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ABSTRACT

Inspired by the bleeding mechanism in living organisms to heal injury for
survival, such capability has been integrated into a damaged laminate composite for
autonomous internal repairing to extend its service life. The main healing mechanisms
include infiltration of healing liquid into the crack plane, resulted from the breaching of
pre-embedded vessels, which is triggered by a damage event. The later polymerization
of the healant serves to restore the strength of the crack plane and hence inhibits
further crack growth. The best healing performance is generally governed by both
infiltration and polymerization rates of healing liquid at the crack tip. In ensuring
assessment of these rates without excessive computational burden but free from the
companion numerical stability-consistency-accuracy issues, in-house hydrodynamic
and thermodynamic models based on the weak form Galerkin finite element (FE)
method have been developed in this study. To simulate the micro-scale isothermal
hydrodynamics of the Newtonian liquid, one-dimensional (1D) incompressible Stokes
equations have been solved using the penalty function method. Computational matters,
such as the feasible penalty parameter (γp) for multiple flow geometries of single
straight micro-channel, are discussed and numerically addressed. Meanwhile, the
polymerization mechanics of healing liquid in a straight crack channel is obtained
by solving the heat conduction formulation coupled with the phenomenological
Arrhenius’s rate equation and Crank-Nicolson time scheme. It is observed that the
iterative Uzawa’s technique, which employs forcing term correction in terms of the
previous velocity solution, coupled with another forcing term correction in terms of
the previous divergence of velocity solution is capable of eliminating the instability
of axial pressure distribution and inconsistency of the conventional penalty model
setting. Additionally, implementing termination criterion by equalizing the order of
both maximum elemental divergence of velocity (EDVmax) and penalty parameter
ensures stability, consistency, and accuracy of solution for 1× 101 ≤ γp ≤ 1× 1011.
Adopting similar termination technique for the Crank-Nicolson predictor-corrector
time integration scheme with the penalty formulation, the proposed model is capable
of capturing the flow front motion in micro-channel by electing the temporal mesh
size (∆t) from a function of hydraulic diameter (Dh) and spatial mesh size (∆x).
Parametric study for temperature and cure degree evolution by varying pre-exponential
factor (Ã), activation energy (Ẽ), ñ-th order of reaction, and ultimate enthalpy of cure
(H̃) has been performed thoroughly where an optimal coupling between Ã and Ẽ is
identified as the dominating factor in achieving the most favored repairing behavior.
While the order of reaction imparts less significance in the evaluation, it is observed
that polymeric healant with a higher numerical value of H̃ is not beneficial either.
The principal contribution of the present study includes the construction of a series of
FE Eulerian frameworks that are reliable, without excessive computational burden, in
assessing key diffusive mechanistic variables of extrinsic self-healing mechanisms in
achieving optimal strength recovery of straight crack geometry in polymeric materials.
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ABSTRAK

Diilhamkan oleh mekanisme pendarahan dalam organisma hidup demi
menyembuhkan kecederaan untuk kesinambungan hidup, keupayaan ini telah
disepadukan ke dalam komposit lamina yang rosak untuk pembaikan dalaman
autonomi demi pemanjangan hayat perkhidmatannya. Mekanisme penyembuhan
utama termasuk penyusupan cecair penyembuh ke dalam pelan retak hasil daripada
kebocoran saluran pra-tanam, yang dicetus oleh peristiwa kerosakan. Pempolimeran
penyembuh seterusnya berfungsi untuk memulihkan kekuatan kawasan retak dan
menghalang pertumbuhan retak. Prestasi penyembuhan terbaik biasanya dikawal oleh
kedua-dua kadar penyusupan dan pempolimeran cecair penyembuh di hujung retak.
Untuk menilai kekadaran ini tanpa beban komputeran yang berlebihan, tetapi bebas
daripada masalah sambilan kestabilan-konsitensi-ketepatan, model hidrodinamik dan
termodinamik bina-diri berdasarkan kaedah unsur terhingga (FE) Galerkin bentuk
lemah telah dibangunkan di dalam kajian ini. Untuk simulasi hidrodinamik cecair
Newtonian sesuhu berskala mikro, persamaan Stokes tak mampat satu dimensi (1D)
telah diselesaikan dengan kaedah fungsi penalti. Isu komputeran, seperti kesesuaian
parameter penalti (γp) dengan pelbagai geometri aliran untuk saluran mikro lurus
tunggal, telah dibincang dan ditangani secara berangka. Sementara itu, mekanik
pempolimeran cecair penyembuh dalam saluran retak lurus telah diperolehi dengan
menyelesaikan formulasi aliran haba yang dipasangkan dengan persamaan kadar
fenomenologi Arrhenius dan skim masa Crank-Nicolson. Teknik lelaran Uzawa yang
menggunakan pembetulan terma daya dalam bentuk penyelesaian halaju sebelumnya,
dipasangkan dengan pembetulan terma daya dalam bentuk perbezaan penyelesaian
halaju sebelumnya, telah diperhatikan mampu menghapus ketidakstabilan taburan
tekanan paksi dan kekurangan konsistensi oleh ketetapan model penalti konvensional.
Selain itu, pelaksanaan kriteria penamatan dengan menyamakan peringkatan kedua-
dua perbezaan halaju unsur maksimum dan parameter penalti mampu memastikan
kestabilan, konsistensi, dan ketepatan penyelesaian untuk 1× 101 ≤ γp ≤ 1× 1011.
Dengan teknik penamatan yang sama untuk skim integrasi masa peramal-pembetul
Crank-Nicolson dengan formulasi penalti, model yang dicadang mampu menentukan
pergerakan hadapan aliran dalam saluran-mikro dengan memilih saiz unsur tempoh
(∆t) daripada fungsi diameter hidraulik (Dh) dan saiz unsur ruangan (∆x). Kajian
parametrik terhadap evolusi suhu dan tahap pengawetan dengan mengubah faktor
pra-eksponen (Ã), tenaga pengaktifan (Ẽ), tindakbalas peringkat ke-ñ, dan entalpi
muktamad untuk awetan (H̃) telah dijalankan dengan teliti di mana gandingan optima
antara Ã dan Ẽ telah dikenalpasti sebagai faktor dominasi dalam mencapai kelakuan
pembaikian terbaik. Walaupun peringkatan reaksi kurang memberi implikasi dalam
penilaian, penyembuh polimer dengan nilai H̃ yang lebih tinggi juga diperhatikan
tidak berfaedah. Sumbangan utama daripada kajian ini termasuk binaan satu
siri rangka kerja FE Eulerian yang mantap, kurang beban komputeran, dalam
menilai pembolehubah mekanistik sebaran utama untuk mekanisma penyembuhan diri
ekstrinsik demi mencapai pemulihan kekuatan optima bagi geometri retak lurus bahan
polimer.
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MR – Minimum residual

