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ABSTRACT 

 

 

 

 

 

Marshes are the provider of habitat for several types of living creatures. Their 

preservation are prioritized for sustainable environment and eco-friendliness. Iraqi 

marshland is the largest wetland with an area of 15,000-20,000 km2 in the Middle 

East and Western Eurasia and has a significant impact on the ecosystem. The salinity 

in the Tigris and Euphrates Rivers near their discharge point at the marsh ranges 

from 0.5 to 2ppt (parts per thousand). This thesis focuses on Al-Hawizeh marsh, 

which is one of the major marshes with an area of 2,500-3,000 km2 in Iraq and 

considered as an enriched resource of fishing and irrigation. Of this mashland, 74% 

of it’s agricultural land suffers from high degree of salination that need to be 

overcomed. Several man-made activities and post-war related events have caused 

radical deterioration of water quality in this marshland. The aim of this study is to 

monitor and assess the water quality parameters of this marsh. The optical remote 

sensing dataset (bands B6, B7, and B11) from Landsat-8 (OLI/TIRS) are 

synergistically integrated to the proposed salinity index (SI) and soil moisture index 

(SMI) model. By using the newly developed algorithms, the optimum water quality 

parameters in terms of salinity and minerals contents which comprised of iron, lead, 

zinc, nickel, calcium carbonate and sulphate are determined. This creative integration 

between remote sensing data and developed algorithms is established to successfully 

map the spatial variation of salinity and minerals distributions within Al-Hawizeh 

marsh during four seasons in the year 2013. The results of this study show that SMI 

model achieved better accuracy in retrieving the water quality parameters than the SI 

model. The average of the concentrations values for (salinity, SO4, CaCO3, Fe, Pb, 

Ni and Zn) by using SMI model are found to be minimal in winter as (746, 121, 84, 

0.59, 0.49, 0.04 and 0.036) mg respectively and maximum in autumn as (1956, 202, 

172, 0.64, 0.53, 0.08 and 0.05) mg respectively. The decision tree (DT) classification 

that uses single band outperformed the support vector machine (SVM) classification 

when combined with SMI model. This study also found that the change of value for 

salinity and mineral are minimum between winter and spring but maximum between 

summer and autumn. In conclusion, the developed systematic and generic approach 

may constitute a basis for determining the water quality parameters in the marshland 

worldwide. 
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ABSTRAK 

 

 
 

 

 

Paya menjadi pembekal habitat untuk beberapa jenis hidupan. Pemeliharaan 

mereka diutamakan untuk mengekalkan kelastarian alam sekitar dan mesra alam. 

Tanah  paya Iraq merupakan paya  terbesar dengan keluasan 15,000-20,000 km2 di 

Timur Tengah dan Barat Eurasia dan mempunyai kesan yang signifikan terhadap 

ekosistem. Kemasinan Sungai Tigris dan Euphrates berhampiran titik aliran mereka 

di kawasan paya adalah di antara 0.5-2ppt (bahagian per ribu). Tesis ini memberi 

tumpuan kepada tanah paya Al-Hawizeh yang merupakan salah satu daripada  paya 

yang terbesar dengan keluasan kawasan 2,500-3,000 km2 di Iraq dan dianggap 

sebagai sumber terkaya untuk perikanan dan pengairan. Bagi tanah paya ini, 74% 

daripada tanah paya ini adalah tanah pertanian yang mengalami tahap kemasinan 

tinggi yang perlu diatasi. Beberapa aktiviti buatan manusia dan peristiwa berkaitan 

pasca perang telah menyebabkan kemerosotan secara radikal terhadap kualiti air 

dalam tanah paya ini. Tujuan kajian ini adalah untuk memantau dan menilai 

parameter kualiti air paya ini.  Set data penderiaan jauh optik (jalur B6, B7, dan B11) 

daripada Landsat-8 (OLI/TIRS) diintegrasikan secara sinergi dalam model indeks 

kemasinan (SI) dan indeks kelembapan tanah (SMI). Dengan menggunakan 

algoritma baru yang dibangunkan, parameter optimum kualiti air dari segi kemasinan 

dan kandungan mineral yang terdiri daripada besi, plumbum, zink, nikel, kalsium 

karbonat dan sulpid dapat ditentukan. Integrasi kreatif di antara data penderiaan jauh 

dan algoritma yang dibangunkan telah berjaya untuk memetakan variasi spatial 

kemasinan dan taburan  mineral di dalam paya Al-Hawizeh sepanjang empat musim 

dalam tahun 2013. Hasil kajian ini menunjukkan bahawa model SMI mencapai 

ketepatan yang lebih baik bagi mendapatkan semula parameter kualiti air berbanding 

dengan model SI. Purata nilai kepekatan untuk kemasinan SO4, CaCO3, Fe, Pb, Ni 

dan Zn dengan menggunakan model SMI didapati adalah minimum pada musim 

sejuk iaitu masing masing adalah 746, 121, 84, 0.59, 0.49, 0.04 dan 0.036 mg dan 

maksimum pada musim luruh iaitu 1956, 202, 172, 0.64, 0.53, 0.08 dan 0.05 mg. 

