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ABSTRACT 

 

 

 

 

Failure analysis is an important tool for effective safety management in the 

chemical process industry. This thesis applies a probabilistic approach to study two 

failure analysis techniques. The first technique focuses on fault detection and 

diagnosis (FDD), while the second is on vulnerability analysis of plant components. 

In formulating the FDD strategy, a class of functional model called multilevel flow 

modeling (MFM) was used. Since this model is not commonly used for chemical 

processes, it was tested on a crude distillation unit and validated using a simulation 

flowsheet implemented in Aspen HYSYS (Version 8.4) to demonstrate its suitability. 

Within the proposed FDD framework, probabilistic information was added by 

transforming the MFM model into its equivalent fault tree  model to provide the 

ability to predict the likelihood of component’s failure. This model was then 

converted into its equivalent Bayesian network model using HUGIN 8.1 software to 

facilitate computations. Evaluations of the system on a heat exchanger pilot plant 

highlight the capability of the model in detecting process faults and identifying the 

associated root causes.  The proposed technique also incorporated options for multi – 

state functional outcomes, in addition to the typical binary states offered by typical 

MFM model. The second tool proposed was a new methodology called basic event 

ranking approach (BERA), which measures the relative vulnerabilities of plant 

components and can be used to assist plant maintenance and upgrade planning. The 

framework was applied to a case study involving toxic prevention barriers in a 

typical process plant. The method was compared to some common importance index 

methodologies, and the results obtained ascertained the suitability of BERA to be 

used as a tool to facilitate risk based decisions in planning maintenance schedules in 

a process plant.  
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ABSTRAK 

 

 

 

 

Analisis kegagalan adalah salah satu teknik penting dalam pengurusan 

keselamatan dalam industri proses kimia. Tesis ini mengaplikasikan pendekatan 

kebarangkalian dalam mengkaji dua teknik analisis kegagalan. Teknik yang pertama 

memberi tumpuan kepada pengesanan dan diagnosis kerosakan (FDD), manakala 

yang kedua pula memfokuskan kepada analisis kelemahan komponen kilang. Dalam 

merumuskan strategi FDD, satu kelas model fungsi iaitu model aliran bertingkat 

(MFM) telah digunakan. Oleh kerana model ini jarang digunakan bagi proses kimia, 

ianya telah diuji ke atas unit penyulingan mentah dan disahkan dengan menggunakan 

simulasi carta alir menerusi perisian Aspen HYSYS (Versi 8.4) bagi membuktikan 

kesesuaiannya. Dalam kerangka FDD yang dicadangkan, maklumat kebarangkalian 

telah ditambah dengan mengubah model MFM kepada model kesalahan pokok yang 

setara. Model ini seterusnya ditukar kepada model rangkaian Bayesian dengan 

menggunakan perisian HUGIN 8.1 bagi memudahkan pengiraan. Penilaian ke atas 

sistem loji perintis penukar haba telah menunjukkan keupayaan model dalam 

mengesan kesalahan proses dan mengenal pasti punca yang berkaitan.  Teknik yang 

dicadangkan ini juga menyediakan pilihan untuk mendapatkan keputusan berasaskan 

pelbagai keadaan sebagai tambahan kepada keadaan binari yang biasanya ditawarkan 

oleh kebanyakan model MFM. Kaedah kedua yang dicadangkan adalah suatu kaedah 

baru yang dikenali sebagai pendekatan penarafan acara asas (BERA), yang 

mengukur kelemahan relatif komponen kilang dan boleh digunakan untuk membantu 

perancangan penyelenggaraan dan menaik taraf loji. Rangka kerja ini telah 

digunakan untuk kajian kes yang melibatkan halangan pencegahan toksik yang 

digunakan di kebanyakan loji proses. Kaedah ini telah dibandingkan dengan 

beberapa kaedah biasa indeks kepentingan, dan hasil yang diperoleh membuktikan 

kesesuaian BERA untuk digunakan sebagai teknik bagi memudahkan pembuatan 

keputusan berasaskan risiko dalam perancangan jadual penyelenggaraan loji proses. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background  

 

 

History has shown the potential of process plant in causing catastrophic 

damages resulting in multiple injuries and fatalities, as well as substantial economic, 

property, and environmental damages. Today, it is still a major concern following 

series of accidents that have put legislators and investors alike on high alert. This is 

because not only that some of these incidents have involved multiple fatalities and 

devastating financial implications, they also instilled public fear and concerns 

especially to those who are directly related to chemical process industries (CPI). As a 

response to this challenging scenario, there is a clear need to enhance preventive and 

mitigating measures to improve safety and to reduce public worries. These 

requirements along with the needs for the plant to be more energy efficient and 

environmentally benign require systematic actions throughout the project life cycle, 

which can be realized by fully adopting the concept of inherent and engineered safety 

and process safety management (PSM).  

