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Microbial resistance to antibiotics and antibacterial agents and limitation of 

the effectiveness of the current antibacterial agent such as high cytotoxicity and short 

lifetime necessitates the development of advance and efficient support of the 

antibacterial agents.  This study is about versatile application of NaY zeolite as a 

support for antibacterial agents cetyltrimethyl ammonium bromide (CTAB) and 

silver ions (Ag
+
).  The NaY zeolite modified with various concentrations of CTAB 

and Ag
+
 were characterized for their structural, morphology and elemental analysis.  

The antibacterial activity of commercialized NaY (NaY-C) and synthesized NaY 

(NaY-S) zeolites modified with CTAB; and regenerated NaY (NaY-R), NaY-C and 

NaY-S modified with Ag
+
 were investigated.  The NaY-S (327.23 ± 17.70 nm) with 

high crystalline (crystallinity 64-88%) and high purity was synthesized with and 

without using pre-treated rice husk ash (RHA) by seeding and ageing techniques in 

hydrothermal condition.  The NaY-C (700 nm) and NaY-S were modified with 

CTAB with varying coverage based on 50-500% of the external cation exchange 

capacity (ECEC) of the zeolite producing CTAB-NaY and with varying 

concentrations of Ag
+
 (100, 600 and 900 mg/L) producing Ag-NaY.  Regenerated 

AgY (AgY-R) zeolite was prepared by decomposition of CTAB-NaY-C (550°C, 5 

hours), pre-treated with Na
+
 and ion exchange with Ag

+
 (100, 600 and 900 mg/L).  

The characterization results showed that the structure of the zeolites was preserved 

after calcination and modification with CTAB or Ag
+
.  The antibacterial activity of 

the modified NaY zeolites was performed against Gram-negative (Escherichia coli 

ATCC 11229 and Pseudomonas aeruginosa ATCC 15442) and Gram-positive 

(Staphylococcus aureus ATCC 6538 and Enterococcus faecalis ATCC 29212) 

bacteria based on disk diffusion technique (DDT) and minimum inhibitory 

concentration (MIC) technique in saline solution (0.9 wt.%) and distilled water.  

Results showed that the amount of CTAB or Ag
+
 loadings affected the antibacterial 

activity of the samples as Gram-positive bacteria are more susceptible to CTAB-

NaY, whereas Gram-negative bacteria are more susceptible to Ag-NaY.  The 

antibacterial activities of Ag-NaY were proportional to the amount of Ag
+
 loadings, 

whereas the size of NaY zeolites did not influence the antibacterial activity of the 

samples.  AgY-C-900 (NaY-C zeolite with 900 mg/L initial concentration AgNO3) 

showed optimal antibacterial activity compared to other NaY zeolites samples.  The 

CTAB-NaY-C was regenerated to original NaY-R and reused as the support for Ag
+
 

with its structure remained and exhibited good antibacterial activity.  Due to the good 

performance of the antibacterial activities of CTAB-NaY and Ag-NaY, therefore, 

NaY zeolite could be used as the good support of the antibacterial agents of CTAB 

and Ag.   
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Rintangan bakteria terhadap pelbagai jenis antibiotik dan agen antibakteria 

dan juga keberkesanan agen antibakteria yang terbatas seperti ketoksikan terhadap 

sel yang tinggi dan jangka hayat yang pendek telah meningkatkan keperluan 

penghasilan bahan penyokong untuk agen antibakteria baharu yang lebih berkesan.  

Kajian ini adalah mengenai penggunaan zeolit NaY yang berfungsi sebagai bahan 

pembawa kepada agen antibakteria setiltrimetil amonium bromida (CTAB) dan ion 

argentum (Ag
+
).  Zeolit NaY yang telah diubahsuai dengan pelbagai kepekatan 

CTAB dan Ag
+
 telah dicirikan berdasarkan struktur, morfologi dan analisis elemen.  

