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ABSTRACT

In isotropic elasticity, numerous strain energy functions with different types of

invariants are developed to serve certain purposes. This wealth of functions has partly

contributed to the knowledge of the mechanical behaviour of isotropic elastic solids.

In general, soft tissues are not isotropic but can be modelled as transversely isotropic

solid. The knowledge of the mechanical behaviour of transversely isotropic elastic

solids is not as profound as isotropic solid. Hence, the need to develop accurate strain

energy functions to understand the mechanical behaviour of transversely isotropic soft

tissues. In isotropic elasticity, phenomenological strain energy functions with principal

stretches have certain attractive features from both the mathematical and physical

viewpoints. These forms of strain energy have been widely and successfully used

in prediction of elastic deformations. This research is an extension from classical

invariants of isotropic models to characterize transversely isotropic soft tissues with

spectral invariants. In order to obtain a specific form of the strain energy function

from an experiment, it is convenient to have explicit and analytic expressions for

the derivatives of the strain energy function with respect to its invariants. Three of

the invariants are the principal extension ratios and the other two are the cosines

of the angles between the principal directions of the right stretch tensor and the

material preferred direction. These direct physical interpretations of the invariants

shows that the model has an experimental advantage where a triaxial test can vary a

single invariant while keeping the remaining invariants fixed. The symmetrical and

orthogonal properties developed here are similar to that possessed by a strain energy

function of an isotropic elastic solid written in terms of principal stretches. A specific

constitutive model was applied to biological soft tissues and the model compares well

with existing experimental data.
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ABSTRAK

Dalam keanjalan berisotropi, pelbagai fungsi tenaga terikan dengan pelbagai

jenis tak varian dibangunkan untuk mencapai matlamat tertentu. Kekayaan fungsi-

fungsi ini sebahagiannya menyumbang kepada pengetahuan tentang tabiat bermekanik

pepejal anjal berisotropi. Secara umum, tisu lembut tidak berisotropi tetapi boleh

dimodelkan sebagai pepejal melintang berisotropi. Pengetahuan tentang tabiat

bermekanik pepejal melintang anjal berisotropi tidak begitu mendalam seperti pepejal

berisotropi. Oleh itu, keperluan untuk membangunkan fungsi tenaga terikan yang

tepat untuk memahami tabiat mekanikal tisu lembut melintang berisotropi. Dalam

keanjalan berisotropi, fenomenologi fungsi tenaga terikan dengan regangan utama

mempunyai ciri-ciri menarik tertentu dari kedua-dua sudut pandangan matematik dan

fizikal. Bentuk-bentuk tenaga terikan telah berjaya digunakan secara meluas dalam

ramalan ubah bentuk anjal. Penyelidikan ini adalah lanjutan daripada model klasik tak

varian berisotropi untuk mencirikan pepejal melintang berisotropi dengan spektrum

tak varian. Dalam usaha untuk mendapatkan satu bentuk tertentu fungsi tenaga terikan

daripada eksperimen, ia mudah untuk mempunyai ungkapan yang jelas dan analisis

bagi terbitan fungsi tenaga terikan terhadap tak variannya. Tiga daripada tak varian

adalah nisbah lanjutan utama dan dua yang lain adalah kosinus sudut antara arah utama

tensor regangan yang betul dan arah pilihan bahan. Pentafsiran fizikal langsung tak

varian ini menunjukkan bahawa model ini mempunyai kelebihan eksperimen di mana

suatu ujian tiga paksi boleh mengubah satu tak varian tunggal sementara mengekalkan

tak varian yang selebihnya. Sifat-sifat simetri dan ortogon yang dikembangkan di sini

adalah sama dengan fungsi tenaga terikan dari pepejal anjal berisotropi ditulis dari segi

regangan utama. Model juzukan tertentu digunakan kepada biologi tisu lembut dan

model dibandingkan dengan data eksperimen yang sedia ada.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In the literature there have been several different studies in which the

macroscopic response of fiber-reinforced materials has been analysed in the context

of anisotropic non-linear elasticity. Fiber-reinforced materials often exhibit non-

linear stress-strain behaviour. This behavior is associated both with the properties

of the material and with the interaction between them. In non-linear elasticity, the

macroscopic description of the material response is given in terms of a strain-energy

function, which is dependent on certain strain invariants. The presence of fiber

reinforcement introduces specific invariants into the strain energy that affect stretches

in the reinforcing direction. Several different phenomena related to fiber-reinforced

materials have been captured within this framework.

