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ABSTRACT 

 

Zinc oxide nanowires (ZnO NWs) have evoked extensive attention in recent 

years because of their potential technological applications. Aluminum (Al-ZnO) doped 

ZnO NWs have been deposited onto indium tin oxide (ITO) glass substrate, by using 

sol-gel spin coating and hydrothermal methods. Al-ZnO NWs with the percentage of 

Al content up to 6% were annealed at 450–600 °C. The structural, electrical and optical 

properties of the samples were characterized with X-ray diffraction (XRD), Energy-

dispersive X-ray (EDX) spectroscope, Field-emission scanning electron microscope 

(FE-SEM), atomic force microscope (AFM), and UV-Visible spectrophotometer and 

photoluminescence (PL) spectrometer. Meanwhile, the Al-ZnO NWs conductivity 

level was determined by Van der Pauw method. XRD analysis confirmed a single 

phase spinel structure with the crystallite size between 20-50 nm calculated using the 

Scherrer’s formula. The highest main diffraction peak corresponding to the (002) 

orientation was due to the dominant phase of Al-ZnO at annealing temperature of 550 

°C. The FE-SEM and AFM micrographs displayed the formation of well-defined and 

homogenous crystallite grains. The biggest grain size of 37 nm was observed for Al-

ZnO NWs prepared with 6% Al concentration and annealed at 550 °C. The samples 

showed a high transmittance of more than 85% in the visible region, with energy 

band gap in the range of 3.25 to 3.35 eV. In addition, the electrical measurement 

result of the Al-ZnO NWs showed the lowest conductivity value of 2.49×10-4 S/cm with 

the activation energy Ea = 27 meV. A dye sensitized solar sell (DSSC) with this design 

showed a high short-circuit current density of 3.94 mA/cm2 and open circuit voltage 

of 0.48 V. A DSSC with efficiency of 0.72% was achieved using this photo-anode.                            

.
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ABSTRAK 

Dawai nano zink oksida (ZnO NWs) telah mendapat perhatian meluas dalam 

tahun kebelakangan ini kerana potensi yang tinggi dalam penggunaan teknologi. ZnO 

NWs berdop aluminum (Al-ZnO) telah dimendapkan ke atas substrat kaca indium 

Stanum oksida (ITO) menggunakan kaedah pelapisan putaran sol-gel dan hidroterma. 

Al-ZnO NWs dengan kepekatan Al sehingga 6% telah disepuhlindap pada 450-600 

°C. Pencirian sifat struktur, elektrik dan optik sampel telah dibuat menggunakan 

pembelauan sinar-X (XRD), spektroskop sinar-X tenaga-serakan (EDX), mikroskop 

elektron pengimbasan medan pancaran (FE-SEM), mikroskop daya atom (AFM), 

spektrofotometer UV-cahaya nampak dan spektrometer kefotopendarcahayaan (PL). 

Sementara itu, tahap kekonduksian Al-ZnO NWs ditentukan menggunakan kaedah 

Van der Pauw. Analisis XRD mengesahkan sampel berstruktur spinel fasa tunggal 

dengan saiz hablur antara 20-50 nm dikira menggunakan formula Scherrer. Puncak 

pembelauan utama tertinggi sepadan dengan orientasi (002) adalah berpunca daripada 

fasa dominan Al-ZnO pada suhu penyepuhlindapan 550 °C. Mikrograf FE-SEM dan 

AFM memaparkan pembentukan butiran hablur yang sekata dan homogen. Saiz 

butiran terbesar 37 nm diperhatikan bagi Al-ZnO NWs yang disediakan dengan 

kepekatan 6% dan disepuhlindapkan pada 550 °C. Sampel menunjukkan kehantaran 

tinggi melebihi 85% dalam rantau cahaya nampak dengan jurang jalur tenaga antara 

3.25 hingga 3.35 eV. Disamping itu, hasil pengukuran elecktrik Al-ZnO NWs 

menunjukkan nilai kekonduksian terendah 2.49×10-4 S/cm dengan tenaga pengaktifan 

Ea = 27 meV. Solar sel terpeka pewarna (DSSC) dengan reka bentuk ini menunjukkan 

kepadatan arus litar pintas yang tinggi 3.94 mA/cm2 dan voltan litar terbuka 0.48 V. 

