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ABSTRACT   
 

 

Mild growth conditions based novel techniques are essential for the controlled 

synthesis of zinc oxide (ZnO) nanostructure (ZNS) with desired properties. Most of the 

existing synthesis methods of ZNSs are limited by complicated growth conditions such as 

high vacuum, expensive devices, high temperature, long growth time and requirement of 

template. The freshwater pollution due to residual industrial organic dyes is presently being a 

major environmental concern that needs efficient photocatalytic materials to overcome it. To 

achieve these goals, this work synthesized good quality ZNS films using two different 

methods and evaluated the photodegradation of industrial methylene blue (MB) dye by these 

ZNS films under sunlight irradiation. Such films were grown on glass and silicon (Si) 

substrates via a simple hydrothermal method in the absence of any catalyst. Prepared 

samples were characterized using various techniques to determine their physical and optical 

properties. The effects of growth time and temperature, substrate type, nutrient pH and 

concentration on the morphology, size, crystallinity, and the emission properties of as-grown 

ZNS films were evaluated. Results showed that the morphology of these ZNSs was strongly 

influenced by the growth time, nutrient pH and concentration. A good quality ZNS was 

achieved within 5 min whereby nutrient solution with lower pH was appropriate for the 

growth of 1D ZNSs. However, higher pH values produced 3D flower-like ZNSs. Variation 

of growth temperature from 90-110 
o
C allowed good size-control of ZNSs. Growth 

conditions and substrate type dependent emission spectra were used to evaluate the optical 

band-gap energy. To get better control of the ZNS growth and evolving morphology, a novel 

catalyst-free and rapid preparation technique was adopted. In this method a mixture of 

precursor solution and ZnO nanoparticles (ZNPs) colloid/or only ZNPs colloid as a nutrient 

solution was used. Pulse laser ablation in liquid (PLAL) was combined with hydrothermal 

(H) method to develop PLAL-H growth technique. A Q-switched Nd:YAG laser with 

wavelength 532 nm, 8 ns pulse duration, and 10 Hz repetition rate was employed as the 

irradiation source. Metallic zinc target of 1 mm thick was used to produce colloidal ZNPs. 

The effects of varying growth time of 0.5, 5, 30 and 60 min and ablation energy of 200-400 

mJ on the physical and optical properties of the grown ZNSs were examined. Four types of 

ZNSs with varying sizes and shapes were obtained on Si substrate at 110 
o
C for 5 min 

duration. Increasing ablation energy led to a substantial change of ZNS morphology and 

promoted the structure quality together with photoluminescence emission intensity. ZNSs 

synthesized under prolonged growth time of 60 min exhibited remarkable morphology 

alteration from rod/flower-like ZNSs to ZNPs with higher crystallinity and enlarged band-

gap due to increase of nutrient pH of 10.5. Finally, the photocatalytic activities of the 

optimal ZNS films were assessed via sunlight driven photodegradation of MB dye. 

Experimental findings verified that the ZNPs prepared by PLAL-H technique possessed 

excellent photocatalytic efficiency (97.4%) towards degradation of MB dye. The observed 

boost in the photocatalytic activities was ascribed to the synergism of the improved surface 

area and band-gap modification. It was established that the proposed novel PLAL-H growth 

strategy is not only cost-effective but greatly useful for the rapid production of different 

quality of ZNSs at low temperature in a controlled way. This may overcome the 

shortcomings involving the effective exploitation of sunlight source towards practical 

photocatalytic applications of ZNSs.  
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ABSTRAK 

 

 

 

Teknik novel berdasarkan keadaan pertumbuhan lambut adalah perlu untuk sintesis 

terkawal struktur-nano (ZNS) zink oksida (ZnO) dengan sifat yang dikehendaki. Kebanyakan 

kaedah sintesis ZNS sedia ada adalah terhad oleh keperluan pertumbuhan yang rumit seperti 

keadaan vakum tinggi, peralatan yang mahal, suhu tinggi, tempoh pertumbuhan yang lama dan 

keperluan terhadap templet. Pencemaran air tawar oleh sisa pewarna organik industri kini 

merupakan masalah persekitaran utama yang memerlukan bahan foto pemangkin yang efisien 

untuk mengatasinya. Untuk mencapai matlamat ini, kajian ini  mensintesis filem ZNS yang 

