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  ABSTRACT 

In recent years, the use of passive techniques to enhance heat transfer in 

microchannel heat sink (MCHS) has received increasing attention due to escalating 

demand for improved thermal management in modern electronic designs. However, 

most studies concentrated on the use of one type of passive techniques that focuses 

only on one aspect of its performance which is either to acquire high rate of heat 

transfer with higher pressure drop, or gain low pressure drop at low rate of heat 

transfer. For further enhancement of hydrothermal performance in MCHS, this 

research combined two techniques to exploit features of high heat transfer in lower 

pressure drop. Three new configurations developed were numerically investigated, and 

experimentally validated. To assess the effects of various geometrical parameters, an 

optimization technique was used to calculate the most efficient geometry of the 

proposed designs. The first configuration is a combination between wavy channel and 

secondary channels (WMSC) etched on the channels walls. The attributes of this 

configuration are manifested in enhancing the flow mixing within main channels by 

Dean vortices and among adjacent channels through secondary channels. The results 

showed that the new design of WMSC has enhanced the overall thermal performance 

by 140% as compared with the straight MCHS.  The second configuration is a 

combination between a sinusoidal grooves and rectangular ribs installed in the central 

portion of the channel (MC-SCRR). The flow area enlargement provided by the 

cavities has significantly reduced the pressure drop caused by the ribs. Besides, this 

configuration contributes to increase the heat transfer by inducing flow jet 

impingement and vortices as well as increasing the contact surface area. This design 

has achieved an enhancement of 85% more than the straight MCHS. The final 

configuration uses a combination of secondary oblique channels in alternating 

direction and rectangular ribs (MC-SOCRR). The new design has exploited a larger 

flow area which is provided by the secondary channels to reduce pressure drop caused 

by ribs, and increased the flow mixing between the main channels. These features have 

contributed to enhance the performance of MC-SOCRR by 98% more than the straight 

MCHS. 
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ABSTRAK 

Dalam tahun-tahun kebelakangan ini, penggunaan teknik pasif untuk 

meningkatkan pemindahan haba dalam saluran mikro penadah haba (MCHS) telah 

mendapat perhatian yang tinggi disebabkan oleh peningkatan permintaan untuk 

penambahbaikan pengurusan haba dalam reka bentuk elektronik moden. Walau 

bagaimanapun, kebanyakan kajian tertumpu kepada penggunaan satu jenis teknik pasif 

yang hanya memfokuskan kepada satu aspek prestasi yang sama ada untuk 

memperoleh kadar pemindahan haba yang tinggi dengan penurunan tekanan yang 

lebih tinggi atau untuk mendapatkan penurunan tekanan rendah pada kadar 

pemindahan haba yang rendah. Untuk mempertingkatkan lagi prestasi hidroterma 

dalam MCHS, kajian ini menggabungkan dua teknik untuk mengeksploitasi ciri-ciri 

pemindahan haba yang tinggi dalam penurunan tekanan yang lebih rendah. Tiga reka 

bentuk baru yang dibangunkan dikaji secara numerik dan disahkan secara eksperimen. 

Untuk menilai kesan pelbagai parameter geometri, teknik pengoptimuman telah 

digunakan untuk pengiraan geometri yang paling berkesan terhadap reka bentuk yang 

dicadangkan. Reka bentuk pertama adalah gabungan antara saluran beralun dan 

saluran sekunder (WMSC) terukir pada dinding saluran. Atribut reka bentuk ini 

ditunjukkan dalam meningkatkan aliran pencampuran dalam saluran utama oleh 

vorteks utama dan di antara saluran bersebelahan melalui saluran sekunder. Dapatan 

menunjukkan bahawa reka bentuk WMSC yang baharu telah meningkatkan prestasi 

haba keseluruhan sehingga 140% berbanding dengan MCHS lurus. Reka bentuk kedua 

adalah gabungan antara alur sinusoidal dan tulang rusuk segi empat tepat yang 

dipasang di bahagian tengah saluran (MC-SCRR). Pembesaran kawasan aliran yang 

disediakan oleh rongga telah mengurangkan penurunan tekanan yang disebabkan oleh 

tulang rusuk. Di samping itu, reka bentuk ini menyumbang dalam peningkatan 

pemindahan haba dengan mendorong pelepasan aliran jet dan vorteks di samping 

meningkatkan kawasan permukaan sentuhan. Reka bentuk ini telah mencapai 

peningkatan 85% lebih daripada MCHS lurus. Reka bentuk akhir menggunakan 

gabungan antara saluran serong sekunder dalam arah bergantian dan rusuk segi empat 

