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ABSTRACT 

One of the typical ways of measuring risk associated with persistence in 

financial data set can be done through studies of long memory and volatility. Finance 

is a branch of economics concerned with resource allocation which deals with 

money, time and risk and their interrelation. The investors invest at risk over a period 

of time for the opportunity to gain profit. Since the last decade, the complex issues of 

long memory and short memory confounded with occasional structural break had 

received extensive attention. Structural breaks in time series can generate a strong 

persistence and showing a slower rate of decay in the autocorrelation function which 

is an observed behaviour of a long memory process. Besides that, the persistence in 

volatility cannot be captured easily because some of the mathematical models are not 

able to detect these properties. To overcome these drawbacks, this study developed a 

procedure to construct long memory stochastic volatility (LMSV) model by using 

fractional Ornstein-Uhlenbeck (fOU) process in financial time series to evaluate the 

degree of the persistence property of the data. The drift and volatility parameters of 

the fractional Ornstein-Unlenbeck model are estimated separately using least square 

estimator (LSE) and quadratic generalized variations (QGV) method respectively. 

Whereas, the long memory parameter namely Hurst parameter is estimated by using 

several heuristic methods and a semi-parametric method. The procedure of 

constructing LMSV model and the estimation methods are applied to the real daily 

index prices of FTSE Bursa Malaysia KLCI over a period of 20 years. The findings 

showed that the volatility of the index prices exhibit long memory process but the 

returns of the index prices do not show strong persistence properties. The root mean 

square errors (RMSE) obtained from various methods indicates that the 

performances of the model and estimators in describing returns of the index prices 

are good.  
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ABSTRAK 

Salah satu cara tipikal untuk mengukur risiko yang berkaitan dengan 

keterusan dalam set data kewangan boleh dilakukan melalui kajian memori panjang 

dan turun naik. Kewangan adalah satu cabang ekonomi berkenaan dengan 

peruntukan sumber yang berkaitan dengan wang, masa dan risiko dan saling kaitan 

antara mereka. Para pelabur melabur dalam keadaan risiko sepanjang tempoh masa 

untuk peluang bagi mendapatkan keuntungan. Sejak sedekad yang lalu, isu-isu yang 

kompleks memori panjang dan memori pendek yang dikaburi dengan pemisahan 

struktur telah mendapat perhatian luas. Pemisahan struktur dalam siri masa boleh 

menjana keterusan yang kuat dan menunjukkan kadar susutan yang lebih perlahan 

dalam fungsi autokorelasi adalah satu tingkah laku yang diperhatikan dalam proses 

memori yang panjang. Selain itu, keterusan dalam turun naik tidak boleh diperhati 

dengan mudah kerana beberapa model matematik tidak dapat mengesan sifat-sifat 

ini. Untuk mengatasi kelemahan ini, kajian ini membina prosedur untuk 

membangunkan model memori panjang turun naik stokastik (LMSV) dengan 

menggunakan proses pecahan Ornstein-Uhlenbeck (fOU) dalam siri masa kewangan 

untuk menilai tahap sifat keterusan data. Parameter hanyutan dan turun naik model 

pecahan Ornstein-Unlenbeck dianggarkan secara berasingan masing-masing 

menggunakan kaedah kuasa dua terkecil (LSE) dan variasi teritlak kuadratik (QGV). 

Manakala, parameter memori panjang iaitu parameter Hurst dianggar menggunakan 

beberapa kaedah heuristik dan kaedah semi-parametrik. Prosedur membangunkan 

model LMSV dan kaedah anggaran digunakan kepada harga indeks harian FTSE 

Bursa Malaysia KLCI untuk tempoh 20 tahun. Hasil kajian ini menunjukkan bahawa 

turun naik harga indeks mengalami memori panjang tetapi pulangan harga indeks 

tidak menunjukkan sifat-sifat keterusan yang kuat. Min ralat kuasa dua (RMSE) yang 

diperolehi daripada pelbagai kaedah menunjukkan bahawa prestasi model dan 

penganggar berupaya menerangkan pulangan harga indeks dengan baik. 
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CHAPTER 1     