berkualiti dengan menggunakan dua kaedah yang berbeza dan menilai fotodigredasi pewarna biru 

metalin (MB) industri oleh filem ZNS di bawah sinaran cahaya matahari. Filem tersebut 

dihasilkan di atas substrat kaca dan wafer silikon (Si) melalui kaedah hidroterma mudah tanpa 

pemangkin. Sampel yang disediakan dicirikan bagi menentukan ciri fizikal dan optik dengan 

menggunakan pelbagai teknik. Kesan masa pertumbuhan dan suhu, jenis substrat, pH dan 

kepekatan nutrien, terhadap morfologi, saiz, penghabluran, dan sifat pancaran filem ZNS telah 

dinilai. Hasil kajian menunjukkan bahawa morfologi ZNS ini sangat dipengaruhi oleh masa 

pertumbuhan, pH dan kepekatan nutrien. Kualiti ZNS yang baik telah dicapai dalam masa 5 minit 

apabila cecair nutrien dengan pH lebih rendah adalah sesuai untuk pertumbuhan ZNS 1D. Walau 

bagaimanapun, nilai pH yang lebih tinggi menghasilkan ZNS berbentuk bunga 3D. Perubahan 

suhu pertumbuhan dalam lingkungan 90-110 
o
C membolehkan kawalan saiz ZNS yang baik. 

Spektrum pancaran yang bergantung kepada keadaan pertumbuhan dan jenis substrat telah 

digunakan untuk menilai jurang tenaga optik. Untuk mencapai kawalan yang lebih baik ke atas 

pertumbuhan ZNS dan perkembangan morfologi, teknik penyediaan yang novel dan bebas 

pemangkin serta pantas telah digunakan. Dalam kaedah ini, campuran cecair pelopor dan koloid 

nanopartikel ZnO (ZNP)/atau hanya koloid ZNP telah digunakan sebagai cecair nutrien. Ablasi 

laser denyut dalam cecair (PLAL) telah digabungkan dengan kaedah hidroterma (H) untuk 

menghasilkan teknik pertumbuhan PLAL-H. Laser Nd:YAG pensuisan-Q dengan panjang 

gelombang 532 nm, tempoh denyutan 8 ns, dan kadar ulangan 10 Hz telah digunakan sebagai 

sumber sinaran. Sasaran logam zink dengan ketebalan 1 mm digunakan untuk menghasilkan 

koloid ZNP. Kesan masa pertumbuhan yang berbeza-beza  dari 0.5, 5, 30 dan 60 minit dan 

tenaga ablasi 200-400 mJ terhadap ciri fizikal dan optik ZNS telah diperiksa. Empat jenis ZNS 

dengan pelbagai saiz dan bentuk telah diperolehi pada substrat Si pada suhu 110 
o
C untuk tempoh 

5 minit. Peningkatan tenaga ablasi membawa kepada perubahan ketara pada morfologi ZNS dan 

mempromosikan kualiti struktur bersama-sama dengan keamatan pancaran 

kefotopendarcahayaan. ZNS yang disintesis di bawah masa pertumbuhan selama 60 minit 

mempamerkan transformasi morfologi luar biasa dari ZNS berbentuk rod/bunga ke ZNP dengan 

penghabluran yang lebih tinggi dan nilai jurang yang lebih besar disebabkan oleh peningkatan pH 

nutrien kepada 10.5. Akhir sekali, aktiviti fotopemangkin filem ZNS optimum telah dinilai 

terhadap fotodigeradasi pewarna biru metalin (MB) berpacuan cahaya matahari. Hasil 

eksperimen mengesahkan bahawa ZNP yang disediakan oleh teknik PLAL-H memiliki 

kecekapan fotopemangkin yang sangat baik (97.4%) ke arah degradasi pewarna MB. Peningkatan 

yang diperhatikan dalam aktiviti fotopemangkin telah disifatkan sebagai sinergi peningkatan 

kawasan permukaan dan perubahan jurang jalur. Ternyata bahawa strategi pertumbuhan PLPAL-

H novel yang dicadangkan ini bukan sahaja menjimatkan kos tetapi berguna untuk pengeluaran 

pantas secara terkawal ZNS dengan kualiti yang berbeza pada suhu rendah. Ini boleh mengatasi 

kelemahan yang melibatkan keberkesanan penggunaan sumber cahaya matahari untuk aplikasi 

praktikal fotopemangkin ZNS. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Overview 