Pengelasan keputusan pokok (DT) menggunakan jalur tunggal mengatasi pengelasan 

mesin vektor sokongan (SVM) apabila digabungkan dengan model SMI. Kajian ini 

juga mendapati bahawa nilai perubahan kemasinan dan mineral adalah minimum di 

antara musim sejuk dan musim bunga tetapi maksimum di antara musim panas dan 

musim luruh. Kesimpulannya, pendekatan yang sistematik dan generik yang  

dibangunkan boleh menyumbang kepada asas penentuan parameter kualiti air di 

tanah paya di seluruh dunia. 
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CHAPTER 1 

 

 

 

 

 

INTRODUCTION 

 

 

 

 

 

1.1 Background of the Study 

 

 

Marshes being the provider of habitat for several types of plants, animals, and 

insects often form a transition between the aquatic and terrestrial ecosystems. 

Prediction of marshes water quality by developing an accurate model and its 

subsequent remediation of water pollutants is prerequisite for sustainable 

development and ecological balance. Presently, many environmental problems such 

as pollution, frequent earth quake, tsunami, global warming, ozone hole, etc. 

certainly posed severe threat to humankind and nature ( Abdul Jabbar, 2010). 

Literature hinted that some of these environmental crises are manmade, however the 

actual reasons still to be clarified. 

 

 

A large portion of earth’s landscape is covered by marshes so called wetland, 

which is one of the most important habitats that support more life than any other type 

of habitat. They are also essential to keep our environment clean. Thus, proper 

restoration of marshes and effective maintenance of their water quality is mandatory 

for environmental sustainability and human safety in terms of health and hygiene. 

Marshes being ubiquitous all over the Earth surface, the landscape of Iraq is not an 

exception. Actually, a large part of Iraq is covered by marshes where keeping the 

environmental affability to protect the communities from harsh weather conditions, 

supporting breeding grounds for commercially valuable fishes, and offering 
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recreational opportunities are significant. Controlling the marshes water quality by 

detecting the presence of heavy metals including mercury (Hg), cadmium (Cd), 

arsenic (As), chromium (Cr), thallium (Th) and lead (Pb) and subsequently 

remediating them is an essential requirement to preserve such habitat for 

sustainability. Definitely, clean water is an essential requirement for aquatic life and 

human survival (Wu et al., 2014). 

 

 

Categorically, several environmentally destructive development and human 

non-ethical activities such as water pollutions, inadequately discharges of sewage 

and industrial waste waters, poor agricultural practices, and lack of integrated 

watersheds management created major problems. Consequently, the water quality in 

rivers, lakes, and marshes are severely affected. These indicators posed a serious 

concern to the ecosystem, water resources degradation, public health risks and 

watersheds especially prone to water quality problems (Azab, 2012). Therefore, the 

quality of surface water is rapidly deteriorating. This is categorized as point sources 

involving the discrete flows of polluted water that enters the watersheds through a 

channel or pipe such as the effluent from a sewage treatment plants.  They are often 

associated with municipalities or industries. Conversely, the non-point sources are 

usually associated with the widely covered land usage including forest management 

practices, agricultural cultivation, and livestock grazing. Generally, these pollution 

sources enter watersheds area through groundwater flow, overland flow or flow from 

small tributaries (Wu et al., 2013).  

 

 

The surface water quality of watersheds such as marshes, lakes and reservoirs 

often vary depending on natural of hydrological, biological, chemical, morphological 

and sedimentation processes. Salinity, heavy metals, and pathogens such as parasites, 

bacteria and viruses being the waste materials are most dangerous environmental 

pollutants (Azab, 2012; Kerekes and Baum, 2005; Mather and Koch, 2011; Ongley, 

2000; Ustin, 2004; Zacharias and Gianni, 2008). Supply of poor water quality 

severely affects the sanitation and causes soil erosions (Ustin, 2004) unless inhibited. 

Globally, approximately 25,000 deaths occur daily due to the water borne diseases 

(Amel Mustafa, 2012; Mujumdar, 2001; Ongley, 2000). Over the years, aerial or 
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space sensor technologies so called remote sensing are intensively used to detect and 

classify marshes on Earth, which played a significant role towards natural resource 

management. It is worth mentioning that the water quality of rivers, streams, lakes 

and marshes in Iraq (Schwarte, 2003; Ustin, 2004) became questionable due to 

American-Iraq war related activities during 1991 and 2003 and proliferation of 

chemicals.  

 

 

In the past few decades the problems regarding water quality is greatly 

cropped up in Iraq. Water pollutions in the form of discharges of sewage and 

industrial waste waters, poor agricultural practices, and lack of integrated watersheds 

management intensified the soil erosion and sedimentation. Furthermore, the poor 

public awareness on the water resources protection threatened the ecosystems, 

endangered the public health and degraded the water quality in Iraq (Kerekes and 

Baum, 2005; Schwarte, 2003; Ustin, 2004). Thus, proper management, assessment, 

monitoring and solving the problems of surface water quality require an in-depth 

analyses of watersheds, where an integrated catchment approach is believed to play a 

major role (Amel Moustafa, 2012; Haith and Tubbs, 1981).  

