A DUAL BAND HYBRID MIMO DIELECTRIC RESONATOR ANTENNA FOR LONG TERM EVOLUTION APPLICATIONS

IRENE KONG CHEH LIN

UNIVERSITI TEKNOLOGI MALAYSIA

A DUAL BAND HYBRID MIMO DIELECTRIC RESONATOR ANTENNA FOR LONG TERM EVOLUTION APPLICATIONS

IRENE KONG CHEH LIN

A project report submitted in partial fulfilment of the requirements for the award of degree of Master of Engineering (Electronics & Telecommunication)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > JUNE 2018

Dedicated, in thankful appreciations to my beloved parents and brothers for giving me endless love, motivations, constant encouragements and supports.

ACKNOWLEDGEMENT

First and foremost, I would like to address my highest and sincerest gratitude to my supervisor, Assoc. Prof. Dr. Mohd Haizal Jamaluddin for his generous comments and advices throughout the duration of my project. I owe my special thanks to Phd scholar, Mr. Rahguraman Selvaraju for guiding me constantly, resulting the objectives of this project to become achievable. I am grateful to have a such mentor.

Appreciation is also extended to my friends and course mates who give me moral supports throughout this whole project. My deepest appreciations are dedicated to my beloved parents and family members for their love and care.

Last but not least, I would like to thank myself for not giving up and willing to work harder. My hard work finally had been paid off.

ABSTRACT

Dielectric resonator antennas (DRAs) are widely used in the last two decades. Comparison with microstrip patch antenna, DRA can provide high bandwidth, low metallic losses and high radiation efficiency. Smaller size of meander line is suggested to replace conventional microstrip line. Multiple-input multiple-output (MIMO) can increase more channel capacity and throughput compared to single port. In this project, a dual band MIMO hybrid DRA for LTE applications is proposed. This hybrid technique will be consisted of DRA and meander-typed antenna as radiators which can operate at LTE band 8 (880-960 MHz) at $f_r = 900$ MHz, LTE band 2 (1.85-1.99 GHz), 3 (1.71-1.88 GHz), and 9 (1.7499-1.7849 GHz) at $f_r = 1.8$ GHz respectively. A triple band is obtained in the simulations of HFSS software with additional 2.3 GHz for LTE Band 30 (2.305-2.360 GHz). The MIMO prototype has bandwidth up to 6.53 % at Port 1 and 12.68 % at Port 2, with isolation ranging - 6.10 dB to - 22.76 dB at 0.9, 1.5, 1.8 and 2.5 GHz.

ABSTRAK

Antena resonator dielektrik (DRA) digunakan secara meluas dalam dua dekad yang lalu. Berbanding dengan antena tampalan mikrojalur, DRA mempunyai jalur lebar yang tinggi, kehilangan logam rendah dan kecekapan radiasi yang tinggi. Saiz antena berliku-liku yang lebih kecil dicadangkan untuk menggantikan konvensional antena mikrojalur. Berbilang input berbilang output (MIMO) boleh meningkatkan lebih banyak kapasiti saluran dan penghantaran berbanding dengan port tunggal. Dalam projek ini, berbilang input berbilang output bagi dua band hibrid DRA untuk aplikasi LTE dicadangkan. Teknik hibrid ini akan terdiri daripada antena DRA dan radiator seperti antena berliku-liku supaya boleh beroperasi di band LTE 8 (880-960 MHz) pada $f_r = 900$ MHz, Band LTE 2 (1.85-1.99 GHz), 3 (1.71-1.88 GHz) dan 9 (1.7499-1.7849 GHz) pada $f_r = 1.8$ GHz masing-masing. Dalam simulasi perisian HFSS, tiga band didapati dengan tambahan 2.3 GHz untuk LTE Band 30 (2.305-2.360 GHz). Prototaip MIMO mempunyai jalur lebah sehingga 6.53% di Port 1 dan 12.68% di Port 2, dengan pengasingan antara - 6.10 dB hingga - 22.76 dB pada 0.9, 1.5, 1.8 dan 2.5 GHz.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF ABBREVIATIONS	xvii
	LIST OF SYMBOLS	xviii
	LIST OF APPENDICES	xix