NHFi – Net heat fluxes, i = x, y, z

NMFi – Net mass fluxes, i = x, y, z

NMMFi – Net momentum fluxes, i = x, y, z

NRTEi – Net release of thermal energy, i = x, y, z

PE – Percentage of error

SD – Steepest descent

SPH – Smoothed particle hydrodynamics

PT – Progression time

TDCB – Tapered double cantilever beam



xxiii

TEC – Truncation error coefficient

TEFi – Total external forces, i = x, y, z

TFT – Total filling time

TNMMFi – Total net momentum fluxes, i = x, y, z

1D, 2D, 3D – One-dimensional, two-dimensional, three-dimensional

–

CZ Kam
Text Box



xxiv

LIST OF SYMBOLS

a – Acceleration

A – Area
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u, v, v⃗, U , Û – Velocity components
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Despite impressive functionality of polymeric materials in various engineering
applications, from thin film to protective coat to fiber reinforced laminae to laminated
composite, the material is vulnerable to numerous damage mechanisms (defined either
as explicit or implicit damage) as schematically illustrated in Figure 1.1 (a). Typical
implicit damage forms as depicted in Figure 1.1 (b) often induce the concerns of
structural integrity (Zhang and Rong, 2011; Binder, 2013; Li and Meng, 2015) such as
the transverse cracks and delamination that cross and lie between the plies of laminae,
respectively. Of more relevance, the polymeric structures in structural application
could loss partially the load carrying capability when subjected to these damage
events that eventually cause catastrophic failure or fatigue once the cumulative damage
intensity and/or severity exceeds the critical threshold.

Explicit 

damage

Accidental damage

Implicit 

damage

In-plane load

(a) 

Bending Ballistic impactTensile Compression

Out-of-plane load

Scratches Razor cut

Figure 1.1: Typical (a) crack initiation (Zhang and Li, 2016) and (b) damage modes
in polymeric materials (Blaiszik et al., 2010) (cont)
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Figure 1.1: Typical (a) crack initiation (Zhang and Li, 2016) and (b) damage modes
in polymeric materials (Blaiszik et al., 2010).

To counteract the degradation of the structural functionality of the material
upon damage, the repairing measure shall initiate as early as possible to prohibit
the increment of the level of severity. The complexity and hence efficiency of the
maintenance scheme is often directly proportional to the intensity as well as severity
of the damage events. Despite such awareness, the idea is often less likely implemented
due to the difficulty in detecting these barely visible implicit damages. The detecting
issue along with the tedious and costly outside-to-inside scratch repair works have
motivated various innovative healing routes (Figure 1.2) for the polymeric materials.
In general, the intrinsic/internal healing concept is applicable to the thermoplastic
polymer due to its reversible switch of the broken crosslinking when subjected to
certain stimulus. The extrinsic/external healing concept that generates a new volume of
crosslinking is mostly characterized for the thermoset polymer due to its non-reversible
network. Note that the implementation route and healing scale vary according to the
repairing type achieved by the polymeric crosslinking (Zhang and Rong, 2011; Binder,
2013; Li and Meng, 2015). General details relevant to thermoplastic and thermoset
polymeric materials have been highlighted with red and yellow color, respectively.
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Figure 1.2: Innovative healing concepts corresponding to thermoplastic and thermoset
polymers (Meng and Li, 2013; Yang et al., 2015; Patrick et al., 2016).