 

 

 

 

INTRODUCTION 

1.1 Background of study 

Market indices are inter-related to the performance of local and global 

economies and become an important guideline of investor confidence. Therefore, 

people have always searched for the skill to predict behavior of prices in financial 

market. The very first success and famous mathematical option pricing model 

namely the Black-Scholes option pricing model which assumed the constant 

volatility had been proven to have many flaws (Casas and Gao, 2008; Chronopoulou 

and Viens, 2012b). The constant volatility assumption is inconsistent with the 

empirical observation of varying volatility across varying time. In fact, a typical 

financial time series of returns had many common properties or so-called “stylized 

facts”, such as excess kurtosis, volatility clustering and almost no serial correlation in 

the level but with a persistent correlation in the squared returns and absolute returns. 

This “stylized facts” phenomenon can be explained by an appropriate volatility 

model which will consider the persistence properties of the data set. Volatility is an 

essential factor in measurement of the variability in price movements. The volatility 

of the prices has significant influence on the dynamics of the financial time series. 

Thus, an appropriate model for volatility will help to improve the measurement and 

provide useful information to the investors and economist.  

The aim of this thesis is to develop a procedure to determine the characteristic 

of the FTSE Bursa Malaysia KLCI index prices intensively and comprehensively, in 

both returns and volatility. The modeling and parameters estimation on the 

relationship between the returns and volatility intend to help investors to have a 
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clearer picture on the FTSE Bursa Malaysia KLCI index prices on decision making 

on their investments in Malaysia stock market. Besides that, the data analysis on the 

index prices can provide useful information to the Malaysia’s government for 

successful development and implementation of policies on financial issues to 

improve our country’s economy. 

Constant volatility models have been proven in giving a poor fit on financial 

time series but the dynamic structures present a more realistic approach to volatility 

modeling. This is because volatility is affected by unpredictable changes such as the 

performance of the industry, political stability of particular country, news about new 

technology, natural disaster, product recalls and lawsuits that shall have positive and 

negative impact to the relevant company stocks, and therefore, the prices of the stock 

of a company are affected. Hence, many researches had been done in modeling 

volatility models in order to determine the dynamic fluctuation in the stock market. 

Among various volatility models, the autoregressive conditional heteroscedasticity 

(ARCH) model by Engle (1982) and generalised ARCH (GARCH)  model by 

Bollerslev (1986) are very well known. The GARCH model assumes an ARMA-type 

structure for the volatility where the conditional volatility is a deterministic function 

of past returns. However, this assumption might be too restrictive in some of the 

problem and situations (Xie, 2008). As an example, the ARCH assumes that positive 

and negative shocks have same effects on volatility because it depends on the square 

of the previous shocks. In practice, it is well-known that price of a financial asset 

responds differently to positive and negative shocks. Therefore, another type of 

model, the stochastic volatility model which assumed to follow an autonomous and 

latent stochastic process will be more flexible.  

Over the past two decades, many stochastic volatility (SV) models and 

estimation methods have been introduced to explain the market tendency. Stochastic 

volatility models have become popular for derivative pricing and hedging since the 

existence of a non-constant volatility surface has been classified. By assuming that 

the volatility of the underlying price is a stochastic process rather than a constant, it 

becomes possible to model derivatives more accurately. Stochastic volatility is a 

profound extension of the Black-Scholes model which describes a much more 
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realistic trend in the financial world. There are several popular stochastic volatility 

models such as the Heston model, Orstein-Unlenbeck model and Cox-Ingersoll-Ross 

(CIR) model. These models have been widely used in the field of mathematical 

finance to evaluate the stock market. Once a particular stochastic volatility model is 

chosen, the calibration against the existing market data need to be carried out in order 

to identify the most likely set of model parameters given the observed data. 