1 INTRODUCTION

1.1	Introduction	1
1.2	Problem Statement	3
1.3	Objective	3
1.4	Scope of Project	4
1.5	Summary	4

2 LITERATURE REVIEW

2.1	Introduction to Dielectric Resonator Antenna (DRA)	5
2.2	DRA Geometries	5
2.3	DRA Feeding Techniques	6
	2.3.1 Microstrip Feed Line	6
	2.3.2 Aperture Coupling	7
	2.3.3 Coaxial Probe	8
2.4	Evolution of Meander Line from Conventional Microstrip Line	9
2.5	Long Term Evolution (LTE) Applications	10
2.6	Multi-band Frequency	12
2.7	Multiple-input Multiple-output (MIMO)	13
2.8	Hybrid Technique	15
2.9	Summary	17

3 RESEARCH METHODOLODGY

3.1	Introduction	18
3.2	Fields Configuration of Rectangular DRA	18
3.3	Design Procedure	20
3.4	Design Specifications	22
3.5	Design Simulation Tool	23
3.6	Board Selection	23
3.7	Prototype Fabrication	23
3.8	Testing and Measurement	24
3.9	Project Management	24
3.10	Summary	25

DESIGN AND SIMULATION

4.1	Introdu	iction		26
4.2	Conver	ntional Micro	ostrip Patch Antenna	26
4.3	Dielect	ric Resonato	or Antenna	28
	4.3.1	Parametric	c Study	29
		4.3.1.1	Size of Substrate Plane	29
		4.3.1.2	Dimension of DRA	30
		4.3.1.3	Microstrip Feeding Length	31
4.4	Compa	rison betwee	en MPA and DRA	32
4.5	Conver	ntional Micr	ostrip Line	35
4.6	Meand	er Line		35
	4.6.1	Parametric	e Study	37
		4.6.1.1	Effect of Ground Plane	37
		4.6.1.2	Number of Turns	38
		4.6.1.3	Microstrip Feeding Length	38
4.7	Compa Line ar	rison betw nd Meander	een Conventional Microstrip Line	40
4.8	Combin Line	nation DRA	and Conventional Microstrip	43
4.9	Combi	nation DRA	and Meander Line	44
	4.9.1	Parametric	e Study	45
		4.9.1.1	Position of DRA	45
		4.9.1.2	Width of Meander Line	48
4.10	Compa	rison betwee	en Hybrid Single Port DRA	50
4.11	Non-id Combi	entical, N nation DRA	Non-orthogonal MIMO of and Meander Line	58
4.12	Identic DRA a	al, Non-orth nd Meander	ogonal MIMO of Combination Line	59

	4.12.1 Parametric Study	61
	4.12.1.1 Separation Length between Two Ports	61
4.13	Comparison Identical and Non-identical Design of Non-orthogonal MIMO Hybrid DRA	64
4.14	Summary	71
RESU	ULTS AND DISCUSSION	
5.1	Introduction	72
5.2	Comparison between Simulation and Measurement Results	73
5.3	Post Design Analysis	76
	5.3.1 Imperfection in DRA Size	76
	5.3.2 Effect of Double Tape Thickness	76
	5.3.3 Misalignment in Prototype	76
5.4	Summary	77