White et al. (2001) demonstrated the autonomous healing of the micro-scale
damage in bulk polymer matrix by mimicking the simplified biological self-healing
system as given in Figure 1.3. By autonomous, the system is meant to work without
any human intervention. The trigger, either damage or wound in respective route,
is responsible to initiate the transportation of the healant to the intended destination
(e.g. blood delivery for the biological route). The subsequent response, mainly based
on the chemical nature, is responsible for the repair of the damage/wound. Despite
mimicking, the duration for the healing in synthetic system is much shorter than the
biological system.
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Figure 1.3: The conceptual synthetic system as inspired by the biological repairing
route (Blaiszik et al., 2010).

The general key mechanisms of the external self-healing system by White et al.
(2001) include the rupture of the container (i.e. encapsulated dicyclopentadiene and
Grubb’s catalyst) that triggers the flow and subsequent solidification of the healing
chemical within the damage geometry (refer Figure 1.4 (b-c)) embedded in the bulk
epoxy matrix. The term external is used since there is an embedment of an extra
healing chemical-filled containers to the host material (Zwaag, 2007; Ghosh, 2009)
to perform the autonomous healing functionality once it is damaged. The healing
is mechanically triggered by the extending micro-crack that ruptures the embedded
containers of the system, thereby attributing to the autonomous characteristic of the
synthetic system.

(a) (b) (c)
Crack propagation Infiltration

Figure 1.4: Schematic of the (a) microcapsule system (b) typical crack propagation
and (c) flow and subsequent solidification of healant in crack geometry (Murphy and
Wudl, 2010).
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The trigger, transport, and chemical repair in the practice of the external
self-healing in polymeric materials are generally governed by solid, fluid, and
polymerization mechanics along with multiple linear and/or nonlinear constitutive laws
as proposed in the current thesis and presented in Figure 1.5. For optimal performance
in healing, Zone III is the most desired but of the greatest complexity. This is because
it overlaps all three chief mechanics (solid fracture, fluid, and polymerization), and
therefore, the most realistic characterization of the healing behavior. When considered
separately in a single field fashion (single perspective: Zones I-1, I-2, and I-3),
optimality in healing is the lowest although they are of the least complexity in design.
An intermediate level of optimality in design can be achieved by overlapping in
consideration two of the three main mechanics as illustrated by the II-1, II-2, and II-3
Zones.

Solid and fracture 

mechanics 

Fluid  

mechanics 

Polymerization  

mechanics 

II-1 II-2 

II-3 

III 

I-1 

I-2 I-3 

Single perspective (low optimality design)

I-1 Solid-fracture mechanics

I-2 Fluid mechanics

I-3 Polymerization mechanics

Double perspective (intermediate optimality design)

II-1 Solid-fracture + Fluid mechanics

II-2 Solid-fracture + Polymerization mechanics

II-3 Fluid + Polymerization mechanics

Triple perspective (high optimality design)

III Solid-fracture + Fluid + Polymerization mechanics

Figure 1.5: Typical consideration scopes and mechanics in extrinsic self-healing
polymeric system.

For instance, there is no limitation on the incremental size of the containers
within Zone I-2 consideration in order to maximize the pumping power on the
healing liquid for the infiltration purpose. However, the container size is subjected
to constraint if the consideration is arisen from Zone II-1. This is to align with the
minimal detrimental loss strength of the specimen due to the containers embedment
that is arisen from the consideration in Zone I-1. Various external self-healing trials
have since been reported for different polymer matrices as well as their laminates
(Hillewaere and Du Prez, 2015), adopting different containers (i.e. microcapsule,
hollow fiber, vascular) and healing chemicals (mostly polymeric liquid), aiming at
repairing different modes of micro-scale damage. The common goal of these works
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remains in the search for the optimized synthetic system of the aforementioned
variables in prolonging the service life of the man-made polymeric structures,
preferably without human intervention.

Assessment on the optimality of the mechanical performance of the specimen
due to the embedment of external healing system, through initial damage loss and final
heal recovery of specific variables, is readily achievable based on the solid-fracture
mechanics (Zwaag, 2007; Ghosh, 2009; Zhang and Rong, 2011). Nevertheless, a core
attention on the fluid flow and polymerization realms of this new evolving scientific
practice remains lacking and hence worth to be further addressed. Specifically, the
behavior arisen based on the fluid-polymerization mechanics needs to be attached
to the much conventional solid-fracture-solid framework to enable a much in-depth
mechanical assessment. Note that the extrinsic healing mechanisms itself is of both
multi-physics (i.e. structural, fracture, fluid, polymerization, heat transfer) and multi-
scales (i.e. micro-crack and macro-specimen) nature. Hence, neglecting fluid flow
and polymerization perspective in assessment is less realistic while also preventing the
healing performance to achieve to its full potential as readily presented and discussed
in Figure 1.5.

Experimental evaluation of both fluid and polymerization mechanics poses
considerable difficulty in execution since these events occur within a micro-scale
crack domain that is often embedded in the macro-scale opaque geometry. Also,
there is a need for a high-end equipment set to capture the effective capturing of
the relevant details (e.g. physical, chemical and thermal) that are multi-dimensional
spanning as well as highly dynamic for a lengthy period. Numerical evaluation of
these mechanics, for instance, based on the finite element (FE) spatial discretization
and finite difference temporal discretization, seems practically attractive since a much
convenient construction of the virtual environment to that of experimental is possible
to deal with the dynamic phenomenon with multi-physics, multi-scales, and multi-
dimensional nature.