tepat (MC-SOCRR). Reka bentuk baru telah mengeksploitasi kawasan aliran yang 

lebih besar yang disediakan oleh saluran sekunder untuk mengurangkan penurunan 

tekanan yang disebabkan oleh tulang rusuk, dan meningkatkan aliran pencampuran 

antara saluran utama. Ciri-ciri ini telah menyumbang kepada peningkatan prestasi MC-

SOCRR sebanyak 98% lebih daripada MCHS lurus. 
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1 INTRODUCTION 

1.1 Background of study 

Lately, rapid growth in the electronic industry has witnessed ultra-large-scale-

integrated-circuit (ULSIC) as new generation high performing dense chip packages. 

However, such miniaturization causes the production of highly concentrated heat flux. 

This heat flux that raises the substrate temperature and creates hot spots is detrimental 

for the devices unless overcome. Any failure of removing such a high heat flux 

accelerates the meantime to failure (MTTF) and shorten the lifespan of electronic 

devices or even permanent damage [1]. Thus, appropriate thermal management of 

microelectronics is prerequisite to surmount the heat flux related damages. This 

considered to be the major obstacle towards further development of integrated 

electronic technologies. According to the international technology roadmap for 

semiconductors (ITRS), the peak power consumption of high- and low- performance 

integrated chips is expected to increase by 96% (147-288 W) and 95% (91-158 W) in 

2016, respectively. The estimated amount of heat that need to be removed from the 

new 14 nm chip is higher than 100 W/cm2 [2]. Figure 1.1 shows the chronology of 

growth for three essential features in CPU design; transistor number per chip, clock 

speed and thermal design power. It is clearly seen that the growth of thermal design 

power is closely related with increase of both clock speed and number of transistors 

per chip. This trend implies that any development in CPU design is associated with 

increase in the thermal fluxes at chip level. 
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Figure 1.1: The chronology of growth for three essential features in CPU design; 

transistor number per chip, clock speed and thermal design power. [3] 

Earlier, air-cooling method is extensively used for heat removal from 

integrated circuits due to its several attractive features such as low initial cost, high 

reliability, low operating maintenance cost, and high compatibility with micro-

electronic environment [4]. However, with the rapid increase in power density and 

miniaturization of electronic packages this method became limited to satisfy the 

cooling demands. Use of various liquids as an alternative to air is proposed due to their 

high specific heat capacity and heat transfer coefficient. Several micro cooling 

methods are developed including micro-jet impingement, micro-heat pipe, micro-

electro-hydrodynamic and microchannel heat sink MCHS. Among different micro-

cooling methods the microchannel heat sink MCHS is appeared to be most 

prospective, which can remove heat at very high rate up to 790 W/cm2 [5].  The central 

concept of microchannel (MC) is relying on its ability to provide the large heat transfer 

surface-to-volume ratio. MCs are used for two types of cooling such as single-phase 

and two-phase. Single-phase being easy for implementation is often used to remove 

intermediate heat fluxes. Figure 1.2 shows the recent application of MCHS in cooling 

of CPU. Although the two-phase can remove higher heat flux but it involves complex 

issues such as condensation, critical heat flux, saturation temperature, nucleation site 

activation etc. [6]. 
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(a) (b) 

 
(c) 

Figure 1.2: Recent application of microchannel heat sink in cooling of CPU (a) 

microchannel heat sink (b) installation of microchannel heat sink over CPU (c) 

tubes connection for water circulation.  

The flow in conventional straight MCHS is predominantly within laminar flow 

regime because of the tiny size of the channels, which does not allow the flow to transit 

to the turbulent regime. Besides, in the conventional straight MCHS the accumulation 

of hotter fluid at the channel wall and cooler fluid along the channel core due to 

continuous growth of thermal boundary layer degrades the heat transfer in MCHS. 

