature Review; gives a general overview on TNP structures, a 

literature review of fabrication methods of TNP, and their application. 

Chapter 3: Research Methodology; the general description of research 

methodology and detailed experimental strategies are discussed. 

Chapter 4: Characterization of Plasmonic Nanocatalysts; deliberated the 

characterizations of nanocatalysts and catalysts coated over the stainless 

steel mesh. 

Chapter 5: Plasmonic Photocatalyst Activity; the description about 

photoreduction of CO2 in the presence of CH4 over Ag/TiO2 under UV-

visible light irradiation. 

Chapter 6: Optimization and Kinetic Study; finding the optimal reaction  

conditions to highest conversion of CO2 and CH4 by RSM method as well 

as description of kinetics parameter. 

Chapter 7: Conclusions and Recommendations; contains the overall 

conclusions of this study and recommendations for the future work. 
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