6 CONCLUSION

5

6.1	Conclusion	78
6.2	Suggestions for Future Works	79
6.3	Summary	79

REFERENCES	80
Appendices A-B	83

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Comparison design techniques and other specifications of previous work of hybrid DRA	16
3.1	Gantt chart for Master Project 1	24
3.2	Gantt chart for Master Project 2	25
4.1	Covered bandwidth for MPA and DRA	33
4.2	Comparison antenna parameters between MPA and DRA	34
4.3	Covered bandwidth for conventional microstrip line and meander line	41
4.4	Comparison antenna parameters between conventional microstrip line and meander line	42
4.5	Covered bandwidth for single port hybrid DRA	51
4.6	Comparison antenna parameters for single port DRA	57
4.7	Covered bandwidth at each port for non-identical, non-orthogonal MIMO	59
4.8	Covered bandwidth at each port of identical, non- orthogonal MIMO before optimization	61
4.9	Input return loss, output return loss and isolation when separation length between two ports varies	63
4.10	Comparison antenna parameters in single port, identical and non-identical, non-orthogonal MIMO	70
5.1	Measured bandwidth for single port hybrid DRA	74
5.2	Measured S-parameters for non-orthogonal MIMO hybrid DRA	75

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Various shapes of DRA	2
2.1	Microstrip-fed DRA [2]	7
2.2	Aperture coupling DRA [2]	8
2.3	Probe-fed DRA [2]	9
2.4	Dimension of log-periodic meander line [16]	10
2.5	(a) Dimension and (b) return loss of 2x1 compact meander antenna at 800 MHz [17]	10
2.6	Full-duplex division (FDD) in LTE technologies [18]	11
2.7	Time-duplex division (TDD) in LTE technologies [18]	11
2.8	Lists of networks supported in Huawei Mate 9 with MHA-L29 model	12
2.9	Dimensions (a) and S-parameters (b) of a dual-band MIMO DRA [19]	13
2.10	Same feeding techniques for orthogonal mode MIMO (a) two DRAs [13] (b) one DRA [21]	14
2.11	Different feeding techniques for orthogonal mode MIMO DRA [25]	14
2.12	Same feeding techniques for non-orthogonal mode of MIMO DRA [26]	15
2.13	Diagrams of previous work done by using hybrid technique (a) [22] (b) [23] (c) [24]	16

3.1	Geometry for the dielectric resonator antenna model [2]	19
3.2	Flow chart for single port hybrid DRA	21
3.3	Flow chart for MIMO hybrid DRA	21
4.1	Simulated design of inset-fed microstrip patch antenna (a) side view (b) back view	27
4.2	Simulated design of microstrip fed DRA (a) side view (b) back view	28
4.3	Initial return loss of DRA	28
4.4	Return loss of DRA when substrate plane's size varies	29
4.5	Return loss of DRA when DRA's length and width vary	30
4.6	Return loss of DRA when DRA's height varies	31
4.7	Return loss of DRA when microstrip feeding line varies	31
4.8	Return loss of MPA and DRA	32
4.9	Simulated 3D polar plot for single port antenna (a) MPA (b) DRA	33
4.10	Simulated radiation patterns of MPA and DRA (a) E-plane (b) H-plane	34
4.11	Simulated design of conventional microstrip line (a) top view (b) back view	35
4.12	Simulated design of meander line before optimization (a) top view (b) back view	36
4.13	Initial return loss of meander line	36
4.14	Return loss of meander line when LG varies	37
4.15	Return loss of meander line when number of turns varies	38
4.16	Return loss of meander line when microstrip feeding line varies	39

4.17	Simulated design of meander line after optimization (a) side view (b) back view	39
4.18	Return loss of conventional microstrip line and meander line	40
4.19	Simulated 3D polar plot for single port feeding line (a) conventional microstrip line (b) meander line	41
4.20	Simulated radiation patterns of conventional microstrip line and meander line (a) E-plane (b) H-plane	42
4.21	Simulated design of combination DRA and conventional microstrip line (a) top view (b) back view	43
4.22	Simulated design of combination DRA and meander line before optimization (a) top view (b) back view	44
4.23	Initial return loss of combination of DRA and meander line	45
4.24	Adjustment positions of DRA	46
4.25	Return loss when position of DRA varies vertically	47
4.26	Return loss when position of DRA varies horizontally	47
4.27	Adjustment widths of meander line	48
4.28	Return loss when left width of meander line, W3 varies	49
4.29	Return loss when right width of meander line, W5 varies	49
4.30	Simulated design of combination DRA and meander line after optimization (a) top view (b) back view	50
4.31	Return loss of single port hybrid DRA	51
4.32	Simulated 3D polar plot at 0.9 GHz for single port hybrid DRA (a) combination DRA and conventional microstrip line (b) combination DRA and meander line	52