Most of the early studies tried to improve the thermal performance of conventional 

straight rectangular MCHS by manipulating channel aspect ratio, channel length and 

wall thickness [7-10]. Some researchers manipulated the cross-section shape of 
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microchannel (e.g. circular, triangular, and trapezoidal) [11-16] for the performance 

enhancement. Alfaryjat et al. [17] studied numerically the influence of geometrical 

parameters on the thermal performance of microchannel, where three cross-section 

channel shapes including hexagonal, circular and rhombus are considered. Hexagonal 

cross-section revealed the highest pressure drop and heat transfer coefficient. Channel 

with rhombus cross-section exhibited highest value of friction factor and thermal 

resistance. Gunnasegaran et al. [18] examined the effect of varying cross-sectional 

shapes (rectangular, trapezoidal and triangle) on the hydrothermal performance of 

MCHS. Rectangular shape channel displayed maximum heat transfer augmentation 

followed by trapezoidal and triangular MCHS. 

Despite the implementation of complex cross-sectional shapes, a precise 

geometry for disrupting the thermal boundary layer beyond the entrance region and 

subsequent achievement of enhanced hydrothermal performance is yet to be 

developed. An optimized strategy is needed to overcome the continuous heat 

generation due to excessive power consumption by high-performing integrated chips. 

Researchers took the advantages of heat transfer augmentation methods of 

conventional channels and applied them in MCHS. Tao et al. [19] suggested three 

strategies for the single-phase heat transfer enhancement such as reduction of the 

thermal boundary layer thickness, increase of both flow disruptions and velocity 

gradient near the heated surface. To promote heat transfer in MCHS, Steinke and 

Kandlikar [20] and Kandlikar and Grande [4] developed several techniques such as 

increase of surface area and heat transfer coefficient using interrupted and staggered 

strip-fin design, increase of local heat transfer coefficient by breaking boundary layer 

through periodic construction, incorporation of grooves and ridges, and incorporation 

of mixing features to improve the mixing flow. 
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1.2 Overview of heat transfer augmentation techniques 

The study of heat transfer augmentation became the focus of attention since 

1920 until the present time. In 1980, the advantages of this study began to emerge 

within the industrial applications [21]. Most of these researches included the 

conventional sizes of pipes and channels which used in heat exchangers and other 

thermal applications. Many researchers have presented reviews of the state of art. 

Bergles is one of these researchers who presented many reviews in this topic as in [21-

23]. The author has classified the heat transfer augmentation methods into two kinds; 

passive and active. Tao et al.[19] suggested three strategies for the single-phase heat 

transfer enhancement. These strategies are; reducing the thermal boundary layer 

thickness, increasing flow disruptions and increasing velocity gradient near the heated 

surface. Dewan et al. [24] presented a review of passive heat augmentation techniques 

which used in conventional pipes and ducts. The review focused on two kinds of 

inserts which placed inside pipes and ducts; twisted tape and wire coil. They observed 

that twisted tape inserts perform better in a laminar flow than turbulent because these 

inserts increase the mixing of the bulk flow. On the other hand, they found that wire 

coil enhances heat transfer in both laminar and turbulent flow, but it performs better 

in turbulent flow. Leal et al [25] reviewed the main techniques for the enhancement of 

heat transfer for both single-phase and two-phase flow system. The commonly used 

passive techniques was reviewed briefly while active methods were reviewed in detail.  

The researchers focused on the techniques that use periodic deformation of channel 

wall over time which can be achieved by using of the piezoelectric materials. These 

techniques found to be more applicable for microchannel system. In single-phase 

system, imposing a distortion traveling wave to a microchannel wall leads to an 

enhancement in both heat transfer and fluid motion. While in two-phase, and because 

of boiling in narrow space, both boiling and cavitation phenomena are involved in 

nucleation process. 
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1.2.1 Active method 

This method encompasses using some of external power input for the system 

to enhance heat transfer. The sophisticated design is the characteristic of this method 

due to the modifications required that accompanies the external power sources. The 

active method includes many techniques such as vibration, electrostatic field, magnetic 

field and flow pulsation. 