The main assumption of the SV model is that the volatility is a log-normal 

process. Taylor (1986) and Hull and White (1987) were among the first to study the 

logarithm of the stochastic volatility as an Ornstein-Uhlenbeck process. The 

statistical properties and probabilistic of a log-normal are well known. However, 

parameter estimation is a very challenging task due to the difficulty in finding the 

maximum likelihood (ML) function. The sampling methods for estimating the 

stochastic volatility are generally based on Bayesian approach or classical approach. 

Examples of Bayesian approach are Gaussian mixture sampling, single site Sampler 

and multi-move sampler, whereas the classical methods include quasi maximum 

likelihood, simulated method of moments and importance sampling among others.  

Recent studies had showed that some of the financial data exhibit the 

properties of long-range dependence. However, these properties cannot be captured 

by the ordinary stochastic models. Since the pioneer work on detection in the 

presence of the long range dependence or long memory in minimum annual flow 

series of the Nile River by Hurst (1951), numerous studies have been carried out for 

testing and modeling long memory in various areas. In general, autocorrelation 

function is a measure of the dependence or persistence between the previous state 

and current state at various lags in a time series. A process is considered to exhibit 

long-memory or long-term persistence dependence if there is a significant 

autocorrelation at long lags.   

In empirical modeling of long memory processes, Granger and Joyeux (1980) 

was the first to introduce a new model based on ARCH-type namely fractional 

integrated autoregressive moving average (ARFIMA) which had greatly improved 

the applicability of long memory in statistical practice. The model is characterized by 
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hyperbolic decay rate of autocorrelation function. The term “fractional” is often used 

in the long memory context which usually refer to a model constructed using a 

generalized operation of non-integer order. In stochastic process, the models such as 

fractional Heston model and fractional Ornstein-Uhlenbeck (fOU) model had been 

modified to describe the long memory process in the sense that the present state of 

system is temporally dependent on all past states. Moreover, long memory is closely 

related with self-similar processes. Self-similar processes are stochastic models with 

the property that a scaling in time equivalent to an appropriate scaling in space. The 

connection between the two types scaling is determined by a constant which is 

known as Hurst exponent. Many of the empirical studies of long memory are based 

on the estimation method by Geweke and Porter-Hudak (1983). Besides that, there 

are some other estimation methods to detect the long memory based on the heuristic 

approaches such as rescaled range (R/S) statistics, detrended fluctuation analysis 

(DFA), periodogram method and aggregated variance method where neither of them 

needs any specific models assumptions.   

The long memory in the volatility of the financial data had been discovered in 

the earlier of 1990’s. Ding et al. (1993) were among the first to investigate that there 

is strong correlation between absolute returns of the daily S&P 500 index prices. The 

fractional power transformations of the absolute returns showed high 

autocorrelations for high lags which provide the evidence of long-range dependence 

(Crato and de Lima, 1994; Deo and Hurvich, 2001; Ezzat, 2013). Besides that, the 

long term correlation is also found in the squared returns on various financial 

markets (Casas, 2008; Xie, 2008; Günay, 2014). 

Since the last decade, the issue of confusing long memory and occasional 

structural breaks in mean had received great attention (see, (Diebold and Inoue, 2001; 

Granger and Hyung, 2004; Smith, 2005; Cappelli and Angela, 2006; Yusof et al., 

2013; Mensi et al., 2014).  Diebold and Inoue (2001) showed that there is a bias in 

favor of finding long memory processes in a time series when structural breaks are 

not accounted. Indeed, there is evidence that a stationary short memory process that 

encounters occasional structural breaks in the mean may show a  slower  rate  of  

decay  in  the  autocorrelation  function  and  other  properties  of fractionally  
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integrated  processes (Cappelli and Angela, 2006). Thus, a time series with structural 

breaks can generate a strong persistence in the autocorrelation function which 

performs as the behaviour of a long memory process.  