A unified treatment that enables prediction of fiber instability or fiber failure in

fiber-reinforced composite materials was provided by Merodio and Ogden in (Merodio

and Ogden, 2002; Merodio and Ogden, 2003), for incompressible and compressible

materials, respectively. The fiber failure was associated with the loss of elipticity of the

governing differential equations. Fiber instabilities have also been studied previously

by Triantafyllidis and Abeyaratne (1983), Kurashige (1981) and Danescu (1991) in

the context of bifurcation away from simple deformations in the fiber direction or
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tranverse to the fiber direction. Fiber kink broadening was studied by Merodio and

Pence (Merodio and Pence, 2001a; Merodio and Pence, 2001b). Other phenomena

related to the behavior of fiber-reinforced materials, such as the response to shear

deformationas in off-fiber directions, the existence of residual stress and cavitation

instabilities have been analysed in England et al. (1992), Rogers (1975), Hoger (1996),

Qiu and Pence (1997), and Polignone and Horgan (1993). However, in this thesis we

are not concerned with stability or loss of ellipticity.

The analyses mentioned above have involved different strain-energy functions.

For fiber-reinforced materials it is common to work with a strain energy that has

two terms, one associated with the isotropic base material and the other with the

transversely isotropic character of the material, i.e. an isotropic base material is

augmented by a uniaxial reinforcement in what is referred to as the fiber direction.

In each case the same reinforcing model was used to characterize the anisotropy of

the constitutive equation, namely the standard reinforcing model. Here, we follow the

same procedure and define the strain energy in terms of an augmented isotropic base

material but we use a somewhat different reinforcing model.

In general (in three dimensions), two independent invariants are generally

used to characterize the anisotropic nature of a transversely isotropic material model,

one of which is related directly to the fiber stretch and is denoted by I4. The

standard reinforcing model is a quadratic function that depends only on this invariant.

The other invariant, denoted I5, is also related to the fiber stretch but introduces

an additional effect that relates to the behavior of the reinforcement under shear

deformations. When the deformation is restricted to plane strain with the fiber direction

in the considered plane these two invariants are no longer independent (Merodio and

Ogden, 2002; Merodio and Ogden, 2003).
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1.2 Research Background

1.2.1 Phenomenology of Biomechanics

Biomechanics is often defined as ‘mechanics applied to biology’ (Fung, 1990),

but biomechanics is better defined as the development, extension and application of

mechanics for the purposes of understanding better physiology and pathophysiology as

well as the diagnosis and treatment of disease and injury. The birth of the modern field

of biomechanics had to await the development of an appropriate theoretical foundation,

an enabling technology, mathematical methods and heightened motivation.

With regard to biomechanics, the Journal of Biomechanics was founded in

1968, the ASME Journal of Biomechanical Engineering in 1977, Computer Methods in

Biomechanics and Biomedical Engineering in 1998, and most recently Biomechanics

and Modeling in Mechanobiology in 2002. These journals, and others such as

the Annals of Biomedical Engineering and the IEEE Transactions for Biomedical

Engineering, continue to promote the growth of biomechanics.

Biomechanics is part of a larger, multidisciplinary activity whose goal is

to understand better the conditions of health as well as those of disease and

injury. Consequently, biomechanics has and will continue to benefit greatly from

developments in the basic of life sciences, medical sciences, mathematics and materials

science.

Histology is defined as the study of the fine structure of tissues; it is thus

fundamental to biomechanics. Similarly, cell biology is the study of how cells grow,

move, function and communicate with their surroundings; it, too, is fundamental to

biomechanics, particularly many of the open problems that face us today.
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Soft biological tissues exist in many different forms, each specialized to

perform a specific function and each having a unique microstructure. Nonetheless,

soft tissues are composed of the same basic constituents: cells and extracellular matrix.