1.2.2 Passive method 

This method does not require any external power input. The additional power 

needed is extracted from the system itself through manipulation in the geometrical 

parameters which in most cases causes further pressure drop. The researchers have 

been striving for improve thermal performance and reduced pressure drop to promote 

the overall hydrothermal performance. A good microchannel heat sink design should 

have efficient thermal performance with minimum entropy generation. This can be 

achieved through performing an optimization process to the geometrical parameters. 

The passive method includes many techniques such as surface roughness, flow 

disruptions, channel curvature, re-entrant obstructions, secondary flow and fluid 

additives. 

1.3 Heat transfer augmentation techniques in microchannel  

Most researches that involving heat transfer enhancement techniques in MCHS 

tend to use passive techniques more than active techniques due to the simplicity in 

design. Besides, it does not require any external power which may involve using 

special geometrical configurations. Steinke and Kandlikar [20] presented a first review 

that includes a comprehensive description about the applicability of heat transfer 
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enhancement techniques for single-phase flows in microchannels and minichannels. 

They classified these techniques into two categories; active and passive. Each category 

includes various techniques as in Figure 1.3.Tullius et al. [26] reviewed different 

techniques used in efforts to modify MCHS in both single- and two-phase laminar 

flow. Some surface modifications discussed include adding micro-fins, adding 

grooves, increasing surface roughness, etc. They also focused on characteristics of 

using Carbon nanotubes (CNT) in the structure of MCHS to improve thermal 

performance due to the high thermal conductivity. Dewan et al.[27] Conducted a 

comprehensive review of flow disruption in microchannel. They demonstrated the 

recent researches of using flow disruption techniques in microchannel.  

Most studies are striving to enhance overall performance in MCHS which 

involve achieving two simultaneous objectives; increasing heat transfer rate with 

lower pressure drop. These two objectives can be accomplished using suitable 

technique which associated with optimization analysis for the effective geometrical 

parameters. The attributes of enhancement techniques are manifested through 

manipulation and modification in microchannel geometry which aim to: 

1- Increase of surface area and heat area coefficient using interrupted and 

staggered strip-fin design. 

2-  Increase of local heat transfer coefficient by breaking boundary layer 

through periodic construction, incorporation of grooves and ridges, and 

incorporation of mixing features to improve the mixing flow. 

3-  Increase of mixing flow through promoting the chaotic advection and Dean 

vortices by using channel wavy microchannel. 

4-  Increase of mixing flow between adjoining channels through incorporation 

periodic secondary channels. 
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Figure 1.3: Heat transfer augmentation method according to Steinke and 

Kandlikar [20]. 

1.4 Problem statement 

Since the invention of microchannel heat sink, a lot of numerical and 

experimental studies have been dedicated to investigating the characteristics of heat 

transfer and fluid flow in straight rectangular microchannel. There are many 

restrictions that hinder the improvement of thermal performance in straight simple 

Enhancement 
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microchannel.  The high pressure drop across the microchannel is one of the most 

significant limitations because it contributing in increasing pumping power 

consumption and leakage risk. Additionally, the micro size of the channels makes the 

flow invariably in laminar region, thus leads to low performance compared with 

turbulent flow. As consequences of the continuous increase in heat loaded and rigorous 

requirement of temperature determination for electronic elements, the straight simple 

channel is unable to satisfy these demands. So, a lot of studies have diverted the 

interest towards passive techniques which applied in conventional channels to be 

utilized in microchannel. Steinke and Kandlikar [20] proposed several techniques 

which are enforceable in microchannels to enhance heat transfer in microchannel such 

as incorporation of mixing features to improve the mixing flow , increase local heat 

transfer coefficient by breaking boundary layer, utilizing intermittent construction , 

incorporation of grooves , ribs and channel curvature . 