Kajian serta perbandingan telah dijalankan ke atas aktiviti antibakteria zeolit NaY 

komersial (NaY-C) dan zeolit NaY yang disintesis (NaY-S) setelah diubahsuai 

dengan CTAB; dan zeolit NaY yang diguna semula (NaY-R), NaY-C dan NaY-S 

yang diubahsuai dengan Ag
+
.  Zeolit NaY-S dengan saiz partikel 327.23 ± 17.70 nm, 

kristaliniti 64-88% dan ketulenan tinggi telah disintesis dengan menggunakan abu 

sekam padi yang telah diproses dan juga yang belum diproses melalui teknik 

pembenihan dan pengeraman di dalam larutan hidroterma.  Zeolit NaY-C (700 nm) 

dan NaY-S telah diubahsuai dengan CTAB dengan liputan yang berbeza iaitu antara 

50 hingga 500% daripada kadar tukaran luar kation (ECEC) pada zeolit 

menghasilkan CTAB-NaY dan dengan pelbagai kepekatan Ag
+
 (100, 600 dan 900 

mg/L) menghasilkan Ag-NaY.  Zeolit yang diguna semula dan diubahsuai dengan 

Ag
+
 (AgY-R) dihasilkan melalui proses pengkalsinan CTAB-NaY-C pada suhu 

550°C selama 5 jam, rawatan di dalam larutan Na
+
 dan pertukaran ion dengan Ag

+
 

(100, 600 dan 900 mg/L).  Struktur bahan, morfologi dan analisis elemen zeolit 

tersebut yang telah diubahsuai menunjukkan struktur zeolit tersebut tidak berubah 

selepas pengkalsinan dan diubahsuai dengan CTAB atau Ag
+
.  Aktiviti antibakteria 

zeolit yang telah diubahsuai telah dikaji terhadap bakteria Gram-negatif (Escherichia 

coli ATCC 11229 dan Pseudomonas aeruginosa ATCC 15442) dan Gram-positif 

(Staphylococcus aureus ATCC 6538 dan Enterococcus faecalis ATCC 29212) 

menggunakan teknik cakera penyebaran (DDT) dan penentuan kepekatan perencatan 

minimum (MIC) di dalam larutan garam dan air suling.  Hasil kajian mendapati 

jumlah CTAB atau Ag
+
 pada zeolit NaY menentukan aktiviti antibakteria sampel-

sampel zeolit di mana Gram-positif bakteria lebih mudah dipengaruhi oleh CTAB-

NaY, sementara Gram-negatif bakteria lebih mudah dipengaruhi oleh Ag-NaY.  

Aktiviti antibakteria Ag-NaY adalah berkadar langsung dengan jumlah Ag
+
 pada 

sampel zeolit, di mana saiz zeolit NaY tidak mempengaruhi aktiviti antibakteria 

sampel-sampel zeolit.  AgY-C-900 (NaY-C diubahsuai dengan AgNO3 yang 

mempunyai kepekatan awal 900 mg/L) mempunyai kadar aktiviti antibakteria yang 

tertinggi berbanding sampel-sampel NaY zeolit yang lain.  CTAB-NaY-C diuraikan 

menjadi NaY-R dan diguna semula sebagai agen pembawa Ag
+
 dengan struktur 

zeolit tidak berubah dan menunjukkan aktiviti antibakteria yang baik.  Oleh kerana 

CTAB-NaY dan Ag-NaY menunjukkan aktiviti antibakteria yang baik, NaY zeolit 

boleh digunakan sebagai bahan penyokong kepada agen antibakteria CTAB dan Ag.   
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

Nowadays, issue of antibacterial resistance to the currently used antibiotic has 

urged researchers to find an alternative antibacterial agent that can be used to cure 

the infections.  New and improved ways to combat bacterial resistance must be 

studied and discovered to get ahead of the bacteria which is capable of evolving and 

acquiring resistant.  Biocides are used in many areas of applications as powerful 

antibacterial agents which act on the bacteria in many sites.  Biocides reduce the 

formation of antibacterial resistance because bacteria need to change their 

physiology at several sites in order to become resistant to the biocides.  However, the 

use of biocides as antibacterial agents still have limitations such as the biocides (e.g. 

silver ions) are less stable and tend to reduce to metallic silver (Ag0) when exposed 

to the heat and light which reduce its antibacterial activity.  In addition, the use of 

high concentration biocides on the infected sites would cause cytotoxicity to the 

cells.  Whereas, the use of low concentration biocides over a long period of time 

make the bacteria becoming resistance to the biocides.  Thus, a support material is 

needed to support the antibacterial agents such as cetyltrimethyl ammonium bromide 

(CTAB) and silver ions to preserve their antibacterial activity in the form of ionic 

state and exhibit a slow release of the antibacterial agents on the infected sites.   