 

 

The watershed database and modeling tools coupled GIS is prospective to 

simulate hydrological processes on a daily time step including surface water quality, 

runoff, evapotranspiration, soil erosion and agricultural pollutant transport (Quilbé 

and Rousseau, 2007). The mathematical modeling of water quality is essential for 

developing management plans for watersheds. The integration between GIS, 

different computer technologies, remote sensing techniques, and water quality 

models act as a powerful tool for water quality management, especially with 

complicated surface networks in watersheds. Moreover, GIS assist to collect, store, 

analyze, manipulate and display data that can be used easily to construct models for 

water quality management (Azab, 2012; Goodchild et al., 1996). The integrated 

model with the spatial capabilities of GIS together with spatial and temporal 

capacities of remote sensing can provide a powerful tool for management and 

assessment the surface water quality problems (Ammenberg et al., 2002; Amel 

Moustafa, 2012). In this view, the present thesis takes an attempt to model the 



4 
 

marshes water quality accurately based on optical remote sensing information 

acquisition. 

 

 

It is needless to mention that remote sensing is highly useful for monitoring 

and mapping the water quality on earth’s surface (Ammenberg et al., 2002; Ustin, 

2004). It is greatly potential for estimating, monitoring and mapping various 

parameters relating water quality. Recent advancement in remote sensing towards 

data acquisition and integration of spatial and temporal water quality models 

provided a renewed prospect for managing and evaluating the surface water quality 

problems in the marshes zone of southern Iraq. This study proposes some novel 

mathematical algorithms to retrieve numerous water quality parameters using 

Landsat-8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) data 

acquired for four seasons in 2013. The developed model is implemented to assess 

and map these water quality parameters distributions in the context of marshland 

situated in Al-Hawizeh (southern Iraq). 

 

 

 

 

 

1.2 Problem Statement 

 

 

The over-exploitation, political reprisals against the inhabitants, and lack of 

coordinated management caused several problems connecting the Iraqi water quality 

over the past fifteen years. Thus, the primary water resources in Iraq including the 

marshes are contaminated, in which the marshlands water quality is declined and 

appeared very much harmful for human consumption. The repeated construction of 

dams due to acute water storage in Turkey and Syria which is the major reason for 

water quality deterioration in the Iraqi marshlands needs further clarification. 

Besides, the domestic industrial pollution and hydroelectric power generation along 

the Euphrates and Tigris rivers also declined the marshland water quality in Iraq 

(Khattab and Merkel, 2014; Abdul Jabbar, 2010; Nicholson and Clark, 2003; Sun et 

al., 2014; Ustin, 2004; Wu et al., 2013; Wu et al., 2014). Despite the necessity, 
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research is seldom carried out to model the Iraqi marshlands water quality for 

effective remediation of pollutants.  

 

 

Wars related destructive manmade events added extra impulses towards 

environmental crises, in which the natural water recourses are the greatest victim. 

The unforgettable Gulf war's over past three decades that majorly deteriorated the 

Iraqi marsh resources and caused irreparable environmental damage in the Arabian 

Gulf coastal waters need to be assessed. During Gulf War, million tons of oil that are 

spilled in the Arabian Gulf is eventually affected the water quality of rivers, streams, 

lakes and marshes in Iraq (Schwarte, 2003; Ustin, 2004). In addition, scantily treated 

sewage, poor land use practices, industrial wastewaters discharges, excessive use of 

fertilizers, and a lack of integrated watershed management are other factors that 

impacted the marshland water quality in Iraq (Ustin, 2004). Yet, no comprehensive 

study is made to determine their influence on marshlands water quality declination. 

 

 

The water resources degradation being threatening to the ecosystems and 

public health requires special attention in term of remediation. A mathematical 

model enclosing all these negative effects such as environmentally destructive 

development, lack of information regarding water quality, poor public awareness and 

education on the protection of water resources, rapid deterioration of marshland 

water quality, etc. are far from being achieved (Kerekes and Baum, 2005; Schwarte, 

2003; Sun et al., 2014; Ustin, 2004; Wu et al., 2013; Wu et al., 2014). Advancement 

of such model on marshland water quality prediction, monitoring and assessment 

may be advantageous to solve several socio-economic problems especially health, 

hygiene and food security. 

 

 

With modernization and rapid industrialization, the ever-increasing water and 

soil salinity appears detrimental unless overcome. For instance, salinity in the Tigris 

and Euphrates rivers near their discharge point at the marsh ranges from 0.5 to 2 

parts per thousand (PPT). Thus, 74% of irrigated land that is suffering from certain 

degree of salination needs remediation (Wu et al., 2013; Wu et al., 2014). In fact, 
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salinity being the key parameter to understanding the water quality in marshland 

zones requires accurate measurement methods. Marshland salinity is a vital index for 

all living creatures including vegetations, species, microorganisms, animals, birds, 

insects, and plants. Thus, salinity monitoring, predicting, modelling, and simulation 

are crucial in the evaluation of ecological resources in Iraqi marshland zones. 

 

 

Better management and assessment of marshes water quality requires the 

identification of diverse components of watershed, the land categories usage, and the 

interaction among various connected water bodies. By determining the salinity, 

heavy metals, hydrodynamics of the water bodies and their various affecting factors, 

one develops better understanding of the marshes water quality problems. This truly 

reflects the requirements of effective tools for water quality management. By 

synergistically combining the existing tools for the surface water quality 

management one can develop a better approach to determine the appropriate 

solutions connecting water pollution problems. Water quality models are considered 

as key tools in understanding such problems. They also act as main components in 

management and decision support systems. Accurate interpretation of aquatic 

environment water quality in terms of salinity and existence of heavy metals require 

comprehensive models describing the detailed parameters. Using such models, much 

authentic data can be produced in an efficient manner. This introduces the integration 

of information technology tools with modeling and remote sensing that can be 

readily designed to support the marshland water quality management and assessment 

process.  

