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ABSTRACT 

 

 

 

 

Ion exchange resins having glucamine groups, although bearing a great 

potential in treating varieties of boron-containing streams have slow kinetics due to 

mass transfer limitations.  The objective of this study is to develop a new adsorbent 

with a fibrous morphology that gives high adsorption capacity and fast kinetics. The 

new adsorbent was prepared in 3 steps involving electrospinning of poly(vinylidene 

difluoride) (PVDF) into nanofibres, radiation induced grafting (RIG) of glycidyl 

methacrylate (GMA) onto electrospun nanofibres followed by functionalisation with 

N-methyl-D-glucamine (NMDG). Response surface methodology (RSM) was used for 

optimization of PVDF electrospinning parameters allowing fibres’ diameters control.   

Simultaneous RIG was performed with an electron beam under controlled parameters. 

The functionalisation reaction’s parameters were also tuned with RSM to maximize 

the NMDG density in the adsorbent. The nanofibrous adsorbent was characterized 

using scanning electron microscopy, Fourier transform infrared spectrometer, 

differential scanning calorimetry, thermogravimetric analysis and water contact angle 

measurements. The performance of the adsorbent was tested for boron removal under 

batch and dynamic column (fixed bed) modes. The stability of the new adsorbent was 

confirmed by sorption/desorption tests. Nanofibrous sheets with an average fibre 

diameter of 350 nm were obtained at optimum voltage and concentration of 15.5 kV 

and 15 wt%, respectively.  An optimum degree of grafting (DG) of 150% was imparted 

in grafted PVDF nanofibres using a 90% GMA/methanol solution and a dose of 40 

kGy at a dose rate of 1.27 kGy/s. A maximum NMDG density of 2.20 mmol/g was 

achieved at optimum parameters of 15% NMDG concentration, 86.9 °C reaction 

temperature, 64.7 min and 150% DG. The new adsorbent showed 100% removal 

efficiency using a 0.6 g adsorbent dose within 2 h for a 100 mg/L of boron solution. 

The adsorption data from batch mode were best fitted to the Redlich–Peterson isotherm 

and the adsorption kinetics followed the pseudo-second-order. The adsorbent 

behaviour under dynamic conditions revealed that the breakthrough capacity is a 

function of both initial feed concentration and bed height whereas the flow rate 

marginally affected the breakthrough capacity as indicated by the 9.3% reduction with 

an increase of up to SV 200h-1. The Thomas mathematical model was found to best fit 

the dynamic behaviour of the column. The adsorbent displayed a boron adsorption 

capacity of 17.60 mg/g-adsorbent which is 2.6 time higher than that of commercial 

boron selective resin such as Amberlite IRA743 (6.7 mg/g). The results of this study 

suggest that the adopted preparation procedure is highly effective in preparation of 

nanofibrous adsorbents with the desired content of boron selective ligands. Moreover, 

the adsorbent was proven to have a strong potential for application in boron removal 

from solutions as indicated by higher boron adsorption capacity and faster kinetics.  
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ABSTRAK 

 

 

 

 

Resin pertukaran ion yang mengandungi glukamina, walaupun mempunyai 

potensi yang tinggi dalam merawat larutan yang mengandungi boron, umumnya 

mempunyai kinetik perlahan disebabkan oleh batasan perpindahan jisim.  Objektif 

kajian ini adalah untuk mensintesis penjerap baru yang mempunyai struktur 

bergentian, yang boleh memberi kapasiti penjerapan yang tinggi serta kinetik pantas. 

Penjerap bergentian disediakan dalam 3 peringkat melibatkan kaedah 

elektropemejaman bagi penyediaan gentian-nano poli(vinilidena diflorida) (PVDF), 

pengkopolimeran cangkuk aruhan sinaran (RIG) glisidilmetakrilat (GMA) keatas 

gentian-nano, diikuti oleh pengfungsian dengan N-methyl-D-glukamina NMDG. 

Metodologi permukaan tindak balas (RSM) diaplikasikan bagi elektropemejaman 

PVDF untuk mengawal diameter gentian. Pencangkukan GMA ke atas gentian-nano 

PVDF dilakukan menggunakan kaedah RIG serentak dengan sinaran elektron. 