 

Richard Feynman (1959) first introduced the concept of “nanotechnology” in 

a seminar presentation entitled “There’s Plenty of Room at the Bottom” [1]. This 

notion was further extended by E. Drexler in a celebrated book titled “engines of 

creation: the coming era of nanotechnology” [1, 2]. Since then, several discoveries 

and inventions related to nanoscience and nantechnology have made a significant 

impact in terms of potential applications. Presently, nanoscience is the frontier 

research topic in every frontier of science, technology and engineering. Intense 

efforts are made to achieve new functional nanomaterials for efficient, economic and 

environmental friendly applications. Nanotechnology involves materials or structures 

at length scales ranged between sub-nanometer to few hundreds of nanometer. Over 

the years, it is realized that properties of materials can be fine-tuned by changing the 

dimension (size and shape) without altering the chemical composition. 

 

It is proven that the properties materials at nanoscale are very different from 

their bulk counterpart. The large surface area to volume ratio and the quantum 

confinement or quantum size effects make low dimensional distinct compared to 

bulk materials. For example, metals (e.g. Au and Ag) at nanoscale possess an 

enhanced absorption and scattering properties for visible light due to the influence of 

surface plasmon resonance (SPR) [3]. Whereas, semiconductors materials (e.g. ZnO 
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and TiO2) at lower dimensions (nanometer size) show emerging optical and 

electronic structure properties due to quantum size effects. Several studies revealed 

that the effect of quantum confinement in semiconductor nanostructures appears 

more prominent at length scale comparable to exciton Bohr radius, where energy 

levels become quantized [4-6]. 

 

Nanotechnology offers diverse prospective applications in the field of optics, 

energy system, electronics, biomedicine, biology, environment, security, gas sensing 

etc. to cite a few [7]. Depending on the dimension of nanostructures, materials are 

categorized as zero dimensional (0D) called nanoparticle (NP), one dimensional (1D) 

called nanowire (NW) and nanorod (NR); two dimensional (2D) known as quantum 

well (QW) and three dimensional (3D) flower- and multipod- like nanostructures as 

shown in Figure 1.1 [8-10].  

 

 

 

 

 

 

 

 

Figure 1.1 Overview of different structures and geometries at nanoscale [11] 

 

Amongst various wide band-gap semiconductor nanomaterials, zinc oxide 

(ZnO) nanostructures (ZNSs) are very prospective in broad array of technological 

applications owing to their excellent electronic structure properties. Diverse 
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nanostructures of ZnO with unique features can easily be achieved using different 

synthesis methods. These nanostructures possess outstanding optical properties 

which are advantageous for the advancement of photovoltaic and optoelectronic 

nanodevices. Furthermore, control of ZnO epitaxial layer quality together with native 

and dopant point defects remains a vital issue for direct nanodevice production [12].  

 

In the past, numerous techniques are developed for the production of diverse 

ZNSs under specific controlled growth conditions [12-17]. These methods include 

pulsed laser deposition (PLD), sol-gel processing, spray pyrolysis, electrochemical 

deposition, pulse laser ablation in liquid (PLAL), metal organic chemical vapour 

deposition (MOCVD), molecular beam epitaxy (MBE), radio-frequency (RF) 

sputtering, hydrothermal etc. Different techniques produce different kinds of ZNSs 

morphology such as ZNPs, ZNWs, ZNRs, ZnO nanoleafs (ZNLs), ZnO nanobelts 

(ZNBs), ZnO nanocages (ZNCs), ZnO nanoflowers (ZNFs) etc. Figure 1.2 shows the 

scanning electron microscope (SEM) images of different types of ZNSs grown via 

hydrothermal method.  