 

 

The advances made in water quality modeling using remote sensing data and 

information systems coupled to decision support systems in the management process 

are increasingly being recognized. This thesis combines the optical remote sensing 

data with water quality modeling to develop and support system concerning surface 

water quality management in marshes. It also explores the development in these tools 

to solve particular water quality problems. The main scope of the integration is to 

clearly understand the water quality of different types of connected water bodies in 

marshes. This integration is expected to provide a precise assessment of the water 
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quality problems and to develop remedial management actions for environmental 

protection in the future. 

 

 

 

 

 

1.3 Aim and Objectives of Study 

 

 

The aim of this study is to monitor and assess the parameters governing the 

water quality such as salinity and heavy metals (SO4, CaCO3, Fe, Pb, Ni and Zn) in 

Al-Hawizeh Marsh (Iraq) by developing a model based on optical Remote Sensing 

(RS) data. Based on the problem statement the following objectives are set:  

 

1. To develop a mathematical model based on Landsat-8 (OLI) and (TIRS) 

data for determining marshland water quality parameters including 

salinity and heavy metals (SO4, CaCO3, Fe, Pb, Ni and Zn). 

2. To determine the spatial distributions of the salinity and metals in 

marshland water using data fusion techniques for monitoring and 

assessment. 

3. To classify the marshland water quality parameters by using Support 

Vector machine (SVM) and Decision Tree (DT) classification depending 

on the mathematical models for optimization. 

 

 

 

 

 

1.4 Research Questions 

 

 

Based on the problem statement and cited objectives the following research 

questions are set: 

 

1. Is it possible to retrieve the water quality parameters by developing a 

model based on Landsat-8 data? 
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2. How data fusion techniques can assess and monitor the water quality 

parameters? 

3. Can Decision Tree effectively classify the water quality parameters? 

4. How to optimize the developed model for achieving the results closer to 

the reality? 

 

 

 

 

 

1.5 Significance of Study 

 

 

Marshes are considered as an important water source for the humans and the 

agricultural areas south of Iraq. The environmental pollution such as the domestic, 

agricultural and industrial activities as well as the remnants wars and the heavy or 

toxic metals are considering as significant effects on marshes water quality 

parameters. Thus effects have both direct and indirect impacts on the economic 

wealth, natural resources and human activities of all the regions around marshes. 

 

 

This study discovered the surface water quality problems and derived a 

computational framework for assessing salinity and numbers of minerals in Al-

Hawizeh. The assessment of surface water quality on a watershed in Al-Hawizeh 

Marsh southern Iraq, involves the examination of all activities in the watershed for 

their possible effects on the existing water bodies. Agricultural irrigated watersheds 

are of complex physical nature because they include interacting irrigation and 

drainage networks which may be connected to marshes. Studying surface water 

quality problems in such watersheds of marsh zone for better management practices 

calls for a reassessment and integration of information technology tools designed to 

support the management process. Therefore, the integration between mathematical 

modeling and remote sensing applications could provide a powerful tool for 

management and decision making process related to the solution of surface water 

quality problems. The present research aims to contribute to the field of surface 

water quality management through integrating water quality mathematical models 

with the spatial and temporal capabilities of remote sensing. 
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New models are developed and integrated with the optical remote sensing 

data such as Landsat-8 for retrieving, monitoring and assessment of spatiotemporal 

changes and mapping the spatial distributions patterns for water quality parameters 

such as salinity and heavy metals (SO4, CaCO3, Fe, Pb, Ni, Zn) in Al-Hawizeh 

Marsh southern Iraq during four seasons in 2013. This study distinguishes to be 

unique for retrieving water quality parameters depending on Landsat-8 images. Thus, 

an attempt is made to develop an integrated water quality management information 

system that is applicable to watersheds of Al-Hawizeh Marsh. The developed models 

of this study are generic and can be applied to other marshes of local and 

international regions with similar conditions. 

 

 

 

 

  

1.6 Scope of Study 

 

 

This study focuses on Al-Hawizeh Marsh, which is the largest wetland 

ecosystem in the southern Iraq. This marshland is facing a declination in recent 

decades. The monitoring and assessment of spatiotemporal changes of water quality 

in Al-Hawizeh marsh is the main focus. The dataset used in this study comprise of 

satellite data (Landsat-8) acquired for four different seasons in 2013. These data are 

obtained from Iraq's ministry of water resources (MWR) and center for the 

restoration of Iraq's marshlands (CRIM). Landsat-8 data is greatly authentic because 

it has multi-spectral band images. In addition, the hyper-spectral imaging system that 

refers to high resolution (1-30m) imaging of the surface water is included. This study 

depends on the bands of B1 to B11. Additional topographical survey data is also used 

in the study. The software used for data processing includes ERDAS 2011 and 

ArcGIS10.1 coupled to ENVI 5.1. In order to reach the first objective of this 

research, the study considers the water quality modeling technical approaches to 

retrieve the water quality from Landsat-8 data. New algorithms are developed and 

integrated with remote sensing data for monitoring and assessing the water quality 

parameters such as heavy metals and salinity. ENVI techniques are used to map and 

assess water quality distribution patterns seasonally in Al-Hawizeh Marsh in 

southern Iraq. 
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1.7 Thesis Outline 

 

 

This chapter provides a brief background to justify the importance of 

undertaken research on marshland water quality modeling based on optical remote 

sensing. The existing problems are highlighted as problem statement. To bridge the 

gap, a set of objectives are set with appropriate research questions. The significance 

and the scope of this research for developing an accurate water quality model are 

emphasized. Furthermore, the feasibility assessing and monitoring the water quality 

parameters using the satellite data in Al-Hawizeh Marsh of southern Iraq is 

underscored.  