 

 

There is therefore a need of full understanding of all hazards associated with 

the process operation and proper controls to prevent harm to employees, processing 

facilities as well as the surrounding communities. Based on these understandings, 
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safety can be assessed and inherent measures can be proposed and implemented. The 

choice of raw materials and the sequence of reactions that converts them to the 

desired product is a key early design decision that influences the inherent safety of a 

plant. Nevertheless, various engineering and economic constraints do not permit 

ideal requirements to be fully implemented and compromises are therefore required. 

In such cases, the process of decision making would be of paramount importance to 

avoid unwanted oversight since scenarios requiring safety related decisions are 

oftentimes complex and risky. To minimize the likelihood consequence of 

catastrophic incidents, the evaluation of the likelihood of occurrence and the 

resulting consequences involved are an important part in the design and 

implementation of safety systems (Gabbar, Suzuki and Shimada, 2001; Zhao et al., 

2009). 

 

 

Analyses of major accidents in the process industries revealed that four major 

elements as the main root causes (Kidam and Hurme, 2013a; Kidam and Hurme, 

2013b).  These are equipment/component failure, human error, natural disaster and 

terrorism or sabotage. Since natural disasters and terrorisms are relatively more 

difficult to predict and handle, strategies to reduce the number of accidents in the 

process industries can be better achieved by preventing potential failures that are 

associated with process equipment or human errors.   

 

 

Focussing on equipment failures, among others, there are two important 

things that can be exploited to address the issue of equipment failures. The first is the 

needs to address process failures effectively during plant operations. This can be 

accomplished through effective early warning system and faults management. The 

second important aspect is plant maintenance which include activities to preserve the 

safety, performance and reliability of the plants assets to ensure smooth performance 

of their intended function. This is however challenged by the needs for maintaining 

profitability despite of difficult economic conditions. Mechanisms to manage 

targetted maintenance are therefore needed. 
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1.2 Statement of the Problem 

 

 

There are two important aspects of failures of process plant components 

during plant operations, which may ended up as plant accidents. The first is the 

failure of plant components during operations begins with failure of the inner layer of 

plant protection system, which is the process control function. This is designed to be 

supported by the successive layers of protection including alarms, interlocks and 

relief functions. On the technological development, there is a need to develop 

effective early warning system and faults management. The second important aspect 

is plant maintenance which includes activities to preserve the safety, performance 

and reliability of the plants assets to ensure smooth performance of their intended 

function. Therefore, there is a gap in researches on an integrated system safety and 

risk assessment method to systematically identify cause and consequences of a 

failure based on qualitative functional modeling.    

 

 

 

 

1.3 Objective of the Research  

 

 

This research is proposed to close the gaps mentioned in the problem 

statements. The detailed objectives are as follows: 

 

i. To apply functional modeling strategy as an approach for developing 

tools associated with process safety. 

ii. To formulate a fault detection and diagnosis method based on functional 

model and Bayesian Network. 

iii. To develop an effective method of vulnerability analysis to facilitate 

targeted maintenance planning as a means of improving asset integrity 

management.  
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1.4  Scope of the Research 

  

 

This study focuses on the use of functional modeling techniques in 

developing tools for process safety. Different case studies are used in this study 

consist of the crude distillation unit (CDU), heat exchanger pilot plant and Toxic 

Prevention Barriers (TPB). All the plant's specifications and data shall be obtained 

from the plants, literatures, textbooks, and published papers. To fulfill the objective 

of this study the scope of work is as follows: 

 

 

i. MFM model is developed using Crude distillation unit (CDU) and 

validated using Aspen HYSIS Software. 

ii. To include probabilistic information on process components, fault tree 

analysis model is used. In this case, fault tree (FT) of the heat exchanger 

pilot plant from the functional model is mapped into its equivalent fault 

tree (FT). 

iii. Convert the fault tree (FT) of the heat exchanger pilot plant to the 

Bayesian Network (BN) model, to formulate fault detection and 

diagnosis (FDD). 

iv. Updating the failure probability of the basic events using hierarchical 

Bayesian approach (HBA) and Markov Chain Monte Carlo simulation 

(MCMC) software (Open BUGS) for dynamic Importance Measure. 

v. Developing a new methodology for Importance measure to rank the 

components of the system and comparison anew model with the common 

importance measures for static and dynamic states. 
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1.5 Layout of Thesis 

 

 

This thesis comprises 6 chapters. Chapter 1 introduces the overall problem 

and thesis objectives, followed by literature review on the importance of failure 

analysis in process safety, modeling tools for failure analysis which consist of 

Functional Modeling (FM), Fault Tree (FT) and Bayesian Network (BN), 

Vulnerability Analysis (VA) and Importance Measure (IM) were discussed in 

Chapter 2. Chapter 3 consists of an application of cause and consequence reasoning 

methodology of functional modeling description. The crude distillation unit was 

considered as a case study. In chapter 4, binary and multi – state system fault 

detection and diagnosis using probabilistic MFM were elaborated. The model has 

been implemented into the heat exchanger pilot plant. The new methodology of 

Importance Measure (IM) for ranking the system’s components was developed to the 

static and dynamic risk importance measure, this chapter deals with the Toxic 

Prevention Barriers (TPB) as a case study, and finally the conclusion and 

recommendations for future works of the study is presented in Chapter 6.  
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