
REGISTER-TRANSFER LEVEL DESIGN OF SUM OF ABSOLUTE 

TRANSFORMED DIFFERENCE FOR HIGH EFFICIENCY VIDEO CODING 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

HEH WHIT NEY 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIVERSITI TEKNOLOGI MALAYSIA 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Replace  this  page  with  form  PSZ 19:16 (Pind. 1/07), which can be 
obtained from SPS or your faculty. 



REGISTER-TRANSFER LEVEL DESIGN OF SUM OF ABSOLUTE 

TRANSFORMED DIFFERENCE FOR HIGH EFFICIENCY VIDEO CODING 

 

 
 
 
 
 
 
 
 
 
 
 
 

HEH WHIT NEY 
 
 
 
 
 
 
 

A project report submitted in partial fulfilment of the  

requirements for the award of the degree of 

Master of Engineering (Computer and Microelectronic System) 
 
 
 
 
 

Faculty of Electrical Engineering 

Universiti Teknologi Malaysia 

 
 
 

JUNE 2018 



iii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This thesis is dedicated to my family members, lecturers and friends 



iv 
 

 
 
 
 
 
 
 

ACKNOWLEDGEMENT 
 
 
 

I would like to express my appreciation to God, in which without His blessings 

and graces, I would not have the perseverance, strength and wisdom to accomplish my 

final year project. Besides that, the completion of this thesis would not be possible 

without the generous assistance and support from the people around me. Hereby, I 

express my deepest gratitude and appreciation to the following individuals who have 

lend me a helping hand in times of need. 

 
To my supervisor Dr. Ab Al-Hadi Ab Rahman, thank you for being patient, 

supportive and encouraging all the time. Apart from giving valuable suggestions, 

guidance and comments, he has continually believed and entrusted me to conduct the 

final year project. Despite being busy, he would always sacrifice his time to sit down 

with me and have a conversation over the problems I have met. 

 
Last but not least, my appreciation goes to my family members and friends. 

Thank you for the continued support as it became the source of energy and motivation 

for me to complete my final year project. To my friends, and particularly Mr. Wong 

Yan Yin, thank you for being supportive and encouraging in times of difficulties. 



v 
 

 
 
 
 
 
 
 

ABSTRACT 
 
 

High Efficiency Video Coding (HEVC) is the state-of-the-art video coding 

standard which offers 50% improvement in coding efficiency over its predecessor 

Advanced Video Coding (AVC). Compared to AVC, HEVC supports up to 33 angular 

modes, DC mode and planar mode. The significant rise in the number of intra 

prediction mode however has increased the computational complexity. Sum of 

Absolute Transformed Difference (SATD), a fast Rate Distortion Optimization (RDO) 

intra prediction algorithm in the HEVC standard, is one of the most complex and 

compute-intensive part of the encoding process.  SATD  alone can takes up to 40%  

of the total encoding time;  hence off-loading it to dedicated hardware accelerators   

is necessary to address the increasing need for real-time video coding in accordance 

with the push for coding efficiency. This work proposes a Verilog-described N × N 

SATD hardware architecture which is based on Hadamard Transform. The architecture 

would support a variable block size from 4 × 4 to 32 × 32 with 1-D horizontal  

and 1-D vertical Hadamard Transform. At the same time, it is designed to achieve 

throughput optimization by pipelining and feedthrough control. The performance of 

the implemented SATD is then evaluated in terms of utilization, timing and power. 
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ABSTRAK 
 
 

High Efficiency Video Coding (HEVC) merupakan standard pengekodan video 

terkini yang menawarkan 50% peningkatan dalam kecekapan pengekodan berbanding 

dengan Advanced Video Coding (AVC) yang wujud sebelumnya.  Berbanding 

dengan AVC, HEVC menyokong 33 mod ramalan intra, mod DC dan mod planar. 

Walau bagaimanapun, peningkatan yang ketara dalam bilangan mod ramalan intra 

telah meningkatkan kerumitan komputasi tersebut. Sum of Absolute Transformed 

Difference (SATD) merupakan salah satu algoritma ramalan intra yang  tertara  

dalam algoritma Rate Distortion Optimization (RDO) dalam piawaian HEVC. 

Memandangkan algoritma tersebut merupakan salah satu bahagian pengekodan yang 

paling rumit, ia mampu mengambil masa sebanyak 40% daripada jumlah masa 

pengekodan. Oleh demikian, komputasi tersebut perlu dilaksanakan di perkakasan 

yang dedikasi untuk menangani keperluan yang semakin meningkat susulan dorongan 

untuk kecekapan pengekodan. Dalam projek ini, satu perkakasan yang berdedikasi 

telah direka dalam bahasa Verilog bagi menyokong operasi N × N SATD yang 

berdasarkan Hadamard Transform.  Rekaan tersebut menyokong saiz-saiz blok dari  

4 × 4 hingga 32 × 32 dengan 1-D mendatar dan 1-D menegak Hadamard Transform. 