 

 

Chapter two provides a comprehensive literature review in terms of theories 

and applications regarding this study. Existing relevant literatures are critically 

evaluated   to obtain useful information on remote sensing (RS) and appropriate 

parameters for water quality models (WQM). 

 

 

Chapter three describes in detail the research methodology. It covers the 

procedures of data collection and data processing. It evaluates the accuracy and 

capability of water quality modeling to assess and monitor water quality parameters. 

 

 

Chapter four presents the results and analyses for accomplishing the stated 

objectives, where the implementation of the developed model is demonstrated. 

 

 

Chapter five discusses the results and interprets those using different 

mechanisms. 

 

 

Chapter six concludes the thesis together with useful suggestions and 

recommendations for pursuing future research.   



284 
 

 

 

 

 

 

REFERENCES 
 

 

 

 

Abdollahi, Y., Zakaria, A., Abbasiyannejad, M., Masoumi, H. R. F., Moghaddam, M. 

G., Matori, K. A., et al. (2013). Artificial neural network modeling of p-

cresol photodegradation. Chemistry Central Journal, 7(1), 1-7.  

Abdul Jabbar, A. F. S. (2010): Change detections in marsh areas, south iraq, using 

remote sensing and gis applications. Iraqi Bulletin of Geology and Mining, 

6(2), 17-39  

Adams, D. S., Trauth, K. M., Adhityawarma, J., Peyton, R. L. and Corrêa, A. C. 

(2001). Water quality modeling for watershed management: using AGNPS 98 

and satellite remote sensing image information. Proceedings of the 2001 Proc 

ASCE World Water and Environmental Resources Congress, 20-24. 

Agency, U. E. P. (2000). Water quality conditions in the United States: A profile 

from the 1998 national water quality inventory report to congress: EPA-841-

F-00-006, U. S. Environmental Protection Agency, Office of Water (4503 F), 

Washington, D. C. 

Al-Ansari, N., Knutsson, S. and Ali, A. (2012). Restoring the Garden of Eden, Iraq. 

Journal of Earth Sciences and Geotechnical Engineering, 2(1), 53-88.  

Al-Ansari, N. A. (2013). Management of water resources in Iraq: Perspectives and 

prognoses.  

Al-Handal, A. and Hu, C. (2015). MODIS observations of human-induced changes 

in the Mesopotamian Marshes in Iraq. Wetlands, 35(1), 31-40.  

Allbed, A. and Kumar, L. (2013). Soil salinity mapping and monitoring in arid and 

semi-arid regions using remote sensing technology: a review. Advances in 

Remote Sensing, 2013.  



285 

 

Aller, L., Bennett, T., Lehr, J. H. and Petty, R. (1986). DRASTIC: a system to 

evaluate the pollution potential of hydrogeologic settings by pesticides. 

Proceedings of the 1986 ACS Symposium series-American Chemical Society 

(USA),  

Ammenberg, P., Flink, P., Lindell, T., Pierson, D. and Strombeck, N. (2002). Bio-

optical modelling combined with remote sensing to assess water quality. 

International Journal of Remote Sensing, 23(8), 1621-1638.  

Amel Moustafa. (2012). Integrating GIS, remote sensing and mathematical 

modelling for surface water quality management in irrigated watersheds: TU 

Delft, Delft University of Technology. 

Aoki, C. and Kugaprasatham, S. (2010). Support for Environmental Management of 

the Iraqi Marshlands, 2004-2009: UNEP/Earthprint. 

Argent, R. M. and Grayson, R. B. (2001). Design of information systems for 

environmental managers: an example using interface prototyping. 

Environmental Modelling & Software, 16(5), 433-438.  

Arnold, J. and Soil, G. (1994). SWAT (Soil and Water Assessment Tool): Grassland, 

Soil and Water Research Laboratory, USDA, Agricultural Research Service. 

Arnold, J. G., Williams, J., Nicks, A. and Sammons, N. (1990). SWRRB; a basin 

scale simulation model for soil and water resources management: Texas A & 

M University Press. 

Arnous, M. O. and Hassan, M. A. (2015). Heavy metals risk assessment in water and 

bottom sediments of the eastern part of Lake Manzala, Egypt, based on 

remote sensing and GIS. Arabian Journal of Geosciences, 8(10), 7899-7918.  

Azab, A. M. (2012). Integrating GIS, remote sensing and mathematical modelling 

for surface water quality management in irrigated watersheds: TU Delft, 

Delft University of Technology. 

Bian, L., Sun, H., Blodgett, C., Egbert, S., Li, W., Ran, L., et al. (1996). An 

integrated interface system to couple the SWAT model and ARC/INFO. 