Cells are the fundamental structural and functional unit of tissues and organs.

The formulation of appropriate constitutive relations has long been central

importance in biomechanics is as highlighted in Fung (1993): “the greatest need lies

in the direction of collecting data in multiaxial loading conditions and formulating a

theory for the biological of living tissues when stresses and strains vary with time in an

arbitrary manner. The general characteristic behaviours exhibited by soft tissues been

known that biological soft tissues behave very differently from traditional engineering

materials such as metals, wood and concrete.”

For the material modelling of biological soft tissues a variety of interesting

works have been published in the last three decades. Constitutive model of soft tissues

has been derived from constitutive relations which is described on the response of

a material to applied loads, which depends of course on the internal constitution of

the material. The emphasize of constitutive relations describe the behaviour of a

material under conditions of interest, not the material itself. That is, although the

equations that describes the behaviour of a particular material under all conditions

(eg. water in its solid, liquid and gaseous phases depending on the local temperature

and pressure), we can generally expect to identify relations that hold only under

specific conditions of interest. Regarding to technical literature, as e.g. Holzapfel

and Ogden (2003), Humphrey (1995), Humphrey (2002) and Cowin and Humphrey

(2002), for an overview of the models for biological tissues. In Vaishnav et al. (1973)

a two dimensional model for a canine ortha is proposed based on three polynomial

expressions. Due to the fact that biological soft tissues are characterized by exponential

stress-strain response, in Fung et al. (1979) a first model is introduced for the

two dimensional mathematical description of such arteries reflecting the exponential

material behaviour in the physiological domain. An extension to this model is given

in Fung and Liu (1989), where residual stress occurring in unloaded configuration of
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arteries are considered.

Although tissues may be best classified as mixture-composites that exhibit

inelastic behaviours, under particular conditions of interest it may be sufficient to model

their behaviour within the context of an elasticity or viscoelasticity theory.

1.2.2 Strain Energy Function with Spectral Invariants

Strain energy functions with spectral invariants in isotropic elasticity have

certain attractive features physically and mathematically (Ogden, 1972). This kind

of strain energy function have been used in many research and successfully used in

predicting properties of deformation (Shariff, 2000). The Valanis and Landel (1967)

strain energy function for isotropic materials has a simple form and very successful in

modelling many types of isotropic solids (Shariff, 2000), and their model only used

a single variable function. The normally used strain energy function for transversely

isotropic elastic materials is written in classical invariants (Spencer, 1984),

W (C,D) = W (I1, I2, I3, I4, I5)

I1 = tr C , I2 =
((tr C)2 − tr C2)

2
, I3 = det C, I4 = a · Ca, I5 = a · C2a.

(1.1)

where a and C are the preferred direction in the reference configuration and the right

Cauchy-Green deformation tensor respectively.

Motivated by the principal stretch successes and the model proposed in simple

form of Valanis and Landel (1967), we construct a strain energy function which

contains only a general single variable function. We propose a constitutive equation

based on the recent principal axis formulation of Shariff (2008) for transversely

isotropic materials.
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The proposed strain energy function for the constitutive equation depends on

four simple spectral invariants that have physical meaning . Two of the invariants

are the principal stretches αi (i = 1, 2) and 1 ≥ βi = (a • ei)
2 ≥ 0, where

e1 and e2 are principal directions where U is the right stretch tensor and, a is the

preferred direction of the transversely isotropic solid. The square of the cosine of

the angle between the principal direction ei and the preferred direction a is βi. A

strain energy formulation using non-immediate-physical-interpretation invariants is, in

general, not experimentally friendly. For example, an isochoric uniaxial stretch in one

of the preferred direction will perturb all the classical invariants given in Equation

(1.1), hence they are not experimentally friendly unlike the immediate-physical-

interpretation invariants used here which are experimentally friendly as described in

Shariff (2008).