Pada masa yang sama, ia direka untuk mencapai pengoptimuman throughput dengan 

pengaliran paip dan pengawalan feedthrough. Perkakasan SATD tersebut akan 

disintesis, dinilai dan ditanda araskan dari segi penggunaan, kuasa dan masa. 
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CHAPTER 1 
 
 
 

INTRODUCTION 
 
 
 
 

1.1 Problem Background 
 

In accordance with the advancement of multimedia technology, the demand 

for higher video resolution is growing. High definition video has become a basic 

expectation among consumers and they continue to push for better and smoother 

viewing experience. In relation, video coding standard has evolved greatly from the 

early MPEG standard to the H26x family. High Efficiency Video Coding (HEVC) or 

H.265 is the latest standard from the H26x family. Being the state-of-the-art video 

coding standard, it offers an identical quality to the previous Advanced Video Coding 

(AVC) or H.264 standard, but only requires half the bitrate of AVC. This indicates a 

significant improvement of 50% in the coding efficiency. In fact, before HEVC, Full 

HD or 1080p was the height of technology and AVC alone is sufficient. As video 

resolution grows larger towards 4K and 8K, higher coding efficiency is required and 

this is achievable with HEVC [1]. 

 
The improvement in coding efficiency is contributed mainly by the 

advancement in the video compression method, i.e. intra-frame prediction. Intra-frame 

prediction compresses a frame by looking for redundant information in the same frame. 

While AVC only supports 9 prediction modes, HEVC is able to support a total of 35 

prediction modes. With more prediction angles, the prediction is much more accurate, 

less redundant and hence massively reduce the size of bits required to encode each 

frame. Lesser bits means smaller file size and reduced bandwidth requirement, or in 

other terms, more information can now be transmitted using the same bandwidth. In 

addition, HEVC can handles a Coding Tree Unit (CTU) of 64 × 64 pixel. Previously, 



2 
 

 

AVC can only supports macroblocks with greatest size of 16 × 16. By increasing  
the range of block sizes, not only that this introduces more flexibility in partitioning, 

but it also boost the coding efficiency, especially when processing video with large 

resolution. 

 
Every prediction unit has to go through all the prediction modes to determine 

which is the best suited prediction mode. These modes are evaluated by a cost function 

calculated by Sum of Absolute Transformed Difference (SATD), a mathematical 

method used in fast Rate Distortion Optimization (RDO). Although the increase in 

the number of prediction modes enhance the compression quality, at the same time, 

they came at a price: substantial computational complexity. 

 
To overcome the limitation caused by the increased complexity, SATD must be 

accelerated in hardware with the capability of handling variable block size. From 

hardware perspective, the architectural design of the SATD and the control of the 

architecture determines the performance of the HEVC encoder. 

 
 
 

1.2 Problem Statement 
 

HEVC is first introduced in 2012 but until now it is still not being recognized 

as the universal standard. Despite being the state-of-the-art encoding standard, HEVC 

is still relatively unpopular compared to AVC. One of the reason for this is that the 

hardware for HEVC is significantly less common. As the load has doubled for 4K or 

higher resolution video, most of the existing system cannot encode or decode a 4K 

HEVC video efficiently. In other words, HEVC is not fully compatible with existing 

playback devices. Some software solution exist but they are inefficient to meet the real 

time constraints. Therefore, in order to make HEVC a universal standard, hardware 

acceleration is very important. 

 
Although HEVC offers power streaming, it comes at a price - computing 

complexity [2]. The mode decision is very compute-intensive. Although only 26 

modes are added in the intra prediction step, it costs almost 10× of computing power 
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for HEVC to encode at the same speed as AVC. Hence, HEVC hardware development 

and optimization is definitely the upcoming trend in the new silicon of the main 

stakeholders like Apple, AMD or Intel. 

 
Apart from that, researches have been looking into realizing SATD into 

hardware as well. However, despite the largest CTU size of 64 × 64, most of the 

proposed architectures still stay at 8 × 8 or even 4 × 4. Since forthcoming adoption of 

larger video resolutions beyond 8K UHD are expected, size of the prediction unit are 

correlated and transform block will be growing towards 64 × 64 as well. It is important 

for the SATD hardware to scale accordingly and supports larger size of Hadamard 

Transform [3]. 
 
 
 

1.3 Objectives 
 

The objectives to be achieved in this project are: 
 
 

1. To design a variable block size SATD hardware which can support SATD 

operation from 4 × 4 to 32 × 32 

2. To achieve throughput optimization by pipelining and feedthrough control 
 

3. To analyze utilization, timing and power when implemented on an FPGA 
 
 
 

1.4 Scope 

 
The main focus throughout the project is to realize the SATD hardware. The 

design will not include other components of the HEVC encoder. The input of SATD 

is the residual block which comes from the previous stage of HEVC hardware. SATD 

will perform the calculation and store the absolute transformed sum for each prediction 

mode, taking care of blocks with sizes ranging from 4×4 to 32×32. The mode decision 

hardware is not included as part of SATD as well. 
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Apart from that, the control logic is designed to maximize the re-usability of 

the sub modules and to focus on pipelining and feedthrough control to obtain higher 

throughput. The hardware is described using System Verilog and will be implemented 

on an FPGA. The design will not be implemented onto ASIC. 

 
 
 

1.5 Thesis Outline 
 

This thesis consists of five chapters which are introduction, literature review, 

research methodology, results and discussion, and conclusion. Chapter 1 explains the 

background of this project, raises the problem and formulates the objectives and scope 

of this project.  In chapter 2,  literature review are conducted to study and review   

the recent achievement and contribution conducted by the experts in field.  Chapter  

3 describes the design methodology of the hardware architecture. The results and 

discussion is then covered by chapter 4. Finally, chapter 5 summarize the overall 

findings and the achievement of this project. Some recommended future work will be 

discussed as well. 
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