Proceedings of the 1996 Proceedings of the 3rd International Conference on 

Integrating GIS and Environmental Modeling. US National Center for 

Geographic Information and Analysis, Santa Fe, New Mexico, CD-ROM,  



286 

 

Bilge, F., Yazici, B., Dogeroglu, T. and Ayday, C. (2003). Statistical evaluation of 

remotely sensed data for water quality monitoring. International journal of 

remote sensing, 24(24), 5317-5326.  

Bonta, J. (1998). Spatial variability of runoff and soil properties on smallwatersheds 

in similar soil-map units. Transactions of the ASAE, 41(3), 575.  

Bouraoui, F. and Dillaha, T. A. (1996). ANSWERS-2000: Runoff and sediment 

transport model. Journal of Environmental Engineering, 122(6), 493-502.  

Bukata, E. W. T. R. (2005). 2 Remote sensing of inland water quality: a science 

primer and 3 The science of remotely sensing case2 water quality: Satellite 

monitoring of inland and coastal water quality: retrospection, introspection, 

future directions. CRC Press, 40-47 and 54-75.  

Carsel, H., Cheplick. (1998). PRZM-3, A Model for Predicting Pesticide and 

Nitrogen Fate in the Crop Root and Unsaturated Soil Zones. Users Manual 

for Release 3.0, USEPA-Athen, GA,.  

Carsel, R. F., Jones, R. L., Hanse, J. L., Lamb, R. L. and Anderson, M. P. (1988). A 

simulation procedure for groundwater quality assessments of pesticides. 

Journal of Contaminant Hydrology, 2(2), 125-138.  

Chao, X., Jia, Y., Shields, F. D., Wang, S. S. and Cooper, C. M. (2007). Numerical 

modeling of water quality and sediment related processes. Ecological 

Modelling, 201(3), 385-397.  

Chapra, S. C. (2008). Surface water-quality modeling: Waveland press. 

Chebud, Y., Naja, G. M., Rivero, R. G. and Melesse, A. M. (2012). Water quality 

monitoring using remote sensing and an artificial neural network. Water, Air, 

& Soil Pollution, 223(8), 4875-4887.  

Chung, S., Ward, A. and Schalk, C. (1992). Evaluation of the hydrologic component 

of the ADAPT water table management model. Transactions of the ASAE, 

35(2), 571-579.  

Clausen, J. (1996). National Handbook of Water Quality Monitoring. Part 1. United 

States Department of Agriculture. Natural Resources Conservation Service.  



287 

 

Coyne, K. J. (1999). Prediction of pesticide transport through the vadose zone using 

stochastic modeling. 

Cronshey, R. G. and Theurer, F. D. (1998). AnnAGNPS-non point pollutant loading 

model. Proceedings of the 1998 Proceedings First Federal Interagency 

Hydrologic Modeling Conference, 19-23. 

Cruise, J. F. and Miller, R. L. (2003). Hydrologic Modeling Using Remotely Sensed 

Databases. GIS for Water Resources and Watershed Management, Taylor & 

Francis, New York, 189-205.  

D'sa, E., Zaitzeff, J. and Steward, R. (2000). Monitoring water quality in Florida Bay 

with remotely sensed salinity and in situ bio-optical observations. 

International Journal of Remote Sensing, 21(4), 811-816.  

Deer, P. (1995). Digital change detection techniques: Civilian and military 

applications. Proceedings of the 1995 International Symposium on Spectral 

Sensing Research,  

Dehni, A. and Lounis, M. (2012). Remote sensing techniques for salt affected soil 

mapping: application to the Oran region of Algeria. Procedia Engineering, 

33, 188-198.  

Dellapenna, J. W., Nicholason, E. and Clark, P. (2002). The Iraqi Marshlands: A 

Human and Environmental Study.  

Depriest, D. (2003). A Gps User Manual: Working With Garmin Receivers: 

AuthorHouse. 

Diagne, N. A. (2013). Evaluation of sewer leakage into the stormwater drainage 

system in Singapore. Massachusetts Institute of Technology.    

Donigan, A. S., Imhoff, J. C., Bicknell, B. R. and Kittle, J. L. (1984). Application 

Guide for Hydrological Simulation Program: FORTRAN(HSPF). EPA-600/3-

84-065 June 1984. Environmental Research Laboratory, Athens, GA. 177 p, 

19 fig, 17 tab, 3 app, 20 ref. 68-01-6207.  

Donigian Jr, A. and Crawford, N. (1976). Modeling Pesticides and Nutrients on 

Agricultural Lands, Office of Research and Development, US Environmental 

Protection Agency: EPA-600/3-76-043. 



288 

 

El-Din, M. S., Gaber, A., Koch, M., Ahmed, R. S. and Bahgat, I. (2013). Remote 

Sensing Application for Water Quality Assessment in Lake Timsah, Suez 

Canal, Egypt. Journal of Remote Sensing Technology, 1(3), 61.  

eTrex. (2003). Personal navigator, owners manual. Garmin international, 

Lnc.Garmin eTrex Waterproof Hiking GPS.  

Fan, X., Liu, Y., Tao, J. and Weng, Y. (2015). Soil salinity retrieval from advanced 

multi-spectral sensor with partial least square regression. Remote Sensing, 

7(1), 488-511.  