The early study of SV models was mainly focused on short memory volatility 

process. The long memory stochastic volatility (LMSV) model which is appropriate 

for describing series of financial returns at equally-spaced intervals of time had 

received extensive attention for last few years. Breidt et al. (1998) and Harvey 

(1998), simultaneously, was among the first who suggested a long memory stochastic 

volatility (LMSV) in discrete time where the log-volatility is modeled as an 

autoregressive fractional integrated moving average (ARFIMA) process. Comte and 

Renault (1998) proposed a continuous time fractional stochastic volatility model 

which adopted the fractional Brownian motion to replace the Brownian motion. 

The LMSV models carry on many advantages of a general stochastic 

volatility model. However, unlike the usual short memory models, the LMSV model 

is neither a Markovian process nor can it be easily transformed into a Markovian 

process. This makes the likelihood evaluation and the parameter estimation for the 

LMSV model challenging tasks. Most of the previous research of LMSV model 

focused on the discrete time model which may due to the difficulty in constructing 

the computational work in continuous time model. In fact, the stock and index price 

process are only observed in discrete time, and the volatility itself cannot be directly 

observed, whether the underlying model is in discrete or continuous time or whether 

one believes that the underlying phenomena are discrete or continuous 

(Chronopoulou and Viens, 2012b). Therefore, from a financial modeling point of 

view, the statistical inference problem of estimating volatility under these conditions 

is then very crucial.  

In terms of discrete-time models, Geweke and Porter-Hudak (1983) proposed 

a log-periodogram regression method which is also known as GPH method. In 

addition, Deo and Hurvich (2001) had presented the expressions for asymptotic bias 

and variance of the GPH estimators. Arteche (2004) proposed the Gaussian 

semiparametric or local Whittle estimator to estimate the long memory parameter. 
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There are very few papers that have developed the parameter estimations for long-

memory stochastic volatility in continuous-time. Comte and Renault (1998) propose 

a discretization procedure to approximate the solution of their continuous-time 

fractional stochastic volatility (FSV) model and applied the log-periodogram 

regression approach to estimate the long memory parameter. Casas and Gao (2008) 

proposed the Whittle estimation method to estimate the parameters in a special class 

of FSV models. Chronopoulou and Viens (2012(a), 2012(b)) compared the 

performance of several long memory estimators and the implied value of H using 

real data of S&P 500 by calibrating it to option price.  

Perhaps the most well-known approach of modelling long memory in 

continuous time stochastic volatility is to employ the fractional Brownian motion 

(fBm) as a long-memory driving source. The fractional Ornstein-Uhlenbeck (fOU) 

process is one of the popular model that contain the properties of long memory (see, 

(Cheridito et al., 2003)). It would be optimal to estimate the parameters of fractional 

Ornstein-Uhlenbeck process and the long memory parameter jointly. But, most of the 

long memory models, still none provides a rigorous way for estimating a joint vector 

of parameters. Chronopoulou and Viens (2012(a), 2012(b)) suggested estimating the 

parameters separately and proposed to use calibration technique to fit models with 

various Hurst parameters. Many authors estimated the drift parameter and diffusion 

parameter separately with assumption of the Hurst parameter is known (see, (Hu and 

Nualart, 2010; Xiao et al., 2011; Brouste and Iacus, 2013; Wang and Zhang, 2014)).  

1.2 Statement of the Problem 

  One of the perplexing issues with regards to the detection of long memory is 

the confusion between long memory and non-linear effects such as parameter 

changes in time. There is evidence that a stationary short memory process that has 

occasional structural breaks in the mean can show a slower rate of decay in the 

autocorrelation function and other properties of long memory process. The structural 

change in the series camouflages the stationary short memory process.  The long 



7 

 

memory may be apparent for a certain sample, but a deeper investigation would be 

needed to show the long memory property as results from structural breaks or slow 

regime switching in the time series. Thus, long memory may be detected spuriously 

if structural break are not accounted for. Many authors had found that the financial 

time series exhibit the long memory properties. The question to ask is if it is really a 

long memory process or a short memory with structural break? One of our main 

concerns in this study is to investigate whether our financial data set exhibits a true 

long memory process. 