Parameter-parameter tindak balas bagi pengfungsian turut ditala menggunakan RSM 

untuk mendapatkan ketumpatan NMDG dalam penjerap yang maksimum. Penjerap 

gentian-nano dicirikan dengan menggunakan mikroskop pengimbasan elektron, 

spektrometer inframerah transformasi Fourier, kalorimetri pengimbasan pembezaan, 

analisis termogravimetri dan pengukuran sudut sentuhan air. Penilaian prestasi 

penjerap bergentian-nano dilakukan dalam mod berkelompok dan dinamik (lapisan 

tetap). Kestabilan penjerap ditentukan menggunakan kaedah penjerapan/nyaherapan. 

Kepingan gentian-nano berdiameter purata 350nm diperolehi masing-masing pada 

voltan dan kepekatan optimum 15.5 kV dan 15 wt%. Gentian–nano dengan kadar 

cangkukan (DG) 150% didapatkan dengan menggunakan larutan 90%GMA/metanol, 

pada dos 40 kGy dan kadar dos 1.27 kGy/s. Ketumpatan maksimum NMDG 2.2 

mmol/g-penjerap dicapai pada   kepekatan NMDG 15%, suhu tindak balas 86.86 ℃, 

masa tindak balas 64.66 min dan 150% DG.  Kecekapan penyingkiran 100% dicapai 

dalam masa 2 jam, dengan menggunakan 0.6 g penjerap bergentian-nano untuk larutan 

yang berkepekatan 100 mg/L. Penilaian prestasi penjerap bergentian-nano 

menggunakan mod berkelompok menunjukkan bahawa data penjerapan paling sesuai 

dengan isoterm Redlich-Peterson serta mengikuti model kinetik pseudotertib kedua.  

Prestasi penjerap di bawah keadaan dinamik menunjukkan bahawa kapasiti penjerapan 

meningkat apabila kepekatan awal dan ketinggian penjerap meningkat. Didapati 

bahawa data eksperimen untuk kajian lajur itu mengikuti model matematik Thomas.  

Penjerap gentian-nano menunjukkan kapasiti penjerapan boron sebanyak 17.61 mg / g 

yang 2.6 kali kapasiti penjerapan resin komersil Amberlite IRA743 (6.7mg / g). 

Keputusan kajian ini membuktikan bahawa kaedah yang telah digunakan amat 

berkesan untuk digunakan bagi menyediakan penjerap bergentian-nano dengan ligan 

selektif boron. Di samping itu penjerap ini turut mempunyai potensi yang kuat bagi 

aplikasi penyingkiran boron berdasarkan kepada kapasiti penjerapan tinggi serta 

kinetik pantas yang diperoleh. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background  

 

 

Boron is a widely present drinking water contaminant known to be dangerous 

to the reproductive health of living organisms [1].  In nature, boron is always found 

bonded to oxygen or other elements forming boric acid or borates (inorganic salts).  

Boron exists in aquatic systems mainly in the form of non-dissociated boric acid or 

borate ions [2].  The presence of boron in surface water is mainly due to contamination 

by municipal wastewater containing industrial effluents, detergents and cleaning 

agents and chemical substances used for agriculture [3].  The usage of water with high 

levels of boron for irrigation causes these boron compounds to form complexes with 

heavy metal ions like Cu2+, Cd2+, Pb2+, and Ni2+, leading towards higher toxicity levels 

compared to the original ions of the heavy metals themselves [4, 5].  Such complexes 

can pose a serious threat to human health and the environment when passed to 

groundwater.  The significant rise in the use of boron compounds in various industries 

including nuclear technology, rocket fuel making, and production of heat-resistant 

materials, ceramics, glass, detergents, disinfectants, dyestuff, fertilisers, and food 

preservatives, has led to a substantial increase in worldwide boron production [6-8].  

World boron production has increased from 4300  thousand metric tonnes in 2011 to 

9400 thousand metric tonnes in 2016 [9]. 
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In an aqueous environment, boron exists either as boric acid B(OH)3 or borate 

anion B(OH)-4  [10].  Boric acid is a very weak Lewis acid in aqueous solutions.  It 

acts as an acid by accepting OH- to form B(OH)4 according to reaction 1-1 [11].   

 

 

B(OH)3 (aq) + H2O  B(OH)4 
-+ H+                                             (1-1) 

(Ka = 6 × 10-10, pKa 9.1) 

 

 

The pH of the solution plays the main role in determining which one of the two boron 

chemical species predominates in the aqueous solution.  The boric acid species pre- 

dominate at pH values between pH 7 and 9 whereas borate ions dominate at pH values 

from pH 9 to 11. 