DSSC dengan kecekapan 0.72% telah terhasil dengan menggunakan foto-anod ini. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of study   

In twenty first century a wide interest to fabricate nanostructure materials and 

devices. These materials and devices have structures with nano-scale dimensions. 

One of the main reasons for interesting to nano-materials is because of different 

properties from those bulk materials. These properties such as large surface area have 

applications for various uses. Specially, Zinc oxide (ZnO) nanostructures are 

attracting interest since the techniques used to fabricate them are largely 

correspondent with available semiconductor production processes. ZnO 

nanostructures properties are different from that bulk ZnO. 

ZnO is a key technology material with numerous applications ranging from 

chemical sensors to optoelectronics because of unique optical, electronic, and 

chemical properties [1-5]. The lattice parameters of ZnO are a=0.3249 nm and 

c=0.5206 nm at temperature room (300K), with a c/a ratio of 1.602. Moreover, ZnO 

has a wide band-gap 3.37 eV II-VI compound semiconductor that is suitable for short 

wavelength optoelectronic applications [6-9]. ZnO has an effective electron mass of 

~0.24 Me, and a large exciton binding energy of 60 meV at temperature room [10-

13]. In addition, ZnO is a transparent material to visible light; also, it can to highly 

conductive by doping. The intrinsic defect levels that lead to n-type doping lay 

approximately 10– 50 meV below the conduction band [14, 15]. The reliable and 

reproducible p-type conductivity has not yet been achieved due to many issues. The 
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compensation of dopants by energetically favorable native defects such as zinc 

interstitials or oxygen vacancies is one of the obstacles [16]. The low dopant 

solubility is another issue. One of the optical properties of ZnO is extensively studied 

because of their promising applications in optoelectronics. Furthermore, the lasing 

conditions can be further improved with low dimensional ZnO structures, which 

enhance the excition oscillator strength and quantum efficiency [17,18]. Therefore 

bulk ZnO has a small exciton Bohr radius (~2.34 nm). The Quantum Confinement 

effect in ZnO nanowires could be observable at the scale of an exciton Bohr radius. It 

has been reported by Guet al. [19] that the excition binding energy is significantly 

enhanced due to size confinement in ZnO nano-rods with diameter of ~2 nm. Various 

types of solar cell, such as silicon-based, GaAs and organic have recently been 

developed [19, 20]. Semiconductor nano-wires (NWs) have been proposed as basic 

“building blocks” in a variety of devices, for example, photonics, electronics, and 

chemical sensing [20]. 

Nowadays, one-dimensional (1D) nano-wires and nano-rods have attracted a 

lot of attention. Compared to thin- film and bulk devices, 1DNW devices are 

expected to have a larger response to light due to the high length-to-diameter aspect 

ratio and high surface-to-volume ratio of 1D-NWs. Investigations into semiconductor 

nano-material systems have demonstrated that ZnO is a promising material for 

application in various devices because it is a chemically and thermal ways stable and 

n-type semiconductor with a large band-gap energy and a large exciton binding 

energy at room temperature. ZnO nano-structures can be synthesized using different 

techniques. Vapor phase deposition [21] and hydrothermal synthesis [22] are the 

most commonly used low-temperature synthesis techniques for zinc oxide 

nanostructures. 

In particular, dye-sensitized solar cells (DSSCs) of the third generation of 

solar cells have become a very interesting and practical alternative for advances in 

solar cell technology. The working mechanism of the DSSC is unique in that it does 

not follow the principles of the traditional p-n junction solar cell. The dye sensitizer 

absorbs the photons, while the role of the semiconductor film is to facilitate charge 

transport to the collecting transparent conductive oxide glass substrate. Since its 
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introduction into the science community in 1991, the nanocrystalline photoanode in 

DSSC have predominantly been comprised of nanoparticles. With efficiencies 

reaching a plateau of 11-12% for TiO2 nanoparticle-based dye sensitized solar cells 

[6, 9], many researchers became very interested in studying the dye-sensitized solar 

cell performance of alternative semiconducting nanomaterials. Specifically, ZnO has 

been an ideal alternative to TiO2 because ZnO has a similar conduction band edge 

that is appropriate for proper electron injection from the excited dyes; moreover, 

ZnO provides better electron transport due to its higher electronic mobility.                                                                                                                              

  

Over the past decade, there has been a heightened interest in using ZnO NWs 

as the semiconducting photoanode in dye-sensitized solar cells. Utilizing wide-band 

gap semiconductor nanowires (e.g., ZnO NWs) instead of TiO2 nanoparticles has 

been thought to be very advantageous because i) the NW morphology allows for 

electrons to travel a more direct 3 conduction path from the point of injection to the 

point of collection, and ii) the NW possess a large enough surface area for adequate 

dye adsorption [9]. The NW photoanode has a very fast electron injection rate and 

the electron diffusivity in crystalline wires (ZnO NW) has been reported as several 

orders of magnitude larger than electron diffusivity within TiO2 nanoparticles [17]. 