 
 

This is where a support material, synthetic Y zeolite could play a role.  The 

inorganic material is better than the organic material.  The zeolite material has 

negative charges on its surface and also in its framework, which is obtained from 
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aluminium in the zeolite backbone.  This condition makes the zeolite available for 

the attachment of the positively charged ion/compound such as sodium ions to 

stabilize the negatively charged zeolite.  In this study, CTAB and silver ions were 

loaded onto the NaY zeolite through ion exchange with sodium ions which present in 

the zeolite framework.  For the large size of CTAB head, they only attached on the 

zeolite surfaces through ion exchange of CTAB molecules with sodium ions situated 

on the zeolite surface.  Meanwhile, due to the small size, silver ions able to be ion 

exchanged with sodium ions on the zeolite surface and also in the zeolite framework.  

Surfactant modified zeolite and Ag-modified zeolite exhibited a good antibacterial 

property.  The synthetic zeolite is better than the natural zeolite as it is pure and its 

structure can be engineered during the synthesis.  However, synthetic zeolite has 

been synthesized using expensive chemical reagents which made the synthetic 

zeolite costly and eventually, limiting its application as a support material for the 

antibacterial agents in household and hygienic products.   

 
 

In this study, the synthetic zeolite (NaY zeolite) was synthesized using rice 

husk ash (RHA) as the silica source and then, surfactant modified zeolite (CTAB-

modified NaY zeolite) can be regenerated to the original NaY zeolite and again 

reused as a support material of silver ions (regenerated AgY zeolite).  The study 

proves that NaY zeolite is a good support material of the antibacterial agents of 

CTAB and silver ions.  This interdisciplinary research requires in-depth knowledge 

or understanding in inorganic chemistry in order to produce inorganic materials, 

physical chemistry to understand the physical characteristics of materials and their 

applications, and also biological knowledge to understand the role and effect of 

compounds as antibacterial agents.  In this way, early prevention of bacterial 

infection can be done.  New antibacterial agents will continuously emerge as long as 

infections and disease exist within the communities where people are always looking 

for better curing approach.  Therefore, this study shows an effort that can be done to 

improve the quality of human health and life with the aim of developing a better 

antibacterial agent that employs an improved mechanism in its antibacterial action.   
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1.2 Problem Statements  

 

 

The development of new types of antibacterial agents has been important 

nowadays since the emergence of bacteria resistant to antibiotics (Tortora et al., 

2007).  This issue is of great concern to the medical microbiologist or microbiologist 

as reported in numerous review papers (Cantas et al., 2013; Crouch et al., 2015; 

Schwarz et al., 2017; Leangapichart et al., 2017; Zaman et al., 2017).  A major 

global health concern, for example, antimicrobial resistance (AMR) has caused death 

from the current estimate about 700,000 lives per year and will increase to ten 

million lives annually by 2050 which cost US$100 trillion (Brogan and Mossialos, 

2016; O’Neill, 2016).  Different bacterial species that have been once susceptible to 

several different classes of antibiotics have now acquired an array of unique 

resistance mechanisms.  Currently, bacterial resistance to the available antibacterial 

agents becomes the major obstacle in the treatment of infectious diseases.  

Antimicrobial resistance becomes the global health problem which increases the 

morbidity, mortality, and causes serious economic, social, and political implication.  

As a result, this problem has caused treatment failures of the healthcare institutions 

(Tenover, 2006).  The cost of treating the disease also increases as several 

therapeutic agents need to be applied to the infected sites, and the infected people 

should stay longer in the hospital.  Antibacterial resistance is a natural biological 

phenomenon as a response from microbes such as bacteria, parasites, fungi and 

viruses to the antimicrobial agents (Sharma et al., 2005).  Therefore, alternative 

strategies of the conventional antibiotic therapy are greatly desired (Zeng et al., 

2008).  One strategy to avoid this is by using alternative therapeutic agents from 

biocides such as a Quaternary ammonium compound, (CTAB) and silver ions 

supported onto NaY zeolite.   

 
 

Antibiotic is an organic substance which is naturally (penicillin) and 

synthetically produced (sulfonamide) that attacks the bacteria at the specific site of 

the bacteria, and used in low concentration.  An antibiotic is basically used inside the 

body of the host (Tortora et al., 2007).  As the pathogenic bacteria become resistant 

to the current antibiotic, other alternative therapeutic agents must be sought.  

