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ABSTRACT 

 

Supercapacitor, also known as ultracapacitor exhibits higher power density, 

greater rapid charging and discharging rates, and superior life cycle than a 

rechargeable battery. The major drawback of supercapacitor is its relatively lower 

energy density. Previous researchers have proved that the specific capacitance of 

supercapacitor increases with the increment of electrolyte concentration, which 

contributes to the improvement of its energy density. Commercial separator, such as 

cellulose paper, is incapable of withstanding high concentration of electrolyte. A 

corrosive-resistant material, glass wool has been previously introduced as a potential 

material for the separator.  Nonetheless, studies of the electrochemical performance of 

supercapacitors with glass wool separator under different types of electrolytes with 

different concentrations are very limited. This thesis aims to electrochemically 

evaluate glass wool-based supercapacitor under three types of electrolytes; 1 mol/dm3 

sulfuric acid (H2SO4), 6 mol/dm3 potassium hydroxide (KOH) and 1 mol/dm3 

tetraethylammonium tetrafluoroborate (TEABF4) and compare the performance to an 

identical supercapacitor with cellulose separator. A systematic study on the effect of 

high concentrated electrolytes coupled with the glass wool separator was also carried 

out. The electrochemical performance of the constructed supercapacitors was 

evaluated through cyclic voltammetry, galvanostatic charge-discharge, 

electrochemical spectroscopy, and cyclability charge-discharge tests using a 

symmetrical two-electrode test cell. It is found that the glass wool separator has 

outperformed cellulose in terms of its internal resistance and power density under the 

acidic, basic, and organic electrolytes. Interestingly, the glass wool-based 

supercapacitor coupled with high concentrated H2SO4 (18 mol/dm3) electrolyte 

exhibits 23% increment of specific capacitance and energy density with almost 100% 

retention throughout 3000 cycles of charge-discharge process as compared to the one 

with 1 mol/dm3 H2SO4 electrolyte. The optimum concentration for basic electrolyte 

KOH suggested is 10 mol/dm3 which gives 5.3% increment in energy density, 13% 

increments in power density and excellent cyclability compared to that of 6 mol/dm3 

KOH electrolytes. The application of 2.5 mol/dm3 concentration of TEABF4 improves 

the energy and power density by 153% and 3821%, respectively compared to 1 

mol/dm3 TEABF4.  
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ABSTRAK 

 

Superkapasitor, juga dikenali sebagai ultrakapasitor mempamerkan 

ketumpatan kuasa yang lebih tinggi, kadar pengecasan dan nyahcas yang lebih pantas, 

dan kitaran hayat yang lebih baik berbanding bateri yang boleh dicas semula. 

Kekurangan utama superkapasitor adalah ketumpatan tenaga yang agak rendah. 

Penyelidik sebelum ini telah membuktikan kemuatan spesifik superkapasitor 

meningkat dengan peningkatan kepekatan elektrolit, yang seterusnya menyumbang 

kepada peningkatan ketumpatan tenaga. Pemisah yang terdapat dipasaran seperti 

kertas selulosa tidak mampu bertahan dalam elektrolit berkepekatan tinggi. Bahan 

tahan hakisan iaitu wul kaca telah diperkenalkan sebelum ini sebagai bahan yang 

berpotensi sebagai pemisah. Walau bagaimanapun, kajian mengenai prestasi 

elektrokimia superkapasitor dengan pemisah wul kaca dengan pelbagai jenis elektrolit 

dengan kepekatan yang berlainan adalah amat terhad. Kajian ini bertujuan untuk 

menilai secara elektrokimia superkapasitor berasaskan wul kaca dengan tiga jenis 

elektrolit; 1 mol/dm3 asid sulfurik (H2SO4), 6 mol/dm3 kalium hidroksida (KOH) dan 

1 mol/dm3 tetraetilammonium tetrafluroborat (TEABF4) dan kemudian 

membandingkan prestasinya dengan superkapasitor yang sama tetapi dengan pemisah 

kertas selulosa. Satu kajian yang sistematik mengenai kesan elektrolit berkepekatan 

tinggi beserta pemisah wul kaca juga dilakukan. Prestasi elektrokimia superkapasitor 

yang dibina dinilai melalui ujian kitaran voltametri, cas-nyahcas galvanostatik, 

spektroskopi elektrokimia, dan ujian cas-nyahcas menggunakan sel uji dua elektrod 

yang simetri. Didapati, pemisah wul kaca telah mengatasi pemisah kertas selulosa dari 

segi rintangan dalaman dan ketumpatan kuasa menggunakan elektrolit berasid, 

beralkali, dan jenis organik. Menariknya, superkapasitor yang dibina berasaskan wul 

kaca dan elektrolit berkepekatan tinggi, H2SO4 (18 mol/dm3) menghasilkan 23% 

peningkatan kemuatan spesifik dan ketumpatan tenaga dengan hampir 100% 

pengekalan kemuatan sepanjang 3000 kitaran cas-nyahcas berbanding dengan 

elektrolit 1 mol/dm3 H2SO4. Kepekatan yang optimun didapati untuk elektrolit alkali 

KOH adalah 10 mol/dm3 yang memberikan peningkatan sebanyak 5.3% kepada 

kepadatan tenaga, 13% ketumpatan kuasa dan kitaran cas-nyahcas yang sangat baik  

berbanding dengan 6 mol/dm3 elektrolit. Penggunaan elektrolit 2.5 mol/dm3 TEABF4 

meningkatkan kepadatan tenaga dan kuasa masing-masing sebanyak 153% dan 3821% 

berbanding 1 mol/dm3 TEABF4.   
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INTRODUCTION 

 Research Background 

Electrical energy storage devices have been playing an increasingly essential 

role in many rapidly growth application such as in electric vehicles and portable 

consumer electronics. Besides rechargeable battery, supercapacitor has been 

recognized as important and promising device for the energy storage purpose [1]. 