Nevertheless, the adoption of these popular numerical approaches in evaluating
the fluid flow and polymerization behaviors often induces concerns in terms of the
numerical stability, consistency, and accuracy (Bathe, 1996; Reddy and Gartling, 2010;
Zienkiewicz et al., 2013, 2014). As a matter of fact, the feasibility of the approach
as an alternative to that of experimental is generally dependent on the numerical
performance generated from the virtual framework constructed. The added advantage
of the numerical assessment compared to the experimental framework, if numerous
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parametric studies are to be performed on the search of the optimal external healing
system, includes the labour-cost-time saving. Yet, it is less persuasive if the employed
numerical framework lacks of stability, consistency, and accuracy. Hence, the in-
depth discussion on the framework of numerical assessing these extrinsic self-healing
mechanism is vital and of great potential to constitute one of the main research streams
within the realm of self-healing man-made polymeric materials.

1.2 Problem Statement

The virtual framework, self-developed rather than relying on adjusting the
features in any readily available commercialized software, targeting on the micro-
scale fluid and polymerization mechanics that are relevant to the extrinsic self-healing
polymeric system is worth to be explored considering no relevant work is reported
in the literature thus far. Specifically, the framework should survive necessitated
numerical verifications before further assessment can be conducted tailoring for the
synthetic system design.

On one hand, the penalty finite element formulation for incompressible Stokes
approximation is an ideal computational tool for simplistic fluid flow simulation (Zhou,
2012; Reddy and Gartling, 2010; Zienkiewicz et al., 2014). On the other hand, the
basic energy flow is governed by the Fourier’s law where relevant disturbance on
the heat equilibrium due to the curing phenomenon, say involving polymeric liquid,
could be simplistically represented by coupling phenomenological-based approach to
the finite element formulation (Zhou, 2012; Reddy and Gartling, 2010; Zienkiewicz
et al., 2013). Despite popularity of both formulations within the computational realm,
a firm and unified set of guidelines in tackling the companion numerical issues (e.g.
stability, consistency, and accuracy) when employing the weak form Galerkin finite
element method as the base numerical framework remains under-developed (Bathe,
1996; Reddy and Gartling, 2010; Zienkiewicz et al., 2013, 2014) and hence a research
gap worthy of special consideration in the present study.

To achieve the best repairing effect, the search of the optimal chemistry
often begins with the fastest possible cure rate. Nevertheless, such chemistry is
often accompanied by the relative extreme exothermic peak that is detrimental to
the formation of the adhesive repair due to the induced residual stresses/distortions
(Zhang and Rong, 2011; Zhou, 2012; Binder, 2013). Such damage healing invokes
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a non-favorable strength restoration and shall constitute as one of the core criterions
under the scope of solid-polymerization consideration (i.e. Zone II-2 in Figure 1.5).
Adherent to the limited awareness of this mutual contribution in the self-healing
polymer literature, the development of an evaluator system targeted on capturing these
inter-linked characteristics based on the weak form Galerkin finite element model is
lacking and worth to be explored.

1.3 Objectives of the Study

The examination of the fluid and polymerization mechanics as well as the
search of the optimal strength recovery system through respective numerical setting,
preferably in a stable and concise environment but yet at an affordable computational
framework, is highly desirable considering the inherent multi-physics and multi-scales
nature of the external self-healing practice. It is the aim of the present study to
accomplish such efforts through the self-developed in-house MATLAB algorithms,
the objectives of which include:

(A) To formulate a discrete Stokes model in micro-scaled fluid setting by coupling
the weak form Galerkin finite element method and penalty function method.

(B) To determine the suitable numerical techniques and associated optimal
parameters for the efficient use of model from Objective (A) in both steady
and transient simulations.

(C) To formulate a phenomenological-based polymerization model that couples to
the heat conduction analysis by using the weak form Galerkin finite element
method.

(D) To determine the key kinetic parameters of the healing epoxy in fulfilling the
polymerization optimality based on the model from Objective (C).

1.4 Scopes of the Study

The multi-physics and multi-scales nature of the external self-healing practice
in polymeric materials impose numerous potential scopes for study. The fracture
mechanics is first excluded from consideration by limiting the present work to a
readily formed crack geometry as schematically given in Figure 1.4 (b). Both fluid
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and polymerization mechanics considered for the model are presumed to be bounded
in a micro-scaled horizontal domain (refer Figure 1.4 (c)) as given in Figure 1.6 (a).
Hence, the macro-scale undamaged portion is negligible.

Furthermore, the focus of relevant mechanics in 1D domain is adopted in
the present study as presented in Figure 1.6 (b) due to the feasibility of dominantly
unidirectional assumption (Reddy, 2006; Zienkiewicz et al., 2013) if the cross-
sectional dimension (i.e. µm scale) is sufficiently small than that of length (i.e. mm
scale). Moreover, the fluid and polymerization mechanics are considered separately in
the present study to avoid the potential numerical complexity due to the multi-physics
concern (Bathe, 1996; Reddy and Gartling, 2010). As a matter of fact, the time scale
(t) for fluid mechanics is often much shorter than that of the polymerization (refer
response-time plot of synthetic system in Figure 1.3) due to the optimal infiltration
rate requirement and hence the assumption of no obvious non-linearity overlapping
concern among these mechanics is justified.