Biocides as antibacterial agent have a broad spectrum capability which attack several 
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sites of the bacteria, thus difficult to cause bacterial resistance to biocides (Tortora et 

al., 2007).  Although bacterial resistance to biocides occur, such probability is low as 

the bacteria need to generate several processes to cope with biocides.  The current 

uses of biocides with the inclusion of ethanol, silver nitrate and surfactant in the form 

of solution (elutable) have a few drawbacks.  For example, ethanol easily evaporates 

at room temperature, cause skin irritation and inflammable (Tilton and Kauffman, 

2004).  Silver nitrate solution less stable, easily oxidized when exposed to light 

(Carolina et al., 2014) and heat (Kittler et al., 2010), and react with chloride ions in 

solution forming silver chloride, which reduced the antibacterial properties of the 

agent (Swathy et al., 2014).  High concentration of the agents would cause 

cytotoxicity.  Basic requirements of novel biocidal materials are (1) facile synthesis, 

(2) long term stability, (3) water insolubility, (4) non-toxicity, and (5) broad 

spectrum biocidal over a short contact time (Kenawy et al., 2007).  In order to 

produce a good antibacterial material, the antibacterial agents must release enough 

antibacterial agents in certain time.  Thus, support materials are required to support 

the antibacterial agents to make them stable (not affected by the environment), and 

slow release of the agent in a long period of time.   

 
 

The organic materials that are used as supports are cellulose, agarose and 

sepharose.  However, these materials have drawbacks; for instance, they are easily 

affected by temperature and pressure, as well as expensive compared to the zeolite 

(Sakaguichi et al., 2005).  In addition, the organic materials easily deteriorate with 

time, thus not able to support the antibacterial agents for long periods.  The inorganic 

antibacterial materials are better than the organic antibacterial materials with the 

properties such as thermal resistance, safe for users, high chemical stability, long 

lasting action period and others (Dolic et al., 2015).  Other inorganic materials used 

as support materials are natural zeolites and clays.  However, both of them naturally 

exist in the environment, and contain impurities of other minerals (Sherman, 1999) 

and various metals (Breck, 1974).  These impurities make the materials 

inhomogeneous, and thus lower the efficiency of the materials as support material.  

The metals which present in these materials would cause cytotoxicity causing 

difficulty to predict the result of the antibacterial materials.  Natural zeolites (Payra 

and Dutta, 2004) and clays (Breck, 1974) have a lower surface area and ion exchange 
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capacity (CEC).  Clay materials have a two-dimensional structure which causes it to 

easily expand when the water is adsorbed (Breck, 1974), and thus would clog the 

pore when applied to water filter (Herrera et al., 2000).  In contrary, zeolite is a 

three-dimensional structure, thus rigid and stable (Breck, 1974), suitable to be a good 

support material for the antibacterial agents.  However, as natural zeolites and clays 

have the adsorbent properties and abundantly available on earth, they can be used for 

the environment purposes such as in wastewater treatment due to its high ion 

exchange capacities, cost effectiveness and environmental compatibility.   

 
 

Synthetic zeolite was chosen as the support material of the antibacterial 

agents in this study because the synthetic zeolite is pure, and able to predict the 

reaction of the material concisely.  Moreover, the structure, purity, chemical 

composition and porosity can be engineered during synthesis (Breck, 1974).  

Synthetic zeolite has high purity and uniformity, molecular size pores, regular crystal 

structures, large internal pore volumes, high cation exchange capacity (CEC) and 

sorptive capacity, high surface area, negative surface charge, low or null toxicity, 

chemical inertness and diverse framework chemical compositions (Sherman, 1999; 

Yusof and Malek, 2009).  Low Si/Al ratio zeolite possesses high adsorbent capacity 

for polar molecules and provides more exchange sites.  The NaY zeolite (in powder 

form), a low Si/Al ratio zeolite which is less than 14, has large cation exchange 

capacity, large pore volume and high crystalline suitable to be used as the support 

material of the antibacterial agents of CTAB and silver (Hagiwara et al., 1990).  The 

drawback of synthetic zeolite is that they were synthesized using expensive standard 

chemical reagents (Matti and Surchi, 2014), therefore the production cost of the 

materials is high which limits the use of the materials for household and hygienic 

products.  In this study, an agricultural waste (e.g. rice husk ash) was used as the 

silica source to synthesize small crystallite size of NaY zeolite (Rahman et al., 2009).  

