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ABSTRACT 

Dielectric resonator antennas (DRAs) are widely used in the last two decades.  

Comparison with microstrip patch antenna, DRA can provide high bandwidth, low 

metallic losses and high radiation efficiency.  Smaller size of meander line is 

suggested to replace conventional microstrip line.  Multiple-input multiple-output 

(MIMO) can increase more channel capacity and throughput compared to single port.  

In this project, a dual band MIMO hybrid DRA for LTE applications is proposed.  

This hybrid technique will be consisted of DRA and meander-typed antenna as 

radiators which can operate at LTE band 8 (880-960 MHz) at 𝑓𝑟 = 900 MHz, LTE 

band 2 (1.85-1.99 GHz), 3 (1.71-1.88 GHz), and 9 (1.7499-1.7849 GHz) at              

𝑓𝑟 = 1.8 GHz respectively.  A triple band is obtained in the simulations of HFSS 

software with additional 2.3 GHz for LTE Band 30 (2.305-2.360  GHz).  The MIMO 

prototype has bandwidth up to 6.53 % at Port 1 and 12.68 % at Port 2, with isolation 

ranging - 6.10 dB to - 22.76 dB at 0.9, 1.5, 1.8  and 2.5 GHz. 
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ABSTRAK 

Antena resonator dielektrik (DRA) digunakan secara meluas dalam dua dekad 

yang lalu.  Berbanding dengan antena tampalan mikrojalur, DRA mempunyai jalur 

lebar yang tinggi, kehilangan logam rendah dan kecekapan radiasi yang tinggi. Saiz 

antena berliku-liku yang lebih kecil dicadangkan untuk menggantikan konvensional 

antena mikrojalur.  Berbilang input berbilang output (MIMO) boleh meningkatkan 

lebih banyak kapasiti saluran dan penghantaran berbanding dengan port tunggal.  

Dalam projek ini, berbilang input berbilang output bagi dua band hibrid DRA untuk 

aplikasi LTE dicadangkan.  Teknik hibrid ini akan terdiri daripada antena DRA dan 

radiator seperti antena berliku-liku supaya boleh beroperasi di band LTE 8           

(880-960 MHz) pada 𝑓𝑟   = 900 MHz, Band LTE 2 (1.85-1.99 GHz),                             

3 (1.71-1.88 GHz) dan 9 (1.7499-1.7849 GHz) pada 𝑓𝑟  = 1.8 GHz masing-masing. 

Dalam simulasi perisian HFSS, tiga band didapati dengan tambahan 2.3 GHz untuk 

LTE Band 30 (2.305-2.360 GHz).  Prototaip MIMO mempunyai jalur lebah sehingga 

6.53% di Port 1 dan 12.68% di Port 2, dengan pengasingan antara - 6.10 dB hingga   

- 22.76 dB pada 0.9, 1.5, 1.8 dan 2.5 GHz. 
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INTRODUCTION 

 Introduction 

Evolution of mobile network technology from 1G to 4G has brought 

numerous benefits to humans in terms of callings, texting and speed of surfing 

through the Internet.  In telecommunication, the latest standard wireless 

communication, that is, Long Term Evolution (LTE) is widely used in mobile 

devices such as smartphones, laptops and tablets due to its high speed transmission, 

data rates and spectrum efficiency.  The operating frequency ranges from 400 MHz 

up to 4 GHz [1] with bandwidth (BW) from 1.4 to 20 MHz.  The significance of LTE 

has been highlighted by the forecasts of GSMA Intelligient in 2014.  It predicts that 

64 % of the world’s population will be covered by 4G-LTE network by the end of 

2020.  Therefore, a high performance, low profile and small size of antenna is 

preferred. 

Several types of novel antennas were introduced as radiating element in the 

past few decades ago such as horn antenna, Yagi-Uda antenna, microstrip patch 

antenna (MPA), dielectric resonator antenna (DRA) and others.  However, MPA and 

DRA have received a great attentions [2] due to their simple properties, inexpensive 

and the capability to be embedded in modern wireless products. 

