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ABSTRACT 
 
 
 
 

Sentiment analysis has become important tool that can analyse review on any 

product or service that can be reviewed. Same goes to movie, all the audient are freely 

to make their own reviews on the movie that they watch and the reviews can be positive 

or negative based on audient satisfactions. Automated sentiment analysis is very 

important to make sure the analysis produce an accurate result and in faster time. By 

using the deep learning as the based to create the automated sentiment analysis it will 

be the great decision because of the deep learning structure that have multilevel of 

layer that can have sensitive process to classify the data. Upgrading the sentiment 

analysis using Recurrent Neural Networks (RNNs) and addition of Long Short-term 

Memory (LSTM) and also some modification on the number of layer with the 

mathematical calculation can improve the analysis accuracy. The dataset of the movie 

reviews will be collected on IMDB movie reviews database. 
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ABSTRAK 
 
 
 
 

Analisis sentimen telah menjadi alatan penting untuk menganalisis pandangan 

pengguna terhadap produk barangan mahupun perkhidmatan. Ini juga boleh terjadi 

terhadap filem, penonton bebas untuk memberikan pandangan terhadap filem yang 

mereka tonton dan pandangan yang diberi boleh menjurus kepada positif ataupun 

negatif bergantung kepada keppuasan penonton. Menganalisis sentimen secara 

automatik adalah sangat penting untuk memastikan analisis yang dihasilkan adalah 

tepat dan juga mengambil masa yang singkat untuk memperoleh keputusan analisis. 

Dengan menggunakan deep learning sebagai asas untuk menghasilkan analisis 

sentimen secara automatik, ia adalah keputusan yang tepat kerana struktur deep 

learning mempunyai pelbagai lapisan yang mempu memproses untuk mengkasifikasi 

data yang sangat sensitif. Menambah baik analisa sentimen dengan menggunakan 

RNN dan tambahan dari LSTM dan juga modifikasi kepada bilangan lapisan dengan 

munggunakan pengiraan matematik mampu memperbaiki ketepatan analisis. Set data 

untuk pandangan filem akan diambil dari pengkalan data IMDB. 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 
 

1.1 Introduction 
 
 

Nowadays monitoring customer feedback and reviews is considered an 

important tool from a business perspective such as in the film industry. Filmmakers 

can create and present their masterpieces to the audience but getting timely reviews is 

a major input to planning the next business move. To overcome this issue the 

filmmaker need to analyse the movie reviews and identify the audience sentiment from 

the good and bad reviews. Sentiment analysis or opinion mining enable the filmmaker 

to analyse the reviews from social media websites automatically. Sentiment analysis 

also can be applied in many products or services. Therefore, developing automated 

tools for sentiment analysis is a big step in business. 

 
Lately, deep learning is a popular research topic in natural language processing. 

Deep learning is an improvement from the machine learning. Deep learning is about 

learning multiple level of the architecture that help to make sense of data such as text, 

image and sound. Currently, deep learning applied to many natural language 

processing area such as text, voice and speech and come out with a good result. One 

of the deep learning algorithm is Recurrent Neural Networks (RNNs) deep learning. 

 
Although many researcher have applied automated sentiment analysis using 

the deep learning, the accuracy can still be improved. Figure 1.1 shows an example of 

movie review that randomly pick from the datasets. Based on current trend the 
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automated sentiment analysis with good accuracy is really important to improve the 

movie quality that been produce. 
 
 

 
 

Figure 1.1 : Sample of movie reviews 
 
 
 
 

1.2 Problem Statement 
 
 

Movie reviews produce a lot of data. Reaching up to millions of reviews for 

one movie, analysing all the reviews manually will consume a lot of time. Manual 

analysis also can have problem on miss count the number of reviews because it will 

have some of human error. This is a challenging issued on sentiment analysis 

effectiveness. Although there are some researcher that create automated sentiment 

analysis using machine learning and deep learning, the accuracy is still relatively low. 

This issues arises because the machine learning algorithms used cannot process the big 

sized data that need to be analysed. Deep learning is able to address the big data issue, 

but the deep neural network architectures can be improved to increase the accuracy on 

the analysis. Some work on deep learning by recurrent neural networks (RNNs) have 

been done and the results achieve good accuracy, but RNNs itself have some issue on 

the memory side. RNNs alone will create problem called vanishing gradient and 

exploding gradient which can reduce the accuracy on learning side. When the learning 

of the model has issues, it will affect the inference process, and this will drop the RNNs 

accuracy during the sentiment analysis. 
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1.3 Research Aim and Objective 
 

The aim of this research is to produce accurate sentiment analysis on movie 

reviews by recurrent neural networks and long short-term memory. The research 

objectives are: 

 
• To investigate the previous sentiment analysis works and use as benchmarking 
• To design sentiment analysis using RNNs and LSTM model. 
• To evaluate the accuracy of the sentiment analysis using propose architecture. 

 
 
 
 

1.4 Scope of Project 
 
 

The scope of the study are as below: 
 
 

i) Datasets use from the movie reviews that extract from IMDB. 
ii) Word vector get from glove and prepared by Stanford NLP. 
iii) Language use to train and test the model is in English. 
iv) Deep learning system is based on RNNs and LSTM architecture. 
v) Using python as the only programming language in this project. 
vi) ANACONDA is use as the simulation software in the analysis process. 

 
 
 
 

1.5 Organization of Thesis 
 
 

Chapter 1 represent the background of study, problem statement, objectives of 

project, scope of project, and project limitation. 

 
Chapter 2 describes the literature review of sentiment analysis, for both 

machine learning and deep learning method. 

 
Chapter 3 illustrate the design methodology proposed based on deep neural 

networks using RNNs and LSTM. Also cover the project flowchart. 
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In chapter 4, present the preliminary result, analysis and discussion of the work 

done in this research. 

 
Lastly in chapter 5, a conclusion of the research work is given. The discussion 

on the recommendation for future work and contribution will also include in this last 

chapter. 
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