Besides, the CTAB-modified NaY-C zeolite (surfactant modified zeolite) was 

regenerated to original NaY (regenerated NaY) by thermal treatment (calcination) 

and reused as the support of silver ions (regenerated AgY).   

 
 

Zeolite is an inorganic crystalline material with three-dimensional framework 

structure consists of aluminosilicates as its backbone, comprising cations and water 
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molecules in its framework (Breck, 1974).  The cations are from a group I or group II 

in the periodic table (Na+, K+, Mg2+, Ca2+) located in the zeolite framework to 

stabilize the negative charges of exchangeable sites (Breck, 1974).  The cations are 

mobile and can be exchanged with other cations present in the solution while the 

intra-crystalline zeolitic water can be removed reversibly (Breck, 1974).  For 

instance, cationic surfactant QAC such as CTAB molecules having positively charge 

surfactant head and silver ions (Ag+) could be adsorbed onto zeolite through ion 

exchange with the cations which are present on zeolite surface and in the zeolite 

frameworks.  In terms of the attachment of surfactant molecules adsorbed on zeolite, 

the surfactant molecules are too large to enter the small pore of zeolite and they are 

attached on zeolite surfaces.  Specifically, cationic surfactant CTAB molecules 

having a head diameter of 0.694 nm (Rozic et al., 2009) are unable to penetrate the 

average pore diameter of NaY zeolite (0.74 nm) (Nezamzadeh-Ejhieh and Badri, 

2011b).  As a result, they would occupy the exchangeable active sites at the exterior 

of NaY zeolite framework.  On the other hand, the small size of cationic silver ions 

would be adsorbed on the zeolite surface as well as inside its framework (Fonseca 

and Neves, 2013).  The conventional antibacterial agents can be improved by 

immobilizing the biocides in the supports and then release a low concentration of 

biocides in the long term (He et al., 2006; O’Neill et al., 2006; Bedi et al., 2012).  

The flexibility of zeolites (e.g. NaY zeolite) as the adsorbent materials could reduce 

the cost of the preparation.  NaY zeolite possesses a cubicle structure (Breck, 1974), 

which is less harmful to the body.  Furthermore, zeolite has been approved by the 

Food and Drug Association (FDA) as Generally Regarded as Safe (GRAS).  

Therefore, it is possible to use CTAB- (McDonnell and Russell, 1999) or Ag-

modified NaY zeolites (Klasen, 2000) as an antiseptic agent for skin and for the 

treatment of wound infections.   

 
 

The incorporation of silver ions in the suitable support material could solve 

the problem as silver ions would slowly release into the solution containing bacteria 

(Matsumura et al., 2003).  According to Ferreira et al. (2015), silver ions are 

preserved in its ionic state in AgY zeolite.  Moreover, Lalueza et al. (2010) claimed 

that silver ions in Ag-zeolite would release into the solution if only the Ag+ sites are 

exchanged with other cationic ions in the solution that would take Ag+ place and 
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pump out Ag+.  In addition, Matsumura et al. (2003) revealed that in water condition, 

Ag+ may be released from zeolite when bacterial cells are present.  Thus, the 

incorporation of Ag+ in zeolite would preserve the silver remained in ionic form 

(Ag+) (Ferreira et al., 2015) and slow down the release of Ag+ progressively into the 

medium containing bacteria (Matsumura et al., 2003).  On the other hand, the 

incorporation of Ag+ into zeolite could solve the problem occurred with AgNO3 

which is inconvenient for handling as well as can be used for limited purposes 

(Hagiwara et al., 1990).  Compared to other transition metals (Zn, Cu), silver ions 

display higher antibacterial activity (Malachova et al., 2011) and zeolites possess 

better selectivity for Ag than for Zn and Cu (Top and Ulku, 2004).  Furthermore, Ag-

zeolite displays similar antibacterial activity to AgNO3 (Matsumura et al., 2003), and 

it is expected that the incorporation of Ag+ in zeolite has not reduced the antibacterial 

activity of Ag+.   