Discovering the behaviour of market prices is not a simple task. The stock 

market prices tend to have complicated distributions with strong skewness and fat 

tails which commonly known as “stylized facts”. It is very essential to estimate the 

volatility in order to forecast the dynamic of the prices, i.e. what is the expected 

prices for tomorrow and how much it will differ from today’s price. Therefore, an 

appropriate modelling for the volatility becomes our second task in our study. There 

are a lot of evidences showing the existence of strong persistence in volatility of 

financial series. This study tends to propose a stochastic volatility model that will 

take into consideration of the volatility persistence.  

The estimation of the volatility process is one of the most difficult and 

complicated problems in econometrics. There are neither volatility simulation 

techniques nor volatility data collections are completely ideal. The main difficulties 

are the fact that volatility itself is never directly observed. Therefore, in practice, one 

would be restricted to use the values of asset at discrete time even for the most liquid 

indexes or assets. Thus, we tend to propose a procedure to estimate the volatility 

process of the financial data series.  

1.3 Objectives of the Study 

The objectives of the study are: 
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1. To identify the true long memory from long memory process on the 

returns and volatility of the financial time series. 

2. To propose continuous-time diffusion process in state space form for 

more flexible modeling of continuous dynamics in financial time 

series. 

3. To establish a structured procedure in estimating the volatility process 

from the proxies of volatilities with the parameters estimation on the 

long memory stochastic volatility model. 

4. To assess the long memory stochastic volatility model and estimation 

methods.  

1.4 Scope of the Study 

The scope of this research is given as follows: 

1. This study establishes a general framework for analysing the closing 

index prices of FTSE Bursa Malaysia KLCI beginning from 3rd December 

1993 until 31st December 2013. Here, the long memory properties of the 

closing index prices will be determined based on the returns and the 

volatilities of the data. The structural break analysis will be carried out to 

justify whether it is the true long memory or the spurious one.   

 

2. This work presents the LMSV model with explanation on its basic 

properties. The LMSV state space model with fractional Ornstein-

Uhlenbeck process including the long memory properties will be 

constructed. The models are developed to observe the volatilities 

persistence on the index prices.  

 

3. The long memory parameter will be estimated with the Heuristic and 

semi-parametric methods. Whereas, the drift parameter and the diffusion 

coefficient will be estimated using least square method and quadratic 

generalised variation method respectively.  This study performs the 
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numerical simulation of the model based on Monte Carlo method to 

illustrate the performance of the model and estimations methods. 

 

4. The complete procedures are developed to analyse the characteristic of 

the closing index prices and constructing the LMSV model with 

estimation methods which will be assessed by their consistency. The 

comparison between the simulated and empirical returns is evaluated by 

the root mean square error and descriptive statistic. 

1.5 Significance of the Study 

The contribution of this research is in developing the procedures to analyse 

the index prices of FTSE Bursa Malaysia KLCI. As we all know, the volatility which 

measures the variability in price movement is at the centre of models for financial 

time series. This research considers a general class of stochastic volatility models 

either with long range dependence, intermediate range dependence or short range of 

dependence.   

Long memory is one of the characteristic in financial time series. The return 

of the prices usually exhibits little or no autocorrelation, but volatility often has a 

strong autocorrelation structure. However, an argument exists saying that a short 

memory process with an occasional structural break can show the properties of long 

memory process. A spurious long memory will be detected if the structural break of 

the time series is not considered. Therefore, this study develops a strategy to detect 

true long memory of the returns and volatilities in financial data set. 

Secondly, we propose a long memory stochastic volatility model in state 

space form using fractional Ornstein-Uhlenbeck process that can capture the 

characteristic observed in the financial time series. The LMSV model is more 

flexible assuming the volatility follows an autonomous and latent stochastic process. 

This model can provide a useful way of modeling the relationship between the 
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returns and the volatility of the series exhibiting strong persistence in its level yet 

with varying time.  