In 1939, R.D. Richmyer has demonstrated that certain dielectric materials can 

radiate in the same way as metallic cavities radiate.  They are known as dielectric 

resonator.  Due to the properties of energy storage in the early stage, they are used in 

microwave circuit for filter network and oscillator [3].  It allows a high permittivity 
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dielectric constant, which ranges from 4 to 140 [4].  The idea of using dielectric 

resonator as an antenna had not been widely accepted until the original paper on 

cylindrical DRA was published in 1983 [2], [5].  The analysis of DRA as radiating 

element leads the research on theoretical and experiments.  The resonance frequency 

of DRA will not be shifted from designated frequency by the change of temperature.  

It makes DRA to become more popular due to this fantastic properties. 

DRA is available in various shape as shown in Figure 1.1 [6].  Multiple 

feeding methods such as microstrip feed line, coaxial probe, aperture coupling have 

been introduced in DRA design.  A rectangular shape is widely used because it is 

easy to design, fabricate and control bandwidth as shown in Figure 1.1 (a).  DRAs 

can be designed in smaller size as its size is inversely proportional to square root of 

dielectric permittivity [7].  The higher the permittivity, the smaller size of DRA but 

reduced bandwidth.  

 

Figure 1.1   Various shapes of DRA [6] 

 

A single DRA element can also be fed by either single port or multiple ports 

which is known as multiple-input multiple-output (MIMO).  At least two antennas 

utilized at each transmitter and receiver are considered as MIMO.  This technology is 

utilized for preventing multipath fading to improve channel capacity, data rates, link 

reliability and network coverage.  The focus of the world today is the use of a MIMO 
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system [8].  Digital TV and mobile communications are some of the MIMO 

applications in our daily lives. 

In DRA design, either single band or multi-band frequency can be designed.  

Multi-band frequency is superior than single band because when there is available of 

different band frequencies, a lower frequency will be chosen.  This is because lower 

frequency has a better coverage than higher frequency due to its long generating 

signals.  

LTE is the standard technology used for mobile communication devices due 

to its advanced speed.  The speed of download data is from 5 to 12 megabits per 

second is faster than older 3G networks speed which is around 800 to 950 kilobits 

per second [9].  LTE use different frequency spectrum with specified uplink and 

downlink range for each LTE frequency band as shown in Figure 2.5 and Figure 2.6. 

 Problem Statement 

Microstrip patch antenna suffers from low gain, low radiation efficiency and 

narrow bandwidth (typically 2-5 %) compared to DRA [10].  Therefore, DRA is 

chosen in this project due to its numerous advantages over it.  The second problem 

statement comes for the design of conventional linear monopole antenna.  Meander 

line antenna can be realized by bending it to decrease the size of antenna [11].  The 

last problem statement is limitation channel throughput of single port.  Hence, 

MIMO is designed to provide higher channel capacity and high data rates [8].  

 Objectives 

There are four objectives listed below in this project.  

1)  To design a single port DRA operating at 1.8 GHz. 
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2)  To design a single port meander line operating at 0.9 GHz. 

3) To design, fabricate and test a dual band single port hybrid DRA operating at       

0.9 GHz and 1.8 GHz. 

4)  To design, fabricate and test a dual band MIMO hybrid DRA operating at 0.9 

GHz and 1.8 GHz. 

 Scope of Project 

The scope of this project is to study dielectric resonator antenna and meander 

line as radiators to achieve a dual band frequency, 0.9 GHz and 1.8 GHz respectively 

in LTE applications by using hybrid technique.  The shape of DRA is rectangular and 

microstrip feeding line is used as feeding technique throughout this whole project.  

All the simulations are done by using High Frequency Structure Simulator (HFSS) 

software.  

 Summary 

This chapter gives brief descriptions of DRA as radiating element.  Its 

advantages are highlighted compared to microstrip patch antenna.  The function of 

multi-band frequency, MIMO and basic information of LTE technology are 

described. 
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