 
 

Silver ions have a broad spectrum antimicrobial properties, depicting high 

thermal stability and low volatility, displaying cytotoxicity to animal cells 

(dependent of the silver concentration), relatively inert and safe (Ferreira et al., 

2015).  Despite precious properties of silver as the antimicrobial agents, Ag-based 

products generally have two main drawbacks: (1) bacterial resistance to silver (Silver 

et al., 2006); and (2) formation of insoluble precipitates (e.g. AgCl or Ag2S) which 

occurs due to the reaction of Ag+ from Ag-zeolite with electrolytes (e.g. chloride and 

sulfur anions) in bacterial solution (Cowan et al., 2003).  This will reduce the 

antibacterial activity of Ag-zeolite (De la rosa-gomez et al., 2008).  Bacterial 

resistance to silver can occur when the bacterium is rendered in a sublethal 

concentration of silver for long periods of time (Chopra, 2007).  This problem can be 

solved by increasing the concentration of silver in solution for an instant antibacterial 

activity (Chopra, 2007).  As in this study, Ag-modified NaY zeolite was prepared 

using different particle size and surface area and thus it is expected that Ag-modified 

NaY with smaller particle size and larger surface area would release more silver ions 

compared to Ag-modified NaY with larger particle size and lower surface area, and 

exhibit an instant antibacterial activity towards the tested bacteria.   

 
 



8 
 

Only Ag+ has the antibacterial property (Inoue and Kanzaki, 1997).  Exposure 

to high concentration of silver would cause argyria, a skin condition where the color 

turns grey caused by accumulation of silver (Baker et al., 2011).  By loading Ag+ 

onto the zeolite, the Ag state can be preserved as Ag+ in the zeolite (Ferreira et al., 

2012), and only released into the solution when other cationic ion has exchanged 

with Ag+ in zeolite (Lalueza et al., 2010), and only when the bacteria are present 

(Matsumura et al., 2003).  Thus, the antibacterial activity of Ag-modified zeolites 

can last longer and could reduce the cytotoxicity effect of silver.  Although Ag is an 

expensive metal, but due to the oligodynamic effect of the metal, only a small 

amount of metal is needed in order to exhibit high antibacterial property (Shrestha et 

al., 2009).  Low concentration of Ag+ can be preserved in the zeolite framework in 

the form of Ag+ (Ferreira et al., 2012).  High concentration of Ag+ loaded onto 

zeolite could cause the loosely bound Ag+ on the zeolite surface reduced to Ag0 upon 

light or heat exposure (Saint-Cricq et al., 2012).   

 
 

Quaternary ammonium compounds (QACs) cationic surfactant having 

number of C with C8 to C18 in the hydrocarbon tail have the antibacterial properties.  

For instance, CTAB with C16 of hydrocarbon tail has a broad spectrum of 

antibacterial properties effective against Gram-negative and Gram-positive bacteria 

(Dizman et al., 2007).  Additionally, Ag has broad spectrum antimicrobial properties 

which are effective against Gram-negative and Gram-positive bacteria (Mintova et 

al., 2015).  Both QACs and cationic metal Ag+ have a broad spectrum activity.  They 

attack the pathogenic bacteria on several sites, and subsequently decrease the 

probability of bacterial resistance.  Surfactant can be used as skin antiseptics and 

disinfectants (Dizman et al., 2007), while Ag is used as an antibacterial agent for 

burns (Nherera et al., 2017).  They are applied to the infected sites or on surfaces in 

the form of solution (elutable biocide).  Elutable biocides have some disadvantages 

such as short time effectiveness; thus, need to be applied frequently on the infected 

sites and possibly to cause toxicity to the surrounding tissues (Fonseca and Neves, 

2013).   

 
 

In order to produce effective Ag-modified zeolite antibacterial material, only 

a low concentration of Ag is needed.  Also, the attachment of surfactant in the forms 
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of partial monolayer and monolayer coverage on the zeolite through ion exchange 

reaction with the Na+ on the zeolite surface (Vidal et al., 2012) is via electrostatic 

attraction.  This is a strong bonding and almost irreversible (Ozdemir et al., 2013).  

Due to that, surfactant modified zeolite (partial monolayer and monolayer coverage) 

can become a long lasting antibacterial agent (He et al., 2006).   