 

 

Boron is a necessary micronutrient for living organisms, although when 

consumed in higher doses it may cause toxicity.  In plants, appropriate boron 

concentration is also needed for healthy development of crops but the gap between 

deficiency and excess for boron is small.  The symptoms caused by high concentrations 

of boron in plants start with the yellowing of leaf tips that progress into the blades and 

burned edges on mature leaves which then causes accelerated decay and eventually the 

death of the plant.  The severity of the symptoms vary depending on the amount of 

boron the plant is exposed to and the endurance of the plant.  For instance, sensitive 

plants can tolerate only 0.3 mg/L of boron content in irrigation waters while some 

plants can accept boron content of up to 4 mg/L [6, 12]. 

 

 

Frequency and level of boron exposure influence the effects of boron on 

humans and animals.  Boron is required in small quantities for various metabolisms of 

macro-nutrients in the organs.  However, a chronic exposure to boron may cause 

damage to human organs.  The effects observed thus far are cutaneous disorders, 

retarded growth, reproductive dangers and suspected teratogenicity [13, 14].  The 

presence of boron in water bodies is hazardous to living organisms and the 

environment, hence it is crucial to find efficient methods and techniques for its 

removal. 
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The search for efficient, cost-effective (cheaper than commercial resins) 

materials and robust systems for the removal of boron from different water streams is 

attracting worldwide attention due to the challenge posed by drinking water and waste 

water discharge standards on current boron-removal technologies. The standard set by 

the World Health Organization (WHO) was recently revised from 0.5 mg/L to 2.4 

mg/L for drinking water [15].  As for wastewater, nations across the globe have set 

standards of not more than 4.0 mg/L [16].   

 

 

Various methods have been utilised to treat streams containing different 

concentrations of boron.  Amongst all methods, ion-exchange remains to be the most 

effective and efficient technology to remove boron from waters and waste waters 

especially when it is present in large volumes and low concentrations [5, 17].  Anion 

exchange resins can be used to remove boron because boron commonly exists as an 

anion in boric acid.  However, due to the weak affinity of boric acid, a low selectivity 

coefficient is observed when conventional ion exchange resins are used.  Furthermore, 

nitrate and carbonate co-existing in the solutions makes any borate that is initially 

adsorbed by the resin to be quickly replaced by the other anions leading to the release 

of borate into the treated water.  Boron-selective (chelating) resins are good alternative 

to ion-exchange resins because the functional hydroxyl groups that they carry in the 

1–2 or 1–3 positions combine with borate ions to form borate-diol complexes, resulting 

in a selective removal of boron from solutions.  [18].  These resins are applied in ion 

exchange operation in a batch or continuous column mode.  Batch mode adsorption is 

usually used to study the interaction between the adsorbent and the adsorbate.  The 

column process is the most common and efficient ion exchange method used in the 

treatment of industrial wastewater. 

 

 

The mechanism through which boron chelation takes place occurs through a 

sequence of steps according to the principles of mass transfer.  Firstly, the ions diffuse 

through the bulk solution until they approach a stagnant layer of the solution on the 

exterior surface of the resin known as the boundary layer which they have to pass 

through.  The second step is the diffusion of the ions through the gel particle of the 

resin.  Once in the resin the ions must diffuse through restricted and water filled pores 

until it reaches an exchange site.  The third step is the chelation of the borate ion where 
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the ion within the resin is captured by the active group.  Since the chelation process of 

the ions itself is thought to be very rapid, it is not the controlling factor.  The rate 

determining step is either the first or second step i.e. the diffusion of the ions through 

the film or the resin particle until it reaches the exchange site.  The slower of the two 

steps will become the rate determining step. The biggest disadvantage associated with 

the use of boron-selective resins is the slow kinetics of boron uptake despite their high 

selectivity to boric acid, in regions with neutral pH levels [16, 19].  This causes a 

performance limitation that has generated an immense research interest in developing 

boron-selective resins with improved performance in terms of higher adsorption 

capacity and faster adsorption kinetics.    

 

 

 

 

1.2 Problem Statement 

 

 

The guideline standard set by WHO for drinking water stands at 2.4 mg/L as 

of 2017 [20] while wastewater discharge standards for boron around the world  are 

between 1 and 4 mg/L [16].  Many regions across the globe are struggling to meet this 

regulation because of the prohibitively expensive operating cost of boron selective ion 

exchange resins.  One example of this is in Mediterranean countries, where the limited 

source of surface and ground waters suffer from excessive amounts of boron rendering 

them unusable for human or irrigation consumption [22]. 