The LMSV model can help to identify the structure of the index prices in 

deriving the returns and volatility patterns. The estimated parameters on drift, 

diffusion coefficient and Hurst parameter in the model are practically useful for 

investor to have a clear picture on characteristics of the index prices. The goals of 

this research are to study the properties of FTSE Bursa Malaysia KLCI index prices 

via the long memory stochastic volatility models to solve the problem of excessive 

persistence in the composite linear and nonlinear models by introducing a 

probabilistic approach in allowing different volatility states in time series. The 

estimated returns show good result of the model in describing the dynamics of the 

FTSE Bursa Malaysia KLCI index prices. In this way, the accurate information can 

be provided for the forecasting in the future.  

To the best of the author’s knowledge, there are no studies on applying long 

memory stochastic volatility models with parameters estimation to address the issues 

of the Malaysia economics. The proposed methods on estimating the volatility 

process from the proxies of volatilities using the modified LMSV model are the main 

contribution of this research. By establishing a complete procedure to identify the 

characteristic of the FTSE Bursa Malaysia KLCI index prices, the modified LMSV 

model manage to explain the Malaysia market tendency.  

1.6 Organization of Thesis 

The structure of this thesis can be summarized as follows. The thesis consists 

of introductory material which includes motivation, objectives, scope and 

significance of study in Chapter 1, literature review of the LMSV model and 

estimations methods in Chapter 2, the methodology and our novel contributions in 

Chapter 3, 4, 5, and the conclusion and future works in Chapter 6.  
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Chapter 2 presents literature review on long memory process with stochastic 

volatility and the estimations methods. The basic mathematical formulation for long 

memory process and stochastic volatility are defined. Then, the previous studies on 

LMSV models are introduced. The fractional Ornstein-Uhlenbeck model and its 

parameters estimation methods are also discussed.  Furthermore, the literature on the 

methods of estimating the long memory parameter based on heristric and semi-

parametric approaches are presented. The application of the long memory in 

financial time series will be evaluated from the point of view of modelling and the 

methods employed to estimate the parameters. Last but not least, the challenges of 

parameters estimation of LMSV model are included. 

The long memory processes with definition and several aspects of their 

characteristics are introduced in Chapter 3. The long memory process will be defined 

in terms of its autocorrelations and spectral density. Then, the self-similar processes 

of long memory and fractional Brownian motion are described. Here, the modeling 

of long memory process in discrete time namely autoregressive fractional integrated 

moving average (ARFIMA) model and continuous time namely fractional Ornstein-

Uhlenbeck (fOU) model are also discussed briefly. In this study, the focus mainly on 

fOU model in the modeling of long memory stochastic volatility model. The 

fractional calculus that is applied in this study will be explained as well. 

In Chapter 4, a discussion on the modeling and parameters estimation of long 

memory stochastic volatility is given. First of all, the direction of volatility modeling 

in financial market is discussed. Then, some of the basic stochastic volatility model 

based on discrete and continuous time is presented. Next, this research modified a 

long memory stochastic volatility (LMSV) model in state space form.  Methods for 

testing the existence of long memory are illustrated here. Moreover, the method for 

structural break analysis is studied in order to determine the true long memory. 

While, methods of parameters estimation included the drift and diffusion coefficient 

in the fOU volatility process of the LMSV model are also discussed. Last but not 

least, the methods to show the efficiency of the model and parameters estimation 

methods will be derived. 
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Chapter 5 presents the analysis of the index prices of FTSE Bursa Malaysia 

KLCI based on the proposed model and estimation methods of this research. Firstly, 

the description of the data and its transformation is presented. Then, how the long 

memory parameter estimation using heuristic and semiparametric approaches are 

employed on the data is shown. The results are given based on time domain and 

frequency domain according to the methods. Further, the results of structural break 

analysis are also presented. This is the chapter where the parameters estimation on 

the fractional Ornstein-Uhlenbeck (fOU) model for the long memory stochastic 

volatility is carried out based on the methodologies. Lastly, the contribution in this 

study is highlighted. 

Chapter 6 is the final chapter which summaries the research findings. 

Besides, some suggestions for future works which might be potential and useful for 

further development or improvement of the proposed models and estimation methods 

are discussed.  
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