 

C A 

B A ≈ B 

A « C 

(a)

 Fluid  
Time = tfluid 

Polymerization 
Time = tpolymerization 

(b)

Figure 1.6: The domain of (a) presume crack geometry and (b) fluid flow and
polymerization.

The scopes relevant to the hydrodynamics aspects in the present study include:

(a) Flow nature

(i) Laminar flow.

(ii) Flow length < 20mm.

(iii) Micro-channel (10µm - 200µm) (Kandlikar et al., 2005).
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(iv) Inlet velocity < 5m/s.

(v) Atmospheric outlet pressure.

(vi) Viscous incompressible Newtonian fluid.

(b) Modeling framework

(i) Stokes equations.

(ii) Velocity and pressure variables.

(iii) Weak form Galerkin finite element method.

(iv) Consistent penalty function method.

(v) Lagrangian shape functions (i.e. quadratic and linear).

(vi) Crank Nicolson predictor-corrector time integration scheme.

On the other hand, the scopes relevant to the thermodynamics as well as
polymerization aspects in the present study are:

(a) Heat transfer nature

(i) Heat conduction.

(ii) Neumann inlet boundary (i.e. zero heat influx).

(iii) Dirichlet outlet boundary (i.e. constant temperature).

(iv) Phenomenological polymerization (Kessler and White, 2002; Zhou,
2012).

(b) Modeling framework

(i) Fourier’s law.

(ii) Temperature and cure degree variables.

(iii) Weak form Galerkin finite element method.

(iv) Lagrangian shape function (i.e. linear).

(v) Crank-Nicolson time integration scheme.

(vi) Arrhenius’s rate equation (Kessler and White, 2002; Zhou, 2012).
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1.5 Significance of the Study

Two typical in-house weak form Galerkin finite element models targeted on
capturing fluid dynamics and thermodynamics response are developed in the present
study, respectively. Equipped with considerable numerical validation and verification,
along with specific remedies to deal with the prompted underlying computational
issues, these models are readily adopted to assess the infiltration and polymerization
behaviors of the infilling polymeric liquid in single unidirectional crack geometry.

Besides, the output of these in-house models (e.g. velocity, pressure, evolution
of both temperature as well as the cure degree) readily serves as the input parameters
for both the structural and fracture module (refer Figure 1.5) in order to accomplish
the core mechanics assessment of extrinsic self-healing mechanisms in polymeric
materials. Specifically, the infilling behavior offers the details on the remaining crack
portion that contribute nothing to structural strength and perhaps the next crack origin.
On the other hand, the polymerization behavior (i.e. the axial cure degree along
the unidirectional crack domain) offers the relevant information on the strength gain
throughout the healed event to cater the next fracture.

Generally, a thorough and representative mechanical assessment on the
optimality of the healing performance in a single realistic crack geometry is readily
achievable based on the output parameters generated by the in-house weak form
Galerkin finite element models developed in the present study. Note that relevant
work on this aspect remains lacking in the literature. Several companion benefits
throughout the development of the in-house weak form Galerkin finite element models
are highlighted herein:

(a) The experience in numerical validating and verifying these models could be
laid as the reference framework to develop much advanced infiltration and
polymerization module corresponding to the much realistic crack phenomenon
(i.e. 2D/3D spanning as well as multiple branches) and polymer chemistry.

(b) The survival of the weak form Galerkin finite element fluid flow and heat
transfer module from the computational issues encourages a unified numerical
framework to be developed targeted on extrinsic self-healing mechanisms.
Specifically, the transfer of the multi-physics variable under similar numerical
method is convenient and favorable. Therefore, the effort contributed in the
present study shall serve as a milestone for the upcoming research in this realm.
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(c) The benefit of coupling examination of multi-physics variable is demonstrated
in the present study, Particularly, the unification of both temperature and
cure degree evolution under a single evaluator is demonstrated to work
ideally in assessing the solid-polymerization mechanics. Much representative
and crucial examination in similar trend is expected shall the unified weak
form Galerkin finite element framework is readily developed to assess the
underlying multi-physics variables (i.e. stress, strains, velocity, pressure,
temperature, cure degree, and etc.) embedded in the damage-transport-
chemical repair of the extrinsic self-healing mechanisms in self-healing
polymeric materials.

The relevant numerical difficulties, with respect to each independent aspect of
diffusive fluid and energy flow, are demonstrated and solved within the limited scopes
of the present study in the 1D domain. Specifically, two categories of discussion mainly
on computational mechanics aspect are presented both theoretically and practically:

(a) Effective use of penalty function method in solving both steady and transient
incompressible Stokes equations

(i) Demonstrate penalty parameter (γp)-spatial mesh (∆x) relation in
terms of numerical stability, consistency, and accuracy.

(ii) Demonstrate the role of elemental divergence of velocity (EDV)
components corresponding to mass conservation in both iterative
penalty setting and modified iterative penalty setting.

(b) Demonstrate the problematic coupling of weak form Galerkin finite element
spatial discretization and single-step finite difference temporal discretization in
capturing the dynamic behaviors of diffusive fluid motion and diffusive energy
transfer

(i) Highlight on erroneous perspective that numerical stability,
consistency, and accuracy is ensured as long as there is a sufficient
mesh refinement (i.e. spatial, temporal, and both).