 

 

In Malaysia, the problem of boron removal is profound at the landfill leachate 

treatment sites with boron concentration is about 7.7 mg/L [23], which requires 

daunting treatment to meet the regulations imposed by the Malaysian Department of 

Environment, which currently stands at 1 mg/L for scheduled wastewater discharge 

standard A [16].  Current boron removal methods employed is primarily carried out 

chemical precipitation using zinc sulphate and ferrous sulphate, are not efficient 

enough to deal with the problem.  Both chemicals give only 50-65% removal for 

influent concentrations in the range of 150-200 ppm [24].  Besides landfill leachate 

treatment facilities, leachate from the integrated scheduled waste treatment facility 

operated by Kualiti Alam Sdn Bhd also contains a high boron concentration of up to 
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100 mg/L. Wastewater generated by the ceramic industry also contains a high 

concentration of boron, which negatively affects the environment.   

 

 

There is no simple technique for boron removal where high removal 

efficiencies can be achieved. Most industries use a combination of different 

technologies such as the hybrid adsorption membrane filtration (AMF) to achieve a 

complete boron removal. Studies have been conducted to establish materials and 

technologies to decrease boron concentrations according to various standards.  The 

following methods are currently used to meet these standards: precipitation-

coagulation, adsorption on oxides, adsorption on active carbon, adsorption (on clay, 

fly ash and modified activated carbon) liquid-liquid extraction, electrodialysis, reverse 

osmosis, electrocoagulation, phytoremediation and ion exchange resins.  Reverse 

osmosis (RO) membranes are the one of the most common technologies for boron 

removal and can achieve removal efficiencies of about 40-80% and over 90% in 

alkaline solutions with higher pH of 10-11.  However, the elevated pH promotes 

scaling and corrosion rendering the RO method ineffective due to the membrane cost, 

potential for scaling and also because of the need for a multi-stage system to achieve 

complete removal [25, 26]. Amongst boron removal technologies, ion exchange using 

boron-selective resins for is most efficient technology as it provides up to 99% removal 

at normal conditions especially when huge volume and low concentration are 

dominant.  One of the most commonly used commercial resin is Amberlite IRA-743 

with N-methylglucamine groups, which has been in industrial use for boron removal 

since the 1960s [28].   

 

 

Boron selective resins are highly efficient boron removers, with theoretical 

retention capacities reaching up to 7 mg-B/g-adsorbent, the practical capacity however 

depends on the flow rate and drops rapidly as flow rate increases due to mass transfer 

limitations and a decrease in the dynamic binding capacity of boron [29].  This is 

mainly due to the long diffusion path taken by the ions to reach the ion exchange sites 

within the resins.  The main disadvantage with conventional boron selective resins is 

the slow kinetics during boron uptake despite their high selectivity to boric acid in 

regions with neutral pH levels [21, 22].  Furthermore, these resins are quite costly, and 

there tends to be a drop in capacity upon scaling up [23, 24].  They also have 
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complicated regeneration processes with high chemical consumption that almost 

always results in capacity loss with each regeneration cycle [21].  In addition, the 

limited surface areas, uncontrollable structures, and hydrophobicity of these resins 

have made the boron selective resins less flexible and their performance unsatisfactory 

[25, 26]. 

 

 

Fibrous boron selective adsorbents are newly researched materials that have 

shown interesting improvement in the performance of boron removal from solutions 

[19, 27].  These studies used microfibres of Nylon-6 as a substrate for hosting 

glucamine group through grafted poly(glycidyl methacrylate) ligands.  Despite the 

improved performance of such fibrous adsorbents, the surface area limitations due to 

the large diameters of around 300-800 µm remains posing a challenge for the mass 

transfer of boron.  To mitigate the mass transfer limitations and further enhance the 

rapid sorption kinetics observed with microfibrous sorbents, nanofibrous containing 

glucamine groups is highly appealing.  Nanofibres have been proposed because they 

have small interfibrous pore size, high permeability and more importantly is their large 

surface area per unit mass.  The incredibly small diameters of nanofibres can 

potentially minimize the diffusion path of target ions and hence provide a higher 

specific surface area for boron chelation to occur.  This in turn will result in faster 

sorption kinetics than in both microfibrous and commercial boron selective resins. 