 

 

 

 

 

 

 

 

Figure 1.2 SEM images of various ZNSs synthesized on Si substrates using 

hydrothermal method: (a, b and c) rod-like, (d) star-like, and (e and f)                            

flower-like [18]  

(a) 

(f) (e) (d) 

(c) (b) 
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Despite much progress in the preparation methods, controllable growth of 

ZNSs with desired properties are still demanding for several applications including 

electronics, optoelectronics, gas sensing, energy conversion/storage devices and 

photocatalysis [19-24]. Research revealed that the characteristics of produced ZNSs 

and their subsequent applications are critically decided by the nature of growth 

technique and the inter-play of different growth parameters (temperature, time, 

precursor type and concentration, seed layer, nutrient pH value etc.). All these 

parameters associated with the conventional growth techniques revealed their strong 

influence on the quality of ZNSs (morphology, structure quality, size, density, 

alignment, electrical and optical properties etc.) [25-27]. Earlier, many attempts are 

made to control the physical, structural, electrical and optical properties of ZNSs 

under mild growth conditions. The main aim was to determine the significant 

behaviors of ZNSs towards the advancement of novel and efficient nanodevices [13, 

24, 28-30].  

 

Among various methods of synthesis, both PLAL and hydrothermal (H) 

techniques have added advantages for the production of good quality ZNSs (undoped 

and doped) under mild growth conditions. Considering these notable merits, present 

thesis made a synergistic combination of the PLAL and hydrothermal methods 

(hereafter called PLAL-H technique) for the controlled growth of ZNSs with 

evolving morphologies. Using this novel method, varieties of ZNSs-based films are 

grown, which depended on the growth conditions including ablation energy mediated 

production of ZNPs colloids, substrate nature, growth temperature and time, 

precursor type and concentration, and nutrient pH values. Such growth conditions 

dependent ZNSs morphology, size, density and crystallinity, and optical properties 

are determined. Propose and understanding growth mechanisms processes are 

investigated. Furthermore, these as-synthesized ZNSs morphology driven 

improvement in the photocatalytic activity under sunlight irradiation is evaluated.  
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1.2 Photocatalytic Application  

 

In recent time, freshwater pollution due to residual organic dyes emanating 

from the industries such as textile, pharmaceutical, pesticides, tannery, craft 

bleaching, cosmetic, food processing and agriculture is a major environmental 

concern (Figure 1.3). In fact, about 710
5
 tonnes of organic dyes are annually 

produced worldwide in which more than 10-15% is leached into the wastewater 

during manufacturing and processing [31]. These chemicals are not only highly toxic 

and hazardous to the living organism but their intermediates can undergo reductive 

processes and result in the formation of potentially carcinogenic or mutagenic 

compounds unless inhibited. Thus, considering the toxicity potential of these dyes in 

the environment their immediate remediation before being discharging into the 

surroundings is mandatory.  

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Pictures showing the freshwater pollution (a and b) due to chemicals 

fallout and (c and d) its influence on the living organism [32] 

(a) 

(b) 

(c) 

(d) 
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In the past, diverse methods are developed to diminish the impact of such 

toxic chemical pollutants on the non-human environment, aquatic systems, and 

human life. Methods including adsorption, membrane separation and biological 

treatments are limited due to their high operating cost and inefficient in removing 

these pollutants. Currently, photocatalytic reactions based photodegradation 

processes have been introduced as an effective and economic strategy to eliminate 

such pollutants. In this regard, semiconductor nanomaterials (ZnO, SiO2 and TiO2) 

revealed great prospects for photocatalytic applications to treat the environmental 

pollutants. Categorically, heterogeneous photocatalysis-based  ZNSs owing to their 

unusual attributes such as diverse morphologies, ability to absorb a wide solar 

spectrum, high chemical stabilizations, nontoxicity, abundance in nature and low cost 

became attractive. Thus, this material is chosen for the effective remediation of toxic 

environmental pollutants [19, 33, 34]. Many literature findings showed that the 

optimization of physical properties of as-synthesized ZNSs in terms of large surface 

area and modified bandgap can be useful for the increase of the number of active 

sites and subsequent charge transfer useful for enhanced photocatalytic activity.               

This in turn enhances the electron–hole pairs’ separation efficiency in the 

photocatalytic reactions, resulting in the enhancement of the photocatalytic 

efficiency [19, 31, 34-36].  

 

 

1.3 Problem Statement   

 

Despite the development of various syntheses methods of ZNSs a controlled 

growth technique with mild conditions that produce evolving morphologies and 

desirable properties is far from being achieved. Controlled growths of ZNSs are 

significant for determining the overall properties as well as potential applications. 