The superior electron transport within the NW photoanode can be attributed to its 

higher crystallinity and the presence of an internal electric field that facilitates 

electron transport to the collecting glass substrate by effectively separating the 

injected electrons from the oxidized species of the electrolyte; this, in turn, improves 

the charge collection efficiency [17]. Furthermore, NWs can be synthesized at low 

temperatures, which allow the use of various substrates including polymers, and the 

employment of low temperatures greatly reduces energy costs. However, researchers 

have yet to fabricate ZnO NW-based DSSC with efficiencies similar or higher than 

TiO2 nanoparticle-based DSSCs. Although the vertical NW morphology has many 

advantages, there is also a critical disadvantage. Compared to the closely packed 

nanoparticle thin film, more uncovered substrate surface between the NWs is present 

in the vertical NW array. These open spaces lead to direct contact between the 

electrons at the conducting glass substrate and either the oxidized dye molecules or 

oxidized species in the electrolyte during the charge transport process. This 

phenomenon is known as either electron recombination or electron back transfer. 

Interestingly, many have referred to the occurrence of electron back transfer as the 
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most crucial limitation of DSSC as it severely affects its performance by short-

circuiting the cell. It is thought that by placing a barrier layer between the conducting 

glass substrate and the NWs, the contact at the conducting substrate-electrolyte 

interface can be significantly reduced or avoided completely. Another major 

challenge of ZnO NW-based dye sensitized solar cells stems from the lower surface 

area of the ZnO NW array to that of the network of TiO2 nanoparticles on the 

substrate. By having a larger surface area, the nanocrystalline photoanode is able to 

absorb a greater amount of the incoming light. Thus, improvements in the surface 

area of the ZnO NWs array used for the DSSC will significantly enhance the light 

harvesting efficiency, which in turn results in an overall increase in the power 

conversion efficiency of the cell. In addition to providing better charge collection, 

the use of very long and dense ZnO NW arrays results in a greater surface area that is 

necessary for an increase of adsorbed dye molecules, which leads to improved light 

harvest efficiency [17]. As an alternative to synthesizing longer NWs, the concept of 

producing dense hierarchal NW structures should also yield larger surface areas 

needed to improve the conversion eff iciency of ZnO NW-based DSSC.                                                                    

1.2 Problem statement 

This research shows that ZnO NWs have been studied almost two decades, to 

emphasize generally on their synthesis and properties [23].  Most of the techniques 

employed are based on chemical methods comprising of electrochemical and 

chemical bath deposition (CBD) [24-25]. The second methods appeared to be more 

reliable in terms of its ease of use, less expensive and the ability for commercial 

production [26-27].  

Synthesis and Controlled growth using different techniques and using Al 

instead of Pt in ZnO NWs by easy and economic method is demanding for 

optoelectronic application. since many techniques, are for fabricate Solar Cell 

technique including advantages for large scale, and high density fabrication of Al-

ZnO NWs. However, we achieved this method with various growth conditions to 



5 

 

study the role of annealing, a variation of substrate temperature, annealing time, 

and another growth parameter on sample morphology.  

However, there is No progress of works using the conventional bath 

techniques which revealed the formation of ZnO NWs with less defines the 

structures.  Further examination showed that the NWs the same ZnO appeared as 

simple and short, ascribed by their non-random orientations via chemical bath 

deposition [29]. A CBD method is proposed which will result in quality of ZnO 

NWs. The novel corresponding structural and optical properties are expected to 

improve significantly. And the following method of preparation and optimum 

synthesis of Al-ZnO NWs by presented method can approach to optimum 

nanostructure for semiconductor application. 

1.3 Research Objectives 

This study presents the following objectives: 

I. To fabrication photo anod of ZnO NWs 

II. To determine the structure of Al-ZnO by chemical deposition method in 

different temperature and ratio and protract employing XRD and EDX. 