Fisher, P. (1997). The pixel: a snare and a delusion. International Journal of Remote 

Sensing, 18(3), 679-685.  

Fraser, R. H., Barten, P. K. and Pinney, D. A. (1998). Predicting stream pathogen 

loading from livestock using a geographical information system-based 

delivery model. Journal of Environmental Quality, 27(4), 935-945.  

Gh, M. (2014). Artificial neural network analysis in preclinical breast cancer. Cell J, 

15(4), 324-331.  

Ghadiri, H. and Rose, C. (1992). Modeling chemical transport in soils: natural and 

applied contaminants: CRC Press. 

Goodchild, M. F., Steyaert, L. T. and Parks, B. O. (1996). GIS and environmental 

modeling: progress and research issues: John Wiley & Sons. 

Gowda, P., Ward, A., White, D., Lyon, J. and Desmond, E. (1999). The sensitivity of 

ADAPT model predictions of streamflows to parameters used to define 

hydrologic response units. Transactions of the ASAE, 42(2), 381.  

Green, E. A. (1993). Hydropolitics in the Middle East and US policy: DTIC 

Document. 

Guerrero, D. V. C. and NO, U. G. A. (1991). The Anacostia River: Ecological 

studies of water pollution biology. A report by the DC Water Resources 

Research Center, US.  

Guide, E. U. s. (2008). ENVI on-line software user’s manual. ITT Visual Information 

Solutions.  



289 

 

Haan, C. T., Johnson, H. P. and Brakensiek, D. L. (1982). Hydrologic modeling of 

small watersheds: American Society of Agricultural Engineers. 

Haddock, G. and Jankowski, P. (1993). Integrating nonpoint source pollution 

modeling with a geographic information system. Computers, environment 

and urban systems, 17(5), 437-451.  

Haith, D. A. and Tubbs, L. J. (1981). Watershed loading functions for nonpoint 

sources. Journal of the Environmental Engineering Division, 107(1), 121-

137.  

Harrington, J. A., Schiebe, F. R. and Nix, J. F. (1992). Remote sensing of Lake 

Chicot, Arkansas: Monitoring suspended sediments, turbidity, and Secchi 

depth with Landsat MSS data. Remote Sensing of Environment, 39(1), 15-27.  

Huang, C., Davis, L. and Townshend, J. (2002). An assessment of support vector 

machines for land cover classification. International Journal of remote 

sensing, 23(4), 725-749.  

Hunt, G. R. (1977). Spectral signatures of particulate minerals in the visible and near 

infrared. Geophysics, 42(3), 501-513.  

Hutson, J. and Wagenet, R. (1993). A pragmatic field-scale approach for modeling 

pesticides. Journal of Environmental Quality, 22(3), 494-499.  

Hutson, J. and Wagenet, R. (1995). Multi-region water flow and chemical transport 

in heterogeneous soils: theory and application.  

Jansson, P. (1991). Simulation model for soil water and heat conditions. Description 

ofthe SOIL model. Report 165. Swedish University of Agric. Science, 

Department ofSoil Science, Uppsala, Sweden.  

Jarvis, N., Bergström, L. and Brown, C. (1995). Pesticide leaching models and their 

use for management purposes. Progress in Pesticide Biochemistry and 

Toxicology, 9, 185-185.  

Jerome, J., Bukata, R. and Miller, J. (1996). Remote sensing reflectance and its 

relationship to optical properties of natural waters. Remote Sensing, 17(16), 

3135-3155.  



290 

 

Johnsson, H., Bergstrom, L., Jansson, P.-E. and Paustian, K. (1987). Simulated 

nitrogen dynamics and losses in a layered agricultural soil. Agriculture, 

Ecosystems & Environment, 18(4), 333-356.  

Jokela, A., Sarjala, T., Kaunisto, S. and Huttunen, S. (1997). Effects of foliar 

potassium concentration on morphology, ultrastructure and polyamine 

concentrations of Scots pine needles. Tree physiology, 17(11), 677-685.  

Kadhem, A. J. (2005). Water Quality Monitoring of Abu Zirig Marsh In Southern 

Iraq (After Drying). Thesis of Master of Science in Environmental 

Engineering: , AL- Mustansiriya University in Baghdad, Iraq, 1-5.  

Kennedy, R. E., Townsend, P. A., Gross, J. E., Cohen, W. B., Bolstad, P., Wang, Y., 

et al. (2009). Remote sensing change detection tools for natural resource 

managers: Understanding concepts and tradeoffs in the design of landscape 

monitoring projects. Remote sensing of environment, 113(7), 1382-1396.  

Kerekes, J. P. and Baum, J. E. (2005). Full-spectrum spectral imaging system 

analytical model. Geoscience and Remote Sensing, IEEE Transactions on, 

43(3), 571-580.  

Kerekes, J. P. and Schott, J. R. (2007). Hyperspectral imaging systems. 

Hyperspectral data exploitation: Theory and applications, 19-45.  

Khattab, M. F. and Merkel, B. J. (2014). Application of Landsat 5 and Landsat 7 

images data for water quality mapping in Mosul Dam Lake, Northern Iraq. 

Arabian Journal of Geosciences, 7(9), 3557-3573.  

Knisel Jr, W. C. (2000). 9 Water Quality Models. Agricultural Nonpoint Source 

Pollution: Watershed Management and Hydrology, 233.  