Most of the existing synthesis methods have complicated conditions such as high 

vacuum, expensive devices, specialized laboratory, complex growth procedures, high 

temperature, requirement of catalyst or template, and longer growth time. It is 

necessary to develop a simple, fast, scalable, cost-effective and catalyst-free new 

growth approach such as PLAL-H (combination of PLAL and hydrothermal 
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methods). This novel technique is expected to achieve better control on the growth of 

ZNSs-based film, which is still lacking. A better understanding of the PLAL-H 

growth mechanism that produces ZNSs with evolving morphologies in addition to 

improved photocatalytic efficiency toward MB dye under sunlight irradiation is 

prerequisite. 

 

Modifications in the photocatalytic activity of ZNSs for practical applications 

remain a major issue due to their wide band-gap nature and subsequent absorption in 

the UV region only. On top, the wide band-gap nature of ZNSs allows only ~ 4-5% 

of the solar spectrum in the UV-range for effective use as a renewable energy source, 

which is the main limitation for photocatalytic application. Furthermore, studies on 

superior photo-degradation ability of MB by un-doped ZNSs-based film under 

sunlight irradiation are rarely performed. Earlier studies mainly focused on ZNSs-

based powder to achieve photodegradation of MB dye. These are not only expensive, 

but required complex processing tools such as centrifugation. Consequently, it is 

necessary to overcome the limitations associated with weak photocatalytic activities 

of ZNSs where an enhancement in the harvesting (absorption) efficiency of the solar 

spectra in the broad region (UV and visible (Vis) regions) and reduction of 

processing cost is necessary. In this view, present thesis took a fair attempt to 

develop a new PLAL-H growth technique for overcoming all the above mentioned 

limitations associated with the synthesis of ZNSs using conventional methods as well 

as the photocatalytic application of ZNSs driven by sunlight irradiation.  
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1.4 Research Objectives  

 

Based on the aforementioned problem statement and research background on 

ZNSs the following objectives are set:  

 

1. To develop a new PLAL-H technique with mild growth conditions for the 

controlled synthesis of ZNSs-based film having evolving morphologies. 

2. To determine the influence of growth parameters on the morphology, size, 

density, structure, composition, optical properties and photocatalytic 

activities of the synthesized ZNSs-based film.    

3. To evaluate the photocatalytic activity of the as-grown ZNSs-based films in 

terms of photo-degradation ability of MB under sunlight irradiation.  

 

 

 

1.5 Scope of the Study 

 

Present study includes the synthesis, characterization and determination of 

photocatalytic properties of ZNSs-based films. Amongst all the metal oxides 

semiconductors ZnO is preferred for various applications because of their distinct 

physical and chemical attributes including wide direct band gap, large exciton 

binding energy, excellent stability, environmental friendliness, low cost and easy 

availability. These fascinating properties are supported by ability of ZnO to easy 

formation of different nanostructures (ZNSs) gained high surface area to volume 

ratio and effective quantum confinement compared to bulk structure. Intense 

researches revealed the possibility of tuning the electronic band structure of ZnO via 

controlled synthesis of ZNSs useful for light-emitting diodes, sensors, catalysts, field 

emitters, biosensors, solar cell and photocatalytic application. Preparation of               

ZNSs-based films with controlled morphologies will be achieved via newly proposed 

PLAL-H growth technique as well as using conventional hydrothermal route to 

authenticate its ability for producing high quality ZNSs with diverse morphologies. 

The growth conditions optimization by varying different growth parameters would 
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be the major focus. The impact of various processing parameters including laser 

energy, nutrient type, nutrient pH, nutrient concentration, growth temperature and 

time on the ZNSs growth mechanism will be determined. Such NSs properties such 

as morphology, density, orientation, aspect ratio, crystal size and crystallinity are 

found to be strongly depended on the synthesis technique and processing conditions.  

 

Current newly proposed simple PLAL-H technique is capable of controlling 

the morphology, aspect ratio, density, structure, optical and photocatalytic properties 

of ZNSs. This technique is cost-effective and can produce good quality ZNSs at short 

growth time and low temperature (under mild growth conditions) without requiring 

any catalysts. Moreover, more than three ZNSs can be grown simultaneously.               

Such ZNSs with diverse morphologies, sizes and crystallinity are essential for the 

development of ZNSs based optoelectronic devices which are cheap and efficient. 