When a nonlinear incompressible transversely isotropic strain energy function

is specialized to classical (infinitesimal) elasticity, it should contain three independent

classical ground state constants (Spencer, 1984) to fully characterize an arbitrary

material in infinitesimal strain deformations. Some strain energy functions proposed

in the past, however, have ground state constants that are numerically less than three

which indicate that, in their models, either some of the three classical ground state

constants are assumed to be zero or the three classical ground state constants are

dependent. Generally, it is good practice, at the onset, to assume three independent

constants in the constitutive equation unless (sensible) experimental data suggest

otherwise. Simplicity is one of the reasons why some authors proposed strain energy

functions with less than three ground state constants. In this thesis a constitutive

model is proposed; it contains only a general single variable function and the three

independent classical ground state constants appear explicitly. A specific form of strain

energy function is proposed for soft tissues. One advantage of having the ground state

constants appear explicitly in the model is that we could easily put restrictions on their

values (for physically reasonable responses) (Shariff, 2008).

We propose a strain energy function written in terms of principal stretches have
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a symmetrical property which similar to the symmetry properties by a strain energy

function of an isotropic elastic solid written in classical invariants. A strain energy

functions written in terms of the invariants proposed in references (Chui et al., 2007;

Shariff, 2011; Shariff, 2013) are not symmetrical with respect to their invariants. By

applying this model to a biaxial deformation such as extension and inflation of a thick-

walled tube and a simple shear deformation. Through these application using principal

axes expansion technique shows that the proposed model which has symmetrical

properties can be written as a combination of the Valanis and Landel form (Valanis

and Landel, 1967) and a symmetric function. The Valanis and Landel model also form

can be easily incorporated into the transversely isotropic constitutive equation through

an augmented form.

The proposed model with these advantages, would lead to our goal which is to

express a strain energy function of a transversely isotropic elastic material in a different

form. This model can benefit to other researchers to expand a bigger class of strain

energy function and open alternative methods in transversely isotropic studies. We do

not intend to discuss the performance and the range of validity of specific forms of the

proposed strain energy function. However, in this thesis, we will discuss a proposed

specific form which is based on spectral invariants.

1.3 Problem Statement

(i) The existing strain energy function in terms of classical invariant do not have

physical meanings in the sense that there are not experimental friendly.

(ii) Most of the existing constitutive models may be accurate in curve fitting but not

accurate in predicting mechanical behaviour of various types of soft tissues.

(iii) Although some of the invariants in the literature have physical interpretation but

it is difficult to perform an experiment based on these invariants since not all of

them have a physical meaning and it is difficult to design a rational experiment.

(iv) Existing strain energy function do not possess symmetry properties that may
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facilitate the analysis of the biological soft tissues.

1.4 Research Objectives

This study embarks on the following objectives:

(i) To develop specific constitutive equation to characterise the mechanical

behaviour of biological soft tissues using spectral invariants.

(ii) To propose an alternative constitutive model that has an advantage in experiment

which is easy to analyse.

(iii) To develop new constitutive equation that may be better than existing constitutive

equation.

(iv) To develop a constitutive equation in a simpler form and has experimentally

friendly features.

1.5 Scope of the Study

This study is intended to develop a non-linear constitutive equation of

transversely isotropic materials to provide adequate representation of the mechanical

response of transversely isotropic materials. Various experimental data will be

collected from previous works to apply to our constitutive model and compare the

result to the other methods.

1.6 Significance of the study

(i) The proposed constitutive model written in terms of spectral invariants have

immediate physical interpretation and experimentally friendly because the stress-
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strain formulation can be easily translated to an experiment.

(ii) The proposed constitutive model possessed the symmetric and the orthogonal

properties that can facilitate to analysis of the properties of biological soft tissues.

(iii) The proposed constitutive model is an alternative method in predicting

mechanical behaviour of biological soft tissues and the model is not very

complicated as the existing model in literature.

1.7 Research Methodology

The understanding of the subject of continuum mechanic is extremely

important to provide the knowledge in derivation of constitutive equation and strain

energy function in both isotropic and transversely isotropic materials. The first topic to

be discussed is the rigid body motion and the deformation theory. The next topic is the

stress of the solid materials and the discussion emphasize on the acting in the interior

of the continuous body. The another important topic to be discussed are biot stress,

nominal stress and Cauchy stress before we discussed on some of the linear theories of

continuum mechanics.