 
 

The NaY zeolites were synthesized using RHA as the silica source.  RHA 

contains more than 90% silica (Yusof et al., 2010) and the only agricultural waste 

that has high silica content in dry form (Jain et al., 1994).  This rice husk material is 

decomposed by burning it on the field (Yalcin and Serinc, 2001) and by rotting 

(Rahman et al., 2009) which could affect the environment and health.  Thus, by 

using RHA as the silica source in zeolite synthesis, beneficial products (e.g. zeolites) 

can be produced from the agricultural waste and also can solve the problems which 

occur due to the deposited of rice husk on the field (Rahman et al., 2009).   

 

 

 

 

1.3 Objectives of the Research 

 

 

Three main objectives of the research are listed below:  

 

 

1. To synthesize and characterize highly pure small crystallite size of NaY 

zeolites using rice husk ash with variation of pre-treatments.   

2. To prepare and characterize CTAB-modified NaY, regenerated AgY and Ag-

modified NaY zeolites.   

3. To study the antibacterial activity of CTAB-modified NaY, regenerated AgY 

and Ag-modified NaY zeolites against Gram-negative and Gram-positive 

bacteria.   
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1.4 Scope of the Research 

 

 

 This research can be divided into four scopes.  The first scope of the work 

encompasses the synthesis of small crystallite size of NaY zeolites with similar 

method of synthesis of microsized NaY zeolite (Yusof et al., 2010) with 

modification in order to reduce particle size of zeolite and using different pre-

treatments method for rice husk ash as the silica source.  The synthesis process will 

be carried out in a hydrothermal condition with 5% seed gel, static aging at room 

temperature (25°C, 24 hours), low crystallization temperature (90°C, 22 hours) using 

an organic template-free technique.   

 

 

 The second scope of the work encompasses the preparation of the CTAB-

modified NaY zeolites using different surfactant coverage (e.g. 0.5-5.0) of the 

External Cation Exchange Capacity (ECEC) of each NaY zeolite (NaY-C: 0.53 

meq/g (Yusof and Malek, 2009), NaY-S: 1.15 meq/g), followed by characterization 

analysis (e.g. structural, morphological, elemental analysis and several 

physicochemical properties) and antibacterial testing (e.g. disk diffusion (Kirby-

Bauer); and Minimum Inhibitory Concentration (MIC) in a saline solution and 

distilled water of the samples against Gram-negative (Escherichia coli ATCC 11229 

and Pseudomonas aeruginosa ATCC 15442) and Gram-positive bacteria 

(Staphylococcus aureus ATCC 6538 and Enterococcus faecalis ATCC 29212).  The 

structural stability of CTAB-modified NaY zeolites and the presence of surfactant 

molecules on the NaY zeolites also will be investigated.   

 
 

The third scope of the work is the investigation of the flexibility of NaY-C 

zeolite as the antibacterial materials as its structural stability will be evaluated by 

modification (e.g. CTAB), thermal treatment (e.g., calcination 550°C, 5 hours) and 

modification with Ag+ ([AgNO3]: 100, 600 and 900 mg/L).  Then, the regenerated 

AgY zeolite samples obtained will be tested for their antibacterial activity against 

Gram-negative and Gram-positive bacteria as mentioned previously.  This study will 

be carried out to investigate the effect of the treatments (e.g., modifications and 

thermal treatments) on the structural and antibacterial activity of regenerated AgY 

zeolite samples.   
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 Finally, the fourth scope of the work encompasses preparation of Ag-

modified NaY zeolites using different particle size and Si/Al ratio of NaY zeolites 

(NaY-C: 700 nm (Ferreira et al., 2015) (Si/Al ratio: 4.37), NaY-S: 327.23 ± 17.70 

nm (Si/Al ratio: 2.03)) loaded with similar initial concentrations of silver ([AgNO3]: 

100, 600 and 900 mg/L), followed by characterizations and antibacterial testing using 

methods and bacteria as mentioned previously.  Due to the lower initial 

concentrations of silver used, it is postulated that almost all silver ions in the 

solutions would occupy the negative exchange sites of both NaY zeolites.  This study 

has been carried out to investigate the effect of the zeolite particle size and surface 

area on the antibacterial activity of Ag-modified NaY zeolites.  The mechanism of 

the antibacterial activities of CTAB- and Ag-modified NaY zeolites will be evaluated 

by morphological study (e.g., FESEM and Gram stain), viability study (post-MIC) as 

well as the release of CTAB and Ag in the saline solution and distilled water.   