Using the proposed systematic characterization method it is possible to determine the 

purity, size, emission and absorption properties, band gap, photocatalytic activity and 

morphology of ZNSs as well as other nanomaterials required for broad array of 

applications. The photocatalytic performance of the optimal ZNSs samples under 

sunlight irradiation will be measured in terms of photo-degradation of MB dye.  

 

As-prepared samples are thoroughly characterized using various imaging and 

spectroscopic techniques. The experimental results on as-synthesized ZNSs are 

compared with similar existing findings for better understanding of the growth 

mechanisms. Samples structures and morphology (surface morphology, size, density, 

crystallinity, and elemental traces) are determined using field emission scanning 

electron microscopy (FESEM), X-ray diffraction (XRD) measurement, high 

resolution transmission electron microscopy (HRTEM), Energy dispersive X-ray 

diffraction (EDX) and Fourier-transform infrared (FTIR) spectroscopy. The optical 

properties of ZNSs samples are determined via photoluminescence (PL) 

spectroscopy and UV-Vis absorption spectroscopy.  
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1.6 Significance of the Study 

 

Nowadays the pollution of freshwater due to the residual organic 

contaminants (dyes) in the form of chemical waste being the major environmental 

concern needs remediation. These chemical pollutants are highly toxic and harmful 

for the entire eco-system. Therefore, degradation of these organic contaminants is 

essential to circumvent the human health risks. In this view, ZNSs-based films grown 

via innovative PLAL-H route can be superior in terms of photocatalytic efficiency 

toward pollutant MB dye under sunlight irradiation. This study is expected to 

contribute towards the development of high performing ZNSs with excellent 

photocatalytic activity under sunlight irradiation which is a free, clean, and 

inexhaustible irradiation source. The capacity to use ZNSs-based films for useful 

exploitation of sunlight source to achieve enhanced photocatalytic action would 

certainly be beneficial in terms of economy and environment. Furthermore, PLAL-H 

technique can be extended for producing other semiconductor NSs morphologies. 

Present PLAL-H technique may constitute a basis for controlled manipulation of 

nanomaterials desirable for high performance nanodevices.    

 

 

1.7 Thesis Organization    

 

  This thesis is composed into five chapters as follows:  

 

Chapter 1 presents a brief background of the research to justify the 

importance of ZNSs and need for further studies. It clearly shows the research gap to 

set out the precise objectives to be accomplished. It includes the problem statement, 

research objectives, scope, and significance. 

 

Chapter 2 describes the comprehensive literature survey to show the existing 

research gaps and the relevant findings on the cited topic made so far. It describes the 
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electrical, optical and structural properties of ZnO nanostructure. It explains the 

growth mechanism of ZNSs associated with the hydrothermal and PLAL synthesis 

techniques. Influence of growth technique and growth conditions on the morphology 

of ZNSs films are discussed. The mechanism of photocatalytic activity of ZNSs is 

underscored. The major parameters of different growth techniques that can achieve 

enhanced photocatalytic efficiency of ZNSs film are explained in depth.  

 

Chapter 3 highlights the detailed research methodology in terms of synthesis 

techniques used and the adopted steps towards photocatalytic applications. The 

background information of major experimental techniques for collecting the data and 

analysis related to as-grown ZNSs samples are emphasized.  

 

Chapter 4 presents detailed results, analysis and discussion. Findings from 

two different synthesis methods such as hydrothermal and PLAL-H are evaluated in 

terms of optimization of growth conditions to produce various catalyst-free ZNSs 

films at low temperature and growth time compared with previous studies. The 

remarkable features of the synergistic PLAL-H technique for controlled preparation 

of ZNSs-based film are explained. Photocatalytic performance of obtained optimal 

ZNSs samples under sunlight irradiation is assessed using photodegradation of MB 

dye. Dependence of photodegradation efficiency of MB dyes on morphology and 

structure evolution of as-grown ZNSs films as well as ability of these ZNSs film as 

photocatalysis to overcome the shortcomings for beneficial exploiting of sunlight 

source is attributed.  

 

Chapter 5 concludes the thesis and provides some future outlook in terms of 

recommendations. The successful accomplishments of the proposed research 

objectives are demonstrated.  
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