4.33	Simulated 3D polar plot at 1.8 GHz for single port hybrid DRA (a) combination DRA and conventional microstrip line (b) combination DRA and meander line	52
4.34	Simulated 3D polar plot at 2.3 GHz for single port combination DRA and meander line	53
4.35	Simulated radiation patterns of single port hybrid DRA at 0.9 GHz (a) E-plane (b) H-plane	53
4.36	Simulated radiation patterns of single port hybrid DRA at 1.8 GHz (a) E-plane (b) H-plane	54
4.37	Simulated radiation pattern in E-plane and H-plane of single port combination DRA and meander line at 2.3 GHz	54
4.38	Surface current distribution for single port combination DRA and conventional microstrip line (a) 0.9 GHz (b) 1.8 GHz	55
4.39	Surface current distribution for single port combination DRA and meander line (a) 0.9 GHz (b) 1.8 GHz (c) 2.3 GHz	56
4.40	Simulated design of non-identical, non-orthogonal MIMO with combination DRA and meander line (a) top view (b) back view	58
4.41	Simulated design of identical, non-orthogonal MIMO with combination DRA and meander line before optimization (a) top view (b) back view	60
4.42	Initial return loss for identical, non-orthogonal MIMO with combination DRA and meander line	60
4.43	Simulated S-parameters for identical and non- identical design of non-orthogonal MIMO hybrid DRA	64
4.44	Simulated 3D polar plot of each port at 0.9 GHz for non-orthogonal MIMO hybrid DRA (a) Identical design at Port 1 (b) Identical design at Port 2 (c) Non-identical design at Port 1 (d) Non-identical	
	design at Port 2	65

4.45	Simulated 3D polar plot of each port at 1.8 GHz for non-orthogonal MIMO hybrid DRA (a) Identical design at Port 1 (b) Identical design at Port 2 (c) Non-identical design at Port 1 (d) Non-identical design at Port 2	66
4.46	Simulated 3D polar plot of each port at 2.3 GHz for non-orthogonal MIMO hybrid DRA (a) Identical design at Port 1 (b) Identical design at Port 2 (c) Non-identical design at Port 1 (d) Non-identical design at Port 2	67
4.47	Simulated radiation patterns of each port at 0.9 GHz for non-orthogonal MIMO hybrid DRA (a) Identical design at Port 1 (b) Identical design at Port 2 (c) Non-identical design at Port 1 (d) Non-identical design at Port 2	68
4.48	Simulated radiation patterns of each port at 1.8 GHz for non-orthogonal MIMO hybrid DRA (a) Identical design at Port 1 (b) Identical design at Port 2 (c) Non-identical design at Port 1 (d) Non-identical design at Port 2	68
4.49	Simulated radiation patterns of each port at 2.3 GHz for non-orthogonal MIMO hybrid DRA (a) Identical design at Port 1 (b) Identical design at Port 2 (c) Non-identical design at Port 1 (d) Non-identical design at Port 2	69
5.1	Prototype for single port hybrid DRA (a) top view (b) back view	72
5.2	Prototype for identical design of non-orthogonal MIMO hybrid DRA (a) top view (b) back view	73
5.3	Simulated and measured return loss for single port hybrid DRA	74
5.4	Simulated and measured S-parameters for identical of non-orthogonal MIMO hybrid DRA	75