(ii) Establish the ∆x-temporal mesh (∆t) relation for efficient penalty
fluid flow simulation
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1.6 Outlines of the Thesis

This thesis comprises seven chapters. After the present introductory chapter,
Section 2.1 focuses on the recent practical developments in self-healing polymeric
materials, particularly those adopt external/extrinsic-based healing system. The key
mechanics in the extrinsic self-healing mechanisms, namely fluid and polymerization,
that are worth to be examined numerically are highlighted in Section 2.2. Relevant
numerical issues and potential remedy, both steady and transient, if the FE Eulerian
framework is adopted is then discussed in Section 2.3. The nature and scopes of the
present study are then aligned with the main research issues stated throughout the
previous discussions and listed in Section 2.4.

Section 3.1 and Section 3.2 present the main governing equations for the
incompressible fluid flow and polymerization models in the present study, respectively.
Generally, the weak form Galerkin formulations for both models along with their
appropriate boundary conditions are given where the development ranging from the
selection of shape functions to the assembly of the matrix system and later the solution
procedure are discussed. Several expected findings from these models are highlighted
in Section 3.3.

The pressure solutions in a straight micro-channel based on the FE
incompressible fluid flow model are presented in Section 4.1. A beneficial remedy
framework, based on the iterative penalty Galerkin FE setting, in terms of numerical
stability and consistency is highlighted in Section 4.2. The optimal coupling between
spatial mesh size and the penalty parameter for numerical accuracy is tested and a
preliminary benchmark range is proposed in Section 4.3. A modified framework is
later proposed in Section 4.4 due to the numerical deficiency of the benchmark range
where the stability, consistency, and accuracy of the pressure solution based on the new
framework are demonstrated. Several recommendations beneficial to the development
of penalty Galerkin FE incompressible fluid flow model are summarized in Section
4.5.

The pressure solution resulted from the integration of the predictor-corrector
temporal scheme to the penalty Galerkin FE model is presented in Section 5.1. The
optimal coupling between the temporal mesh size and the penalty parameter is later
tested in Section 5.2 for a wide range of the channel geometries and inflow conditions,
most of which aligned to the extrinsic self-healing practice, where a parameter targeted
for optimal stability, consistency, and accuracy of the pressure solutions is given.
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Satisfactory performance of the parameter is later demonstrated for the flow front
tracking in micro-channel along with the progression of the pressure distribution.
The main guidelines beneficial to the development of transient penalty Galerkin FE
incompressible fluid model are summarized in Section 5.3.

The steady heat conduction modeling with heat generation term is presented
in Section 6.1 whereas extension of the framework aligned to the heat release due
to the polymerization is given in Section 6.2. The heat generation and cure rates
based on the polymerization kinetics adopted in Yuan et al. (2009) are evaluated in
Section 6.3 where an useful relation between the temperature as well as cure evolution
and the strength recovery performance of the self-healing specimen is proposed.
Performance charts are generated in Section 6.4 from the parametric study adopting
the key kinetic components of the epoxy healant where the main direction towards the
optimal mechanical recovery is demonstrated. The beneficial search of the optimal
mechanical performance based on the numerical framework is highlighted in Section
6.5.

Section 7.1 summarizes the main findings from the numerical solutions (e.g.
velocity, pressure, temperature and cure degree) generated from the FE models in
the present study where appropriate guidelines that ensure stability, consistency,
and accuracy are listed. The postulated strength recovery, based on the numerical
evaluation of both the temperature and cure degree evolution, as a simple tool
beneficial to the optimal search of the self-healing polymer chemistry as presented
in the present study is highlighted. Several recommendations aligning to the extrinsic
self-healing practice in polymeric materials that are worth to be extended under the
accomplishment of the scopes in the present study are also given.
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Faragó, I. and Horváth, R. (2007). A review of reliable numerical models for
three-dimensional linear parabolic problems. International Journal for Numerical

Methods in Engineering, 70(1):25–45.

Fortin, M. and Glowinski, R. (1983). Augmented Lagrangian Methods: Applications

to the Numerical Solution of Boundary-value Problems. Oxford:Elsevier.

Fox, R. W., McDonald, A. T., and Pritchard, P. J. (2004). Introduction to Fluid

Mechanics (Sixth Edition). Hoboken:John Wiley and Sons.

Ghazali, H., Ye, L., and Zhang, M. Q. (2016). Interlaminar fracture of cf/ep composite
containing a dual-component microencapsulated self-healant. Composites Part A:

Applied Science and Manufacturing, 82:226–234.



207

Ghosh, S. K. (2009). Self-Healing Materials: Fundamentals, Design Strategies, and

Applications. Weinheim:John Wiley and Sons.

Gresho, P. M. and Lee, R. L. (1981). Don’t suppress the wiggles - they’re telling you
something! Computers and Fluids, 9(2):223–253.

Gresho, P. M. and Sani, R. L. (1998). Incompressible Flow and The Finite Element

Method. Volume 1: Advection-Diffusion and Isothermal Laminar Flow. New
York:John Wiley and Sons.

Hall, J., Qamar, I., Rendall, T., and Trask, R. (2015). A computational model for
the flow of resin in self-healing composites. Smart Materials and Structures,
24(3):037002.

Hillewaere, X. K. and Du Prez, F. E. (2015). Fifteen chemistries for autonomous
external self-healing polymers and composites. Progress in Polymer Science,
49:121–153.