 

 

Among newly developed materials for boron removal, grafted and 

functionalised adsorbents have been proposed an alternatives to conventional resins 

with better performance, mainly in terms of adsorption capacity and speedy kinetics 

[16, 27].  Such adsorbents are prepared mainly by RIGC with high energy radiation 

such as electron beam or gamma rays. RIGC not only allows tuning of the properties 

of the adsorbent through controlling the grafting parameters but also enables desired 

moieties to be imparted to preformed substrates without significantly affecting their 

inherent properties. Thus, RIGC became an appealing method for the facile conversion 

of variety of substrates to resins or chelating materials [28]. Hence, it would interesting 

to modify polymer nanofibres with this method to incorporation side chain grafts 

capable of hosting boron selective groups. In this study, RIGC was used to graft 

glycidyl methacrylate (GMA) onto electrospun poly(vinylidene fluoride) (PVDF) 



7 

 

nanofibres to prepare a chelating adsorbent with a glucamine moiety. Such combined 

procedure involving electrospinning, grafting and functionalization is unprecedented 

is expected to yield an adsorbent having high surface area and glucamine density.  

PVDF was chosen because it provided highly stable polymeric backbone that could be 

shaped easily into nanofibres and also because it enabled the formation of stable 

radicals during irradiation step [29].  GMA was used due to the presence of the oxirane 

ring in its structure, which provides a site for functionalisation with N-methyl-D-

glucamine (NMDG) to impart the glucamine moiety through  a mild ring opening 

reaction [30].     

 

 

 

 

1.3 Objectives 

 

 

The main objective of this study is to prepare a new nanofibrous adsorbent 

containing glucamine groups with highly improved properties for removal boron from 

solutions by radiation induced grafting of GMA onto electrospun PVDF nanofibres 

followed by NMDG treatment.  The objectives can be sub-divided to the following: 

 

i. To establish PVDF nanofibres preparation by optimisation of the 

electrospinning parameters.   

ii. To investigate the effect of grafting reaction parameters on the degree of 

grafting for grafting of GMA onto PVDF nanofibres. 

iii. To establsih functionalisation of  poly-GMA grafted PVDF nanofibres with 

N-methyl-D-glucamine (NMDG) by optimisation of the reaction 

parameters. 

iv. To evaluate the physio-chemical properties of the obtained glucamine 

containing nanofibrous adsorbent.   

v. To investigate the performance the new adsorbent with respect to boron 

removal in a batch system under different operating conditions  

vi. To evaluate the performance of the adsorbent for boron removal in a fixed 

column under different operating conditions. 
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1.4  Scope of Study 

 

 

The scope of this study consists of five stages as depicted from the flow chart 

shown in Figure 1.1.  The scope of work can be outlined as follows: 

  

i. Preparation of nanofibrous mats by electrospinning of PVDF solution 

which was prepared by dissolving PVDF powder in methanol according to 

the concentrations required. 

 

 

ii. Optimisation of the different parameters affecting electrospinning, 

including:   

• Voltage, which was varied in the range of 10-20 kV 

• Needle tip-to-collector distance, which was varied in the range of 

3-15 cm 

• Concentration, which was varied in the range of 10- 20 wt% 

 

 

iii. Preparation of adsorbent precursor by modification of the electrospun 

PVDF nanofibres using radiation induced graft polymerization of GMA 

onto the nanofibres to enable the introducing of functional groups to the 

polymeric backbone.  This includes irradiation of the fibres with electron 

beam and investigation of the effect of the grafting parameters on the 

degree of grafting, including: 

• Types of solvent, which includes methanol, ethanol, propanol, 

butanol and pentanol. 

• Monomer concentration, which was varied in the range of 50-100 

vol%. 

• Absorbed dose, which was varied in the range of 10-100 kGy. 

• Dose rate, which was varied in the range of 0.95-1.27 kGy/s 

 

 

iv. The GMA grafted PVDF nanofibres were functionalised using NMDG 

dissolved in 1-4 dioxane to impart the ionic character to the grafted 

nanofibres under different reaction parameters. 
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v. The functionalisation parameters optimised included: 

• Concentration of NMDG, which was varied in the range of 5-15 

wt%. 

• The degree of grafting of the adsorbent precursor, which was varied 

in the range of 80-115%. 

• Reaction time, which was varied in the range of 20-80 mins. 

• Reaction temperature, which was varied in the range of 70-90°C. 

 

 

vi. Determination of the physical and chemical properties of the newly 

synthesised nanofibrous adsorbent with reference to the original PVDF 

nanofibres and GMA grafted PVDF nanofibres.  The investigated 

properties included: 

• Morphology, which was observed using scanning electron 

microscopy (SEM). 