Constitutive equation is important for describing the mechanical behaviour and

characteristic of materials such as biological soft tissues. Strain energy function is

a part of constitutive equation, therefore the strain energy function must be derived

to obtained the constitutive equation. Basically constitutive equation of transversely

isotropic materials based on classical invariants of isotropic material widely used in

rubberlike materials. The symmetric and rotation of isotropic and transversely isotropic

materials will be discussed and continue to the strain energy function of isotropic

and transversely isotropic materials. The introduction concept of hyperelasticity

with strain energy function used the spectral invariants and applied to homogeneous

biaxial deformation to show that the constitutive equation with spectral invariants is
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mathematical simplicity.

The strain energy function contained five spectral invariants and the model

has orthogonal properties. The strain energy function for transversely isotropic

incompressible materials reduced to four spectral invariants have the correlation

between the theory and experiment. The specific strain energy function with spectral

invariants for soft biological soft tissues and the strain energy function possessed

the unique properties any direction of deformation. Finally the specific constitutive

equation for biological soft tissues will be derived.

The curve fitting technique is plotted against available experimental data from

the literature to test the performance of the proposed constitutive model and shown that

the theory compared well to the experimental data.

1.8 Thesis Outlines

In Chapter 2, literature review; we discussed previous models of isotropic

material such as rubberlike materials that have been successfully used in the

experiments. We show that all authors except for Shariff (2008) used classical invariant

in their constitutive equation of transversely isotropic materials proposed by Spencer

(1984). Finally we proposed spectral invariants in transversely isotropic materials that

have physical meaning and experimental friendly.

In Chapter 3, research methodology; we discussed on kinematics and stresses.

In kinematics, discussion will be focused on theory of deformation tensor, rigid body

motion including deformation gradient tensor, left and right CauchyGreen deformation

tensor left and right deformation stretch tensor and their relation. End of kinematic

we discussed on example of some finite deformation. In stress, first we discussed on
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surface traction and the derivation of first and second Piola-Kirchhoff stress and the

Cauchy stress. At the end of the chapter we discussed a linear stress to show and their

relation to non-linear stress.

In Chapter 4, constitutive equation; the constitutive equation is expressed in

terms of strain energy function. Stress can be determined if we know the constitutive

equation in the first place. First, we discussed the strain energy function of isotropic

material which used the classical invariants and their orthogonal and symmetric

properties. In the final section of the chapter, we derive the strain energy function

of transversely isotropic of incompressible material in-term of principal stretches.

In Chapter 5, a model using spectral invariants of a transversely isotropic

material is proposed based on the model of an augmented form of isotropic materials.

Our model is shown to have good orthogonal properties. Here we showed good

correlation between theory and experiment can be showed. The model has an an

experimental advantage, where in a simple triaxial test we can vary a single invariant

while keeping the remaining invariants fixed. A specific strain energy function for

biological soft tissues is proposed.

In Chapter 6, derivation of non-linear spectral strain energy function from

infinitesimal strain energy function is given. The function contained two terms,

isotropic and transversely isotropic. The strain energy functions have six parameters

αi = 1, 2, 3 and βi, i = 1, 2, 3 and the material constants are µL, µT and ζ. We

showed that the proposed spectral strain energy function has the unique value property,

called the P-property. Finally we propose a specific form of constitutive equation for

biological soft tissues.

In Chapter 7, data extracted from stress-strain experimental data of anterior

and posterior mitral valve leaflet and excised epicardium of heart using Corel-Draw

X5. Curve fitting from experimental data to determined the material constants µL,
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µT and ζ of constitutive models using software Maple 13 and Mathematica 9. We

analyzed all the result and verified the the performance of the constitutive models

to the experimental data. We have shown that all the curve fit identically to the

experimental data. Finally in the discussion we concluded that the theory compare well

to the experimental data and the proposed constitutive model predicted the mechanical

behaviour of the biological soft tissues accurately and efficiently.

In Chapter 8, the summary on this thesis will be outlined, then the conclusion

is given on the performance of the proposed constitutive model applied to the

experimental data. We also stated the contribution of this thesis to the development

of the research on nonlinear transversely isotropic incompressible materials or similar

biological soft tissues and application to the real life such as to the medical and health

problem.
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