LIST OF ABBREVIATIONS

BW	-	Bandwidth	
CDRA	-	Cylindrical DRA	
DL	-	Downlink	
FDD	-	Full-duplex Division	
GHz	-	Giga Hertz	
GSM	-	Global System for Mobile Communication	
GSMA	-	Global System Mobile Association	
HFSS	-	High Frequency Structure Simulator	
HSDPA	-	High Speed Downlink Packet Access	
LTE	-	Long Term Evolution	
MIMO	-	Multiple-input Multiple-output	
MHz	-	Mega Hertz	
OFMDA	-	Orthogonal Frequency Division Multiple Access	
SC-FDM	-	Single Carrier Frequency Division Multiple Access	
UP	-	Uplink	
UV	-	Ultraviolent	
TDD	-	Time-duplex Division	
SMA	-	Subminiature Version A	
TV	-	Television	
1G	-	First Generation	
3D	-	Three-dimension	
3G	-	Third Generation	
4G	-	Fourth Generation	

LIST OF SYMBOLS

°C	-	Degree Celsius	
с	-	Speed of light, $3 \times 10^8 m s^{-1}$	
cm	-	Centimeter	
dB	-	Decibel	
dBi	-	Decibel-isotropic	
E _r	-	Permittivity	
f_r / f / freq.	-	Frequency	
mm	-	Millimeter	
S11	-	Input Return Loss	
S22	-	Output Return Loss	
S12/S21	-	Isolation	
$\tan \delta$	-	Tangent Loss	
λ	-	Wavelength	
Ω	-	Ohm	
%	-	Percentage	

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Dielectric Resonator Antenna	83
В	FR4 Board Datasheet	84

CHAPTER 1

INTRODUCTION

1.1 Introduction

Evolution of mobile network technology from 1G to 4G has brought numerous benefits to humans in terms of callings, texting and speed of surfing through the Internet. In telecommunication, the latest standard wireless communication, that is, Long Term Evolution (LTE) is widely used in mobile devices such as smartphones, laptops and tablets due to its high speed transmission, data rates and spectrum efficiency. The operating frequency ranges from 400 MHz up to 4 GHz [1] with bandwidth (BW) from 1.4 to 20 MHz. The significance of LTE has been highlighted by the forecasts of GSMA Intelligient in 2014. It predicts that 64 % of the world's population will be covered by 4G-LTE network by the end of 2020. Therefore, a high performance, low profile and small size of antenna is preferred.

Several types of novel antennas were introduced as radiating element in the past few decades ago such as horn antenna, Yagi-Uda antenna, microstrip patch antenna (MPA), dielectric resonator antenna (DRA) and others. However, MPA and DRA have received a great attentions [2] due to their simple properties, inexpensive and the capability to be embedded in modern wireless products.

In 1939, R.D. Richmyer has demonstrated that certain dielectric materials can radiate in the same way as metallic cavities radiate. They are known as dielectric resonator. Due to the properties of energy storage in the early stage, they are used in microwave circuit for filter network and oscillator [3]. It allows a high permittivity dielectric constant, which ranges from 4 to 140 [4]. The idea of using dielectric resonator as an antenna had not been widely accepted until the original paper on cylindrical DRA was published in 1983 [2], [5]. The analysis of DRA as radiating element leads the research on theoretical and experiments. The resonance frequency of DRA will not be shifted from designated frequency by the change of temperature. It makes DRA to become more popular due to this fantastic properties.

DRA is available in various shape as shown in Figure 1.1 [6]. Multiple feeding methods such as microstrip feed line, coaxial probe, aperture coupling have been introduced in DRA design. A rectangular shape is widely used because it is easy to design, fabricate and control bandwidth as shown in Figure 1.1 (a). DRAs can be designed in smaller size as its size is inversely proportional to square root of dielectric permittivity [7]. The higher the permittivity, the smaller size of DRA but reduced bandwidth.

Figure 1.1 Various shapes of DRA [6]

A single DRA element can also be fed by either single port or multiple ports which is known as multiple-input multiple-output (MIMO). At least two antennas utilized at each transmitter and receiver are considered as MIMO. This technology is utilized for preventing multipath fading to improve channel capacity, data rates, link reliability and network coverage. The focus of the world today is the use of a MIMO system [8]. Digital TV and mobile communications are some of the MIMO applications in our daily lives.