III. To analyze of surface morphology such as ZnO roughness, number 

density, ratio of grain area, shape and size of the ZnO NWs by AFM and 

FE-SEM.  

IV. To determine the optical properties of nanowire ZnO in different 

annealing temperature (value of 450-600 °C) and concentration by UV-

visible and photo-luminance (PL). 

V. To determinate effects of the current density of ZnO NWs arrays on the 

overall DSSC power conversion efficiency by designing a one-
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dimensional ZnO NWs that increases the NWs density and enhances 

surface area, and thus enhances light absorption. 

1.4 Scope of research 

This project aims to synthesize and investigation of structural, optical and 

electrical properties of ZnO NWs. The concentrations of Al- ZnO seeded catalyst 

expressed as were  ( 0 − 6 %).  

This material is selected for this study in view of their technological 

importance. The crystallinity of the film is developed by calcinate at 450 - 600 °C. 

To growth ZnO NWs, several steps must be taken, which each step is depend on 

benefits and builds on the information found in the previous steps. These are 

reflected in the experimental approach. Sol-gel and Chemical Bath Deposition 

(CBD) methods are employed to prepare ZnO nanowire on Indium-tin-Oxide (ITO) 

glass substrate, ZnO bilayer, and glass/ITO/AZO/ ZnO heterostructure. Different 

deposition parameters such as; time deposition, substrate temperature and treatment 

that in different temperatures and times are applied to investigate the growth process 

and surface evolution of zinc oxide nano-wires. Energy dispersive X-ray diffraction 

(EDX) and field emission scanning electron microscopy (FE-SEM)are used to 

characterize the surface morphology of samples. 

Optical properties of samples and the effect of growth parameter, ZnO space 

layer thickness and ITO substrate thickness on the optical behaviour are studied by 

photoluminescence (PL) and UV-Visible. This project involves the preparation and 

characterization of ZnO nanostructure.   
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1.5 Significant of study 

Nano-structuring of semiconductors is a novel device of developing new 

electronic and optoelectronic devices. Particularly, it is one of the discoveries of 

room-temperature (RT) visible photoluminescence (PL) from ITO and ZnO. 

Furthermore, nanostructures have very much interest in these particular kinds of 

Nanoclusters and small semiconductor nanoparticles. Setting the optical response of 

ITO and zinc oxide nanomaterial by changing their size to become also a the most 

challenging aspects of recent research on semiconductors.  

Easy and economical fabrication technique would be developed. The 

instrumentation for large-scale fabrication has socio-economic impact. The 

fundamental physics behind the growth would be understood. The data generated 

throw this research will be published in high impact factor journal, and research data 

would be presented in conferences, workshops, and seminars. Ph.D. and Masters 

Research Scholar can be trained using this methodology to pursue their future 

research.  

The high quality of the sample needed for the optoelectronic industries can be 

supported by using rf magnetron sputtering method. The device would be cheaper 

and economic. A set of characterization, which we propose, would be able to 

measure the band gap, right sample structure, and right physics. An extension of this 

research is that these methodologies are not just limited to the Zinc, another 

semiconductor nanostructure like ZnO and other also can be grown by using this 

method. This method can be extended and become versatile for nanostructure 

growth. 

1.6 Organization of research 

This research is concluding of five chapters. Chapter 1 begins with the 

introduction, followed by the research background, the statement of the problem, 
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research objective, research questions, and the scope of the study, research 

hypothesis, and the organization of the study.  

 Chapter 2 provided an extensive literature review that had been done serve as a 

guide for understanding the following chapters. This detailed review will be based 

primarily on, i) the properties, characteristics, and attractive uses of ZnO and its 

nanomaterials; and ii) the fundamental principles of photovoltaic and particularly 

advancements of dye-sensitized solar cells within the nanotechnology field.  

Chapter 3 focused on, i) the fabrication of ZnO nanowires based on a 

hydrothermal process synthesis; ii) an investigative study of ZnO morphology based 

on varied synthesis conditions and iii) examined various methodologies to improve 

the overall power conversion efficiencies of ZnO nanowires based dye-sensitized 

solar cells via the fabrication of a one-dimensional solar cell design. 

Chapter 4 described the basic recipe used to grow ZnO NWs. To grow these 

nanowires successfully, various growth parameters were studied. The growth 

mechanism was explained, and structural characterizations on grown ZnO NWs were 

performed. 

Lastly, Chapter 5 concludes all major findings and rationalizations from this 

research project. 
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