 Accordingly, many studies have adopted these strategies to improve the 

thermal performance of microchannel heat sink. Many investigations have been 

studied the single effect of different shapes, sizes or orientations of the groove, cavity, 

fins and ribs periodically attached to the side wall. The literature review is also showed 

that the use of the passive techniques has proven effectiveness to improve the thermal 

performance in a microchannel. However, the using of single technique such as 

corrugated MCHS, ribs, cavities and interrupted wall channels have shown two trends 

of enhancement; either high heat transfer rate associated with high pressure drop or 

low rate of heat transfer associated with low pressure drop. So, until now, it is difficult 

to find the best compromise value for both heat transfer and pressure drop. Besides, 

the using of single configuration has reached to the ultimate enhancement status and 

there is a need for more enhancement to keep pace with rapidly growing toward the 

higher performance electronic.  

The current research attempts to propose of using two passive technique to 

enhance heat transfer in MCHS rather than using single technique. This strategy aimed 

to reduce the high pressure drop by increasing the flow area and at the same time 

increase heat transfer rate through increasing heat transfer area, flow mixing, promote 

jet impingement and Dean vortices. 
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1.5 Objectives of the work  

The aim of the present work is to develop and analyze the effect of the 

combination between two passive techniques in three new designs of microchannel 

heat sink in order to assess a potential interaction between both techniques for further 

heat transfer enhancement.  

This study sets the following objectives. 

1. The first objective is to analyze numerically the hydrothermal characteristics 

of the proposed designs to explore the effectiveness of combination between passive 

techniques on the thermal performance. Three models are proposed to be analyzed.  

The first model is combining between wavy microchannel with oblique secondary 

channels. The second model is utilizing the sinusoidal cavities arranged on the side 

walls of microchannel with ribs in the central portion of the channel. The third model 

is merging between oblique secondary channels and ribs. 

2. To optimize the geometrical parameters of the proposed models in order to 

achieve the desired values for both pressure drop and heat transfer characteristics that 

attain maximum overall performance. 

3. The third objective is to validate the numerical results for the first model 

experimentally by using a full-scale microchannel heat sink experimental rig. The 

validation of the CFD results aims to analyze the deviation between observed and 

simulated results in order to examine the ability of numerical simulation to predict the 

characteristics of fluid flow and heat transfer in proposed design. 
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1.6 Scope 

The recurring theme of the present thesis is to enhance heat transfer in 

microchannel heat sink using hybrid techniques of passive heat transfer methods. The 

study is concentrated on using two methods; flow disruption and corrugated channel 

in three new configurations. The techniques that have been followed are the integration 

of wavy channel with secondary channel, ribs with cavities and ribs with secondary 

channels. Based on the objectives, the following scopes are defined: 

1. To study the hydrothermal characteristics of the proposed designs, numerical 

simulations have been conducted using three-dimensional CFD models consist of one 

row channel. The geometries are modelled and simulated using ANSYS workbench 

CFD software version 14. The numerical simulation is covered both laminar and 

turbulent flow regime. The variation of two parameters are considered, namely heat 

flux and velocity of inlet water. The range of heat flux is between 50-100W/cm2 and 

Reynolds number ranged between 100-1200. The SIMPLE algorithm was adopted to 

accomplish the pressure-velocity coupling. At the same time, the second order upwind 

scheme is used for convective term and second order central difference scheme is 

applied for diffusion term. K-epsilon model has been used to solve turbulent flow. For 

all proposed models, constant inlet velocity and constant heat flux are the adopted as 

a boundary conditions in simulation 

2. In this study, an experimental setup comprising of heating system, water 

distribution system and measurement instrumentation is developed to resemble the 

cooling system of electronic devices. Microchannel heat sink with wavy channels and 

oblique secondary channels (WMSC) is tested on this rig. The heat sinks device 

consisting of 31 microchannels arranged in multiple rows with ten waves in each single 

row. Each microchannel has a dimensions of 20 mm length, 200 μm width and 400 

μm height and structured on a surface area of 2.8 cm2. The heat flux at the heating 

surface is varied between 50 W/cm2 to 100 W/cm2, while the flow rate is varied 

between 112ml/min until 448.5 ml/min 
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1.7 Chapter summary  

This chapter described the concept of heat transfer enhancement techniques in 

general and clarifying the applicability in microchannel heat sink. This is meant to 

relate the current problem of restrictions that hinder the heat transfer enhancement in 

microchannel heat sink with purpose of this study. Besides, the problem statement, 

objectives and scope of work have been presented in detail. 
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