In DRA design, either single band or multi-band frequency can be designed. Multi-band frequency is superior than single band because when there is available of different band frequencies, a lower frequency will be chosen. This is because lower frequency has a better coverage than higher frequency due to its long generating signals.

LTE is the standard technology used for mobile communication devices due to its advanced speed. The speed of download data is from 5 to 12 megabits per second is faster than older 3G networks speed which is around 800 to 950 kilobits per second [9]. LTE use different frequency spectrum with specified uplink and downlink range for each LTE frequency band as shown in Figure 2.5 and Figure 2.6.

1.2 Problem Statement

Microstrip patch antenna suffers from low gain, low radiation efficiency and narrow bandwidth (typically 2-5 %) compared to DRA [10]. Therefore, DRA is chosen in this project due to its numerous advantages over it. The second problem statement comes for the design of conventional linear monopole antenna. Meander line antenna can be realized by bending it to decrease the size of antenna [11]. The last problem statement is limitation channel throughput of single port. Hence, MIMO is designed to provide higher channel capacity and high data rates [8].

1.3 Objectives

There are four objectives listed below in this project.

1) To design a single port DRA operating at 1.8 GHz.

2) To design a single port meander line operating at 0.9 GHz.

3) To design, fabricate and test a dual band single port hybrid DRA operating at 0.9 GHz and 1.8 GHz.

4) To design, fabricate and test a dual band MIMO hybrid DRA operating at 0.9 GHz and 1.8 GHz.

1.4 Scope of Project

The scope of this project is to study dielectric resonator antenna and meander line as radiators to achieve a dual band frequency, 0.9 GHz and 1.8 GHz respectively in LTE applications by using hybrid technique. The shape of DRA is rectangular and microstrip feeding line is used as feeding technique throughout this whole project. All the simulations are done by using High Frequency Structure Simulator (HFSS) software.

1.5 Summary

This chapter gives brief descriptions of DRA as radiating element. Its advantages are highlighted compared to microstrip patch antenna. The function of multi-band frequency, MIMO and basic information of LTE technology are described.

REFERENCES

- Messaoudene, I., T.A. Denidni, and A. Benghalia, CDR antenna with dualband 1.9/2.7 GHz for MIMO-LTE terminals. *Microwave and Optical Technology Letters*, 2015. 57(10): p. 2388-2391.
- Luk, K.M. and Leung K.W., Eds., *Dielectric resonator antennas*. London, U.K.: Research Studies Press, 2003.
- Richtmyer, R., Dielectric resonators. *Journal of Applied Physics*, 1939. 10(6): p. 391-398
- Mongia, R., A. Ittibipoon, and M. Cuhaci, Low profile dielectric resonator antennas using a very high permittivity material. *Electronics letters*, 1994. 30(17): p. 1362-1363.
- S. A. Long, M. W. McAllister and L. C. Shen, The resonant cylindrical dielectric cavity antenna, IEEE Transactions on Antennas and Propagation, 1983. Vol. AP-31:pp. 406-412.
- Keyrouz, S. and D. Caratelli, Dielectric Resonator Antennas: Basic Concepts, Design Guidelines, and Recent Developments at Millimeter-Wave Frequencies. *International Journal of Antennas and Propagation*, 2016.
- Ashoor, A.Z. and O.M. Ramahi, Dielectric resonator antenna arrays for microwave energy harvesting and far-field wireless power transfer. *Progress In Electromagnetics Research*, 2015. 59: p. 89-99.
- Siwabessy, J.P.D.G.A. and D. Street, Design of Multiband MIMO 2 x 2 Microstrip Antenna with Multi-slot Method. *International Journal of Applied Engineering Research*, 2017. 12(19): p. 8125-8130.
- 9. Nur Alya binti Mohammad. A MIMO Rectangular Dielectric Resonator Antenna for LTE Band. Degree. Thesis. Universiti Teknologi Malaysia; 2015