Hughes, T. J. (1987). The Finite Element Method: Linear Static and Dynamic Finite

Element Analysis. Englewood Cliffs: Prentice-Hall.

Hughes, T. J., Liu, W. K., and Brooks, A. (1979). Finite element analysis of
incompressible viscous flows by the penalty function formulation. Journal of

Computational Physics, 30(1):1–60.

Huyakorn, P., Taylor, C., Lee, R., and Gresho, P. (1978). A comparison of various
mixed-interpolation finite elements in the velocity-pressure formulation of the
navier-stokes equations. Computers and Fluids, 6(1):25–35.

Jones, A. and Dutta, H. (2010). Fatigue life modeling of self-healing polymer systems.
Mechanics of Materials, 42(4):481–490.

Kandlikar, S., Garimella, S., Li, D., Colin, S., and King, M. R., editors (2005). Heat

Transfer and Fluid Flow in Minichannels and Microchannels. Oxford:Elsevier.

Kessler, M. R. and White, S. R. (2002). Cure kinetics of the ring-opening metathesis
polymerization of dicyclopentadiene. Journal of Polymer Science Part A: Polymer

Chemistry, 40(14):2373–2383.

Krull, B. P., Gergely, R. C., Santa Cruz, W. A., Fedonina, Y. I., Patrick, J. F., White,
S. R., and Sottos, N. R. (2016). Strategies for volumetric recovery of large scale
damage in polymers. Advanced Functional Materials, 26(25):4561–4569.

Ladyzhenskaya, O. A. and Silverman, R. A. (1969). The Mathematical Theory of

Viscous Incompressible Flow (Second Edition). New York:Gordon and Breach.

Lewis, R. W., Nithiarasu, P., and Seetharamu, K. N. (2004). Fundamentals of the Finite

Element Method for Heat and Fluid flow. Chichester:John Wiley and Sons.



208

Li, G. and Meng, H. (2015). Recent Advances in Smart Self-Healing Polymers and

Composites. Oxford:Elsevier.

Liu, X., Lee, J. K., Yoon, S. H., and Kessler, M. R. (2006). Characterization of
diene monomers as healing agents for autonomic damage repair. Journal of Applied

Polymer Science, 101(3):1266–1272.

Liu, X., Sheng, X., Lee, J. K., Kessler, M. R., and Kim, J. S. (2009). Rheokinetic
evaluation of self-healing agents polymerized by grubbs catalyst embedded in
various thermosetting systems. Composites Science and Technology, 69(13):2102–
2107.

Mauldin, T. C., Leonard, J., Earl, K., Lee, J. K., and Kessler, M. R. (2012). Modified
rheokinetic technique to enhance the understanding of microcapsule-based self-
healing polymers. ACS Applied Materials and Interfaces, 4(3):1831–1837.

Meng, H. and Li, G. (2013). A review of stimuli-responsive shape memory polymer
composites. Polymer, 54(9):2199–2221.

Mizukami, A. (1985). Finite element analysis of the steady navier-stokes equations
by a multiplier method. International Journal for Numerical Methods in Fluids,
5(3):281–292.

Murphy, E. B. and Wudl, F. (2010). The world of smart healable materials. Progress

in Polymer Science, 35(1):223–251.

Park, H. C., Goo, N. S., Min, K. J., and Yoon, K. J. (2003). Three-dimensional
cure simulation of composite structures by the finite element method. Composite

Structures, 62(1):51–57.

Park, H. C. and Lee, S. W. (2001). Cure simulation of thick composite structures using
the finite element method. Journal of Composite Materials, 35(3):188–201.

Patrick, J. F., Robb, M. J., Sottos, N. R., Moore, J. S., and White, S. R. (2016).
Polymers with autonomous life-cycle control. Nature, 540(7633):363–370.

Pelletier, D., Fortin, A., and Camarero, R. (1989). Are fem solutions of incompressible
flows really incompressible? (or how simple flows can cause headaches!).
International Journal for Numerical Methods in Fluids, 9(1):99–112.

Pence, D. (2003). Reduced pumping power and wall temperature in microchannel
heat sinks with fractal-like branching channel networks. Microscale Thermophysical

Engineering, 6(4):319–330.

Rabearison, N., Jochum, C., and Grandidier, J.-C. (2009). A fem coupling model for
properties prediction during the curing of an epoxy matrix. Computational Materials

Science, 45(3):715–724.



209

Reddy, J. (1982). On penalty function methods in the finite-element analysis of flow
problems. International Journal for Numerical Methods in Fluids, 2(2):151–171.

Reddy, J. N. (2006). An Introduction to the Finite Element Method (Third Edition).
New York:McGraw-Hill.

Reddy, J. N. and Gartling, D. K. (2010). The Finite Element Method in Heat Transfer

and Fluid Dynamics. Boca Raton:CRC press.

Reddy, M., Reddy, J., and Akay, H. (1992). Penalty finite element analysis of
incompressible flows using element by element solution algorithms. Computer

Methods in Applied Mechanics and Engineering, 100(2):169–205.

Reddy, M., Reifschneider, L., Reddy, J., and Akay, H. (1993). Accuracy and
convergence of element-by-element iterative solvers for incompressible fluid flows
using penalty finite element model. International Journal for Numerical Methods in

Fluids, 17(12):1019–1033.