Knisel, W. G. (1980). CREAMS: a field scale model for Chemicals, Runoff, and 

Erosion from Agricultural Management Systems [USA]. United States. Dept. 

of Agriculture. Conservation research report (USA).  

Koch, P. M. a. M. (2011). 1 Remote Sensing: Basic Principles: Computer processing 

of remotely-sensed images: an introduction. John Wiley & Sons., 1-27.  

Kumar, V., Sharma, A., Chawla, A., Bhardwaj, R. and Thukral, A. K. (2016). Water 

quality assessment of river Beas, India, using multivariate and remote sensing 

techniques. Environmental monitoring and assessment, 188(3), 1-10.  



291 

 

Lahlou, M., Shoemaker, L., Choudhury, S., Elmer, R. and Hu, A. (1998). Better 

assessment science integrating point and nonpoint sources (BASINS), version 

2.0. Users manual: Tetra Tech, Inc., Fairfax, VA (United States); EarthInfo, 

Inc., Boulder, CO (United States); Environmental Protection Agency, 

Standards and Applied Science Div., Washington, DC (United States). 

Li, X., Wang, S.-H. and Harman, M. (2005). Improved Lake/Reservoir Water 

Quality Modeling Using an Environmental Model and GIS. GIScience & 

Remote Sensing, 42(4), 320-332.  

Liao, H. H. and Tim, U. S. (1997). An interactwe modeling environment for non‐ 

point source pollution control1. JAWRA Journal of the American Water 

Resources Association, 33(3), 591-603.  

Lillesand, T., Kiefer, R. W. and Chipman, J. (2014). Remote sensing and image 

interpretation: John Wiley & Sons. 

Lillesand, T. M., Kiefer, R. W. and Chipman, J. (2004). Remote Sensing and Image 

Interpretation. New York: JohnWiley and Sons: Inc. 

Line, D., Coffey, S. and Osmond, D. L. (1997). Watershedss grass-AGNPS model 

tool. Transactions of the ASAE, 40(4), 971-975.  

Logan, T., Urban, D., Adams, J. and Yaksich, S. (1982). Erosion control potential 

with conservation tillage in the Lake Erie basin: estimates using the universal 

soil loss equation and the land resource information system (LRIS). Journal 

of Soil and Water Conservation, 37(1), 50-55.  

Lowi, M. R. (1995). Rivers of conflict, rivers of peace. Journal of International 

Affairs, 123-144.  

Lu, D., Mausel, P., Brondizio, E. and Moran, E. (2004). Change detection 

techniques. International journal of remote sensing, 25(12), 2365-2401.  

Lu, D., Moran, E., Hetrick, S. and Li, G. (2011). Land-use and land-cover change 

detection. Advances in Environmental Remote Sensing Sensors, Algorithms, 

and Applications. CRC Press Taylor & Francis Group, New York, 273-290.  

Maltby, E. (1994). An Environmental & Ecological Study of the Marshlands of 

Mesopotamia: Draft Consultative Bulletin: AMAR appeal Trust. 



292 

 

Mantzafleri, N., Psilovikos, A. and Blanta, A. (2009). Water quality monitoring and 

modeling in Lake Kastoria, using GIS. Assessment and management of 

pollution sources. Water resources management, 23(15), 3221-3254.  

Marcello, J., Medina, A. and Eugenio, F. (2013). Evaluation of spatial and spectral 

effectiveness of pixel-level fusion techniques. Geoscience and Remote 

Sensing Letters, IEEE, 10(3), 432-436.  

Martin, M., Plourde, L., Ollinger, S., Smith, M.-L. and McNeil, B. (2008). A 

generalizable method for remote sensing of canopy nitrogen across a wide 

range of forest ecosystems. Remote Sensing of Environment, 112(9), 3511-

3519.  

Mather, P. and Tso, B. (2009). Classification methods for remotely sensed data: CRC 

press. 

Mather, P. M. and Koch, M. (2011a). 1 Remote Sensing: Basic Principles: Computer 

processing of remotely-sensed images: an introduction: John Wiley & Sons. 

Mather, P. M. and Koch, M. (2011b). Computer processing of remotely-sensed 

images: an introduction: John Wiley & Sons. 

Mawahib F. Abdul Jabbar, A. F. A.-M. a. a. A. T. S. (2010): Change detections in 

marsh areas, south iraq, using remote sensing and gis applications. Iraqi 

Bulletin of Geology and Mining, 6(2), 17-39  

McKinney, D. C. and Tsai, H.-L. (1996). Multigrid methods in GIS grid-cell-based 

modeling environment. Journal of Computing in Civil Engineering, 10(1), 

25-30.  

Moghaddam, M. G., Ahmad, F. B. H., Basri, M. and Rahman, M. B. A. (2010). 

Artificial neural network modeling studies to predict the yield of enzymatic 

synthesis of betulinic acid ester. Electronic Journal of Biotechnology, 13(3), 

3-4.  

Monmonier, M. S. (1982). Computer-assisted cartography: principles and prospects: 

Prentice-Hall Englewood Cliffs, NJ. 

Montas, H., Shirmohammadi, A., Butler, J., Chu, T., Okelo, P. and Sexton, A. 

(1999). Decision support for precise BMP selection in Maryland. Proceedings 



293 