• Chemical composition, which was investigated using Fourier 

transform infrared spectrometer (FT-IR). 

• Thermal properties, which was measured using differential 

scanning calorimetry (DSC) 

• Thermal stability, which was tested using thermogravimetric 

analysis (TGA) 

• Wettability, which was investigated using contact angle 

measurements. 

 

 

vii. The performance of the adsorbent was tested on a batch basis and the 

adsorption parameters used were included: 

• Initial boron concentration, which was varied in the range of 50-

200 mg/l. 

• pH, which was varied in the range of 3-11. 

• Adsorbent dosage, which was varied in the range of 0.05-1.0 g. 

 

 

viii. Studying of the adsorption equilibrium isotherms using Langmuir, 

Freundlich and Redlich-Petterson models. 
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ix. Investigation of the kinetics of boron adsorption by the nanofibrous 

adsorbent using two kinetic models: pseudo first-order and pseudo second-

order. 

 

 

x. Evaluation of boron adsorption capacity of the modified nanofibres in a 

fixed bed column and studying the effect of different operating parameters 

such as concentration, flow rate and bed height.  The breakthrough curves 

were also established for the nanofibrous adsorbents.  The adsorption and 

desorption cycles were established. 

 

 

Figure 1.1: Flow chart for the scope of study.  
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1.5  Significance of the Study 

 

 

This work provides a new glucamine-containing chelating adsorbent for boron 

removal possessing a nanofibrous structure, using a unique combination of two 

remarkable methods i.e. electrospinning and RIGC.  The new nanofibrous adsorbent 

obtained from this study is capable of removing boron from various streams at 

moderate conditions.  The obtained adsorbent combines not only high selectivity, due 

to the boron selective functional group but also a high surface area that is provided by 

the small fibre diameters. 

 

 

The nano-structure of the adsorbent enables the development of smaller 

adsorbent columns with larger surface area and higher operating capacity and certainly 

can lead to an improvement in the economy of the process.  This could certainly help 

not only wastewater treatment in industries but also potable water treatment plants to 

meet stagnant regulations imposed by environmental authorities in various countries 

with regards to boron concentrations in water and wastewater streams.  Besides, the 

column filter that can be developed based on this adsorbent can be possibly used in 

improving domestic quality of water in work places and homes. 

 

 

The electrospinning of PVDF leading to the formation of substrate mats that 

was used for grafting of GMA applied in water treatment in this study is rarely reported 

in literature.  Thus, the work reported here in is an interesting contribution for 

electrospinning of polymers such as PVDF and their application as adsorbents.  The 

RSM used for optimisation of electrospinning parameters provide a statistical tool to 

design and predict the morphology and the fibres’ diameters of the nanofibres.   This 

work also provided an opportunity to develop a quadratic statistical model for 

optimisation of the reaction parameters and maximisation the density of glucamine in 

the adsorbent.  Finally, this study paves the way for the preparation of other adsorbents 

based on grafting of various acrylic and vinyl monomers onto various synthetic 

polymeric and natural fibres. 

 

 

Eventually, the ultimate contribution of this study is in development of a new 

adsorbent with higher adsorption capacity and faster kinetics than commercial resins 



12 

 

and microfibrous adsorbent, which allows treatment of bigger boron contaminated 

water volumes at shorter time.  This study will also allow the establishment of sorption 

isotherms, sorption kinetics and mechanism of adsorption for boron adsorption by the 

new nanofibrous boron selective adsorbent. This study also allows determination of 

the most suitable combination of parameters for the three main phases of this study 

which are electrospinning of PVDF, radiation induced grafting of GMA onto PVDF 

nanofibres and functionalisation of the nanofibres. 

 

 

 

 

1.6  Thesis Outline 

 

 

The current thesis is presented in 5 chapters.  Chapter 1 is an introduction that 

covers background of the study and problem statement and describes objectives, scope 

and significance of the study.  In Chapter 2, a comprehensive literature review 

including boron removal techniques and their advantages and limitations, 

electrospinning and its parameters and applications, radiation induced grafting, and 

nanofibre characterisation techniques is given.  Chapter 3 contains the methodology 

used for fabrication, modification and for the characterisation and testing of nanofibres 

for boron adsorption.  In Chapter 4 the results are presented and discussed with 

reference to previous works, obtained data are analysed and interpreted.  Chapter 5 

includes the final conclusions and some recommendations to improve the work in 

future studies.  
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