 
 
 
 

1.5  Significance of Research 

 
 

To the best of our knowledge, there are four researches have been done on the 

antibacterial properties of silver nanozeolites (Tosheva et al., 2012; Dong et al., 

2014; Wu et al., 2015; Wu et al., 2017).  One of the researches studied the 

biomedical properties of silver nanozeolite (Kaur et al., 2015), while other research 

studied the electrocatalyst properties of Ag-loaded ZSM-5 nanozeolites which was 

synthesized from bagasse (Rostami et al., 2017).  In a recent study based on the 

application of Ag+/Ag0 loaded onto the nanozeolite, it was used as a coating material 

on a membrane surface as the Ag-nanozeolite was grafted on a membrane with 

polyvinyl alcohol (PVA) and polydopamine (PDA) (Wu et al., 2017).  Another 

research was carried out by Wu et al. (2015) based on the incorporation of Ag-

nanozeolites onto the commercial polyamide nanofiltration membrane to prevent 

biofouling in long term membrane applications.  Tosheva and her co-workers 

(Tosheva et al., 2012) studied the antibacterial properties of Ag and Cu loaded nano- 

and micro-sized FAU-type zeolite, but the nanozeolite used in their study was 

synthesized using different methods ((1) preparation of highly reactive gels at room 

temperature (Valtchev and Bozhilov, 2004); (2) using a three-stage temperature 
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control synthesis procedure (Huang et al., 2010); and (3) using 23 factorial methods 

for optimization of the experimental conditions (Kim et al., 2008)), and they used 

different silica source which was fly ash in the preparation of the materials.  Thus, it 

is expected that the zeolite properties would be varied from the NaY zeolite obtained 

from rice husk ash.  Besides, they were using different concentrations of silver ions 

and different antibacterial testing from this study.  Meanwhile, Dong et al. (2014) 

studied the antibacterial properties of EMT-type nanozeolite comparing the 

antibacterial properties of two types of silver Ag+-EMT and Ag0-EMT against E. coli 

ATCC 8739.  In addition, a study reported by Kaur et al. (2015) on biomineralization 

of hydroxyapatite in silver ion-exchanged nanocrystalline ZSM-5 zeolite using 

simulated body fluid found that the materials were considerable potential for 

biomedical applications such as for bone implant.  Rostami et al. (2017), on the other 

hand, studied the application of Ag-loaded ZSM-5 nanozeolites synthesized from the 

bagasse as electrocatalyst in electrode, as the Ag-loaded zeolite was added onto the 

carbon paste electrode (Ag/ZSM-5/CPE) used for electrooxidation of oxalic acid.   

 
 

Surfactant modified nanozeolite mainly clinoptilolite nano-particles were 

used as the active component of Cr(VI) selective electrode (Nezamzadeh-Ejhieh and 

Shahanshahi, 2013), adsorbent materials of Pb(II) from aqueous solution (Anari-

Anaraki and Nezamzadeh-Ejhieh, 2015) and carrier of cephalexin drug delivery 

(Nezamzadeh-Ejhieh and Tavakoli-Ghinani, 2014).  None of the research used 

surfactant modified small crystallite size of zeolite especially CTAB-modified small 

crystallite size of NaY zeolite as antibacterial materials.  In addition, the study of the 

antibacterial activity of regenerated AgY zeolite obtained from regeneration of 

CTAB-modified NaY zeolite (surfactant modified zeolite) is readily new.   

 
 

Immobilizing the antibacterial agents (CTAB, Ag) onto a support material 

could improve the properties of the antibacterial agents (e.g. prevent cytotoxicity and 

prolonged the antibacterial activity of the agents).  In this study, different particle 

size of NaY zeolites (commercial and synthesized NaY) was used as the support 

material for organic and inorganic antibacterial agents (CTAB-modified NaY and 

Ag-modified NaY).  Also, the CTAB-modified NaY (surfactant modified zeolite) 

was regenerated to original NaY (regenerated NaY) by thermal treatment, and 



13 
 

followed by modification with silver ions forming regenerated AgY zeolite.  

Therefore, this research is significantly important in developing new and improved 

antibacterial agents in order to cope with antibiotic resistance problems and 

ineffective antibacterial agents.   
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