Rouison, D., Sain, M., and Couturier, M. (2003). Resin-transfer molding of
natural fiber-reinforced plastic. i. kinetic study of an unsaturated polyester resin
containing an inhibitor and various promoters. Journal of Applied Polymer Science,
89(9):2553–2561.

Rouison, D., Sain, M., and Couturier, M. (2004). Resin transfer molding of natural
fiber reinforced composites: Cure simulation. Composites Science and Technology,
64(5):629–644.

Ruiz, E. and Trochu, F. (2005). Comprehensive thermal optimization of liquid
composite molding to reduce cycle time and processing stresses. Polymer

Composites, 26(2):209–230.

Ruiz, E. and Trochu, F. (2006). Multi-criteria thermal optimization in liquid composite
molding to reduce processing stresses and cycle time. Composites Part A: Applied

Science and Manufacturing, 37(6):913–924.

Saha, A. A. and Mitra, S. K. (2008). Modeling and simulation of microscale flows. In
Petrone, G. and Cammarate, G., editors, Modelling and Simulation, pages 283–316.
Rijeka: Intech.

Schimmel, E. and Remmers, J. (2006). Development of a constitutive model for self-
healing materials. Report DACS-06-003.

Shojaei, A., Sharafi, S., and Li, G. (2015). A multiscale theory of self-crack-healing
with solid healing agent assisted by shape memory effect. Mechanics of Materials,
81:25–40.

Struzziero, G. and Skordos, A. A. (2017). Multi-objective optimisation of the cure of



210

thick components. Composites Part A: Applied Science and Manufacturing, 93:126–
136.

Trask, R., Williams, G., and Bond, I. (2007). Bioinspired self-healing of advanced
composite structures using hollow glass fibres. Journal of the Royal Society

Interface, 4(13):363–371.

Tsangouri, E., Aggelis, D., and Van Hemelrijck, D. (2015). Quantifying thermoset
polymers healing efficiency: A systematic review of mechanical testing. Progress

in Polymer Science, 49:154–174.

Wang, W., Li, X., and Han, X. (2012). Numerical simulation and experimental
verification of the filling stage in injection molding. Polymer Engineering and

Science, 52(1):42–51.

Wang, Y., Pham, D. T., and Ji, C. (2015). Self-healing composites: A review. Cogent

Engineering, 2(1):1075686.

White, F. M. and Corfield, I. (2006). Viscous Fluid Flow (Third Edition). New
York:McGraw-Hill.

White, S., Moore, J., Sottos, N., Krull, B., Santa Cruz, W., and Gergely, R. (2014).
Restoration of large damage volumes in polymers. Science, 344(6184):620–623.

White, S. R., Sottos, N., Geubelle, P., Moore, J., Kessler, M., Sriram, S., Brown, E.,
and Viswanathan, S. (2001). Autonomic healing of polymer composites. Nature,
409(6822):794–797.

Wu, D. Y., Meure, S., and Solomon, D. (2008). Self-healing polymeric materials: A
review of recent developments. Progress in Polymer Science, 33(5):479–522.

Yang, C. and Gu, Y. (2006). Minimum time-step criteria for the galerkin finite
element methods applied to one-dimensional parabolic partial differential equations.
Numerical Methods for Partial Differential Equations, 22(2):259–273.

Yang, G. and Lee, J. K. (2014). Curing kinetics and mechanical properties of endo-
dicyclopentadiene synthesized using different grubbs catalysts. Industrial and

Engineering Chemistry Research, 53(8):3001–3011.

Yang, Y., Ding, X., and Urban, M. W. (2015). Chemical and physical aspects of self-
healing materials. Progress in Polymer Science, 49:34–59.

Yi, S., Hilton, H. H., and Ahmad, M. F. (1997). A finite element approach for cure
simulation of thermosetting matrix composites. Computers and Structures, 64(1-
4):383–388.

Yuan, Y., Yin, T., Rong, M., and Zhang, M. (2008). Self healing in polymers
and polymer composites. concepts, realization and outlook: A review. eXPRESS



211

Polymer Letters, 2(4):238–250.

Yuan, Y. C., Rong, M. Z., Zhang, M. Q., and Yang, G. C. (2009). Study of
factors related to performance improvement of self-healing epoxy based on dual
encapsulated healant. Polymer, 50(24):5771–5781.

Zeng, J. (2007). On modeling of capillary filling. Technical report.

Zhang, M. Q. and Rong, M. Z. (2011). Self-Healing Polymers and Polymer

Composites. New Jersey:John Wiley and Sons.

Zhang, P. and Li, G. (2016). Advances in healing-on-demand polymers and polymer
composites. Progress in Polymer Science, 57:32–63.

Zhou, H. (2012). Computer modeling for injection molding: simulation, optimization,

and control. John Wiley & Sons.

Zhu, D. Y., Rong, M. Z., and Zhang, M. Q. (2015). Self-healing polymeric materials
based on microencapsulated healing agents: From design to preparation. Progress

in Polymer Science, 49:175–220.

Zienkiewicz, O., , Taylor, R., , and Zhu, J. (2013). The Finite Element Method: Its

Basis and Fundamentals. Oxford:Butterworth-Heinemann.
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