Compared to a conventional dielectric capacitor, supercapacitor possesses an 

extremely high capacitance and is capable of storing electrical charges up to 106 Farad 

[2]. Owing to its advantages of high power density, long life cycle, and economical, 

supercapacitor bridges the gap between conventional capacitor and rechargeable 

batteries.  

Depending on the energy storage mechanism, supercapacitor can be categorized 

into three categories; non-faradic supercapacitor called electric double-layer capacitor 

(EDLC), faradaic supercapacitor known as pseudocapacitor, and hybrid 

supercapacitor. An EDLC stores electrical charges electrostatically at the interface 

layer of electrolyte-electrode and creates a double-layer capacitance effect within the 

capacitor. Meanwhile, for a pseudocapacitor, the charge-discharge process governs by 

a reversible Faradaic reduction-oxidation process between the electrode and 

electrolyte. Unlike rechargeable battery, the reduction-oxidation process in 

pseudocapacitor is much faster and makes the charging-discharging process relatively 

quicker than the battery. On the other hand, a hybrid supercapacitor combines both 

non-faradaic and faradaic charge-discharge mechanisms in a single capacitor [3].   
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In essence, supercapacitor consists of a pair of active electrodes, separated by a 

separator that filled with an electrolyte. The active electrode is typically made from 

activated carbon material. The activated carbon is pre-treated to possess tiny, low 

volume pores, which consequently increases its surface area for the charges 

accumulation process.  

Besides activated carbon, electrolyte is critical component in supercapacitor 

construction that determines its operating voltage. The electrolytes can be generally 

grouped into three categories; aqueous, organic and ionic electrolytes. Both organic 

and ionic electrolytes possess high potential window of up to 3 V, however both 

electrolytes suffer from high internal resistance, which affects the power density. Even 

though the potential window of supercapacitor with an aqueous electrolyte is only 

limited to 1 V, the electrolyte possesses high ionic conductivity, which reduces the 

internal resistance of the supercapacitor. In addition, the electrolyte is known to be 

environment-friendly and inexpensive compared to organic and ionic electrolytes. 

In the past decades, many researches have been carried out to improve 

supercapacitor performance in terms of its power and energy density as well as the 

cyclability. Beside the operating voltage, energy density is also influenced by the 

supercapacitor’s capacitance, which is significantly depends on the active surface area 

of the activated electrodes, ions properties and electrolyte concentration. Previous 

researcher has proven that the increment of concentration of electrolyte significantly 

increases the specific capacitance of the supercapacitor, but only limited in water bath 

analysis [4]. Hence, one way to achieve superior power and energy density is by 

utilizing high concentrated electrolyte coupled with a corrosive-resistant separator. 

Considering conventional cellulose separator incapable of withstanding high 

concentrated electrolyte, a corrosive-resistant material, glass wool has been recently 

introduced as the separator material in supercapacitor application [5]. However, the 

study was only limited to 1 mol/dm3 sulfuric acid (H2SO4) electrolyte and no further 

information available particular on high concentrated electrolyte. 
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Therefore, it is essential to further extend the characterization of supercapacitor 

containing glass wool as the separator to reveal its performance under different types 

of high concentrated electrolytes. 

 Problem Statement  

A corrosive-resistant material, glass wool has been recently introduced as the 

separator material in supercapacitor application [5]. The glass wool-based 

supercapacitor outperformed supercapacitors with other separator materials such as 

cellulose, polypropylene and fiberglass. However, the study is only limited to an 

aqueous electrolyte of 1 mol/dm3 H2SO4. In addition, very limited reports are available 

on the performance of the supercapacitor with high concentrated electrolyte that 

claimed to own superior power and energy capacities. This research aims to 

systematically evaluate the electrochemical properties of glass wool material as the 

separator in supercapacitor construction under three types of electrolytes, which are 

acidic, basic and organic electrolytes. With the utilization of the glass wool material, 

study on the effect of high concentrated electrolytes in supercapacitor construction was 

also carried out. 

 Objectives 

The objectives of this research are: 
 
 

i. To evaluate and compare the electrochemical properties of 

supercapacitor with glass wool separator to that of cellulose separator 

under acidic, basic and organic electrolytes.  

ii. To investigate the electrochemical performance of the glass wool-based 

supercapacitor under high concentration of acidic, basic and organic 

electrolytes. 
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 Scope of the Research 

The scopes of the research incorporated as follow:  
 
 

i. The utilization of acidic, basic and organic electrolytes of H2SO4, 

potassium hydroxide (KOH) and tetraethylammonium 

tetrafluoroborate (TEABF4), respectively as the electrolytes in 

supercapacitor construction. 

 

ii. The construction of supercapacitor with a symmetrical two-electrode 

system test cell for all electrochemical evaluation. 

 
 

iii. The evaluation of the electrochemical properties based on cyclic 

voltammetry (CV), galvanostatic charge-discharge (GCD), cyclability, 

and electrochemical impedance spectroscopy (EIS) tests using an 

electrochemical measuring instrument of Gamry Interface 1000. 

 

iv. The cyclability charge-discharge test is up to 3000 cycles with the 

applied current that depends on the individual capacity based on GCD 

test. 

 

 Significance of the Research 

Even though the glass wool material is known to be corrosive-resistant 

material, however its application in supercapacitor containing high concentrated 

electrolyte is yet to be reported in the past. This research provides beneficial 

information to researchers in developing superior supercapacitor in term of its power 

and energy density. The implementation of glass wool separator enables the utilization 

of high concentrated electrolytes, which consequently leads to higher-rating 

supercapacitor at relatively lower cost compared to organic solution-based capacitor. 
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