- Jamaluddin, M.H., N.A. Mohammad, and S.Z. Naqiyah, Size reduction of MIMO Dielectric Resonator Antenna for LTE application. *IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE)*. December 11-13, 2016, Langkawi, Kedah: IEEE. 2016, 286-289.
- 11. Constantine, A.B., *Antenna theory: analysis and design.* third edition, John wiley & sons, 2005.
- 12. Khalily, M., M.K.A. Rahim, and M.R. Kamarudin, A novel P-shape dielectric resonator antenna for wideband application. *IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE)*, 2010.
- Roslan, S.F., et al., A MMO F-shaped dielectric resonator antenna for 4G applications. *Microwave and Optical Technology Letters*, 2015. 57(12): p. 2931-2936.
- Pan Y.M., K.W. Leung and K.M. Luk, Design of the millimeter-wave rectangular dielectric resonator antenna using a higher-order mode. *IEEE Transactions on Antennas and Propagation*, 2011. 59(8): p. 2780-2788.
- 15. D.M. Pozar, *Microwave engineering*. 4th. Ed, Hoboken, NJ: Wiley, 2012.
- Sharawi, M.S., S.S. Iqbal, and Y.S. Faouri, An 800 MHz 2x1 Compact MIMO Antenna System for LTE Handsets. *IEEE Transactions on Antennas* and Propagation, 2011. 59(8): p. 3128-3131.
- Bedir Yousif, M.S. and M. Abdelrazzak, Design and simulation of meander line antenna for LTE band. *International Journal of Scientific & Engineering Research*, 2015. 6(7): p. 841-848.
- Poole, I., *LTE frequency bands and spectrum allocations*. Radio-Electronics-Cellular/Mobile Telecommunications, 2015.
- Nasir, J., et al., Throughput Measurement of a Dual-Band MIMO Rectangular Dielectric Resonator Antenna for LTE Applications. *Sensors*, 2017. 17(1): p. 148.
- 20. Sharma, A. and R.K. Gangwar, Compact dual-band ring dielectric resonator antenna with moon-shaped defected ground structure for WiMAX/WLAN applications. *International Journal of RF and Microwave Computer-Aided Engineering*, 2016. 26(6): p. 503-511.
- Nasir, J., et al., A reduced size dual port MIMO DRA with high isolation for 4G applications. *International Journal of RF and Microwave Computer-Aided Engineering*, 2015. 25(6): p. 495-501.

- 22. Sharma, A. and R.K. Gangwar, Triple band hybrid cylindrical dielectric resonator antenna for WiMAX/WLAN applications. *IEEE in Applied Electromagnetics Conference (AEMC)*, 2015.
- 23. Abdul Rahim, S.B., et al., A Triple-Band Hybrid Rectangular Dielectric Resonator Antenna (RDRA) for 4G LTE Applications. *Wireless Personal Communications*, 2017.
- 24. Sharma, A., G. Das, and R.K. Gangwar, Dual polarized triple band hybrid MIMO cylindrical dielectric resonator antenna for LTE2500/WLAN/WiMAX applications. *International Journal of RF and Microwave Computer-Aided Engineering*, 2016. 26(9): p. 763-772.
- Roslan, S., et al., A MIMO rectangular dielectric resonator antenna for 4G applications. *IEEE antennas and wireless propagation letters*, 2014.
 13: p. 321-324.
- 26. Nasir, J., et al., Design of a MIMO dielectric resonator antenna for 4g applications. *Wireless Personal Communications*, 2016. 88(3): p. 525-536.
- Guan Chai Eu. Design of A Wideband Aperture Coupled Dielectric Resonator Antenna. Master. Thesis. Universiti Teknologi Malaysia; 2012
- 28. Nor, N.M., et al., Rectangular dielectric resonator antenna array for 28 GHz applications. *Progress In Electromagnetics Research*, 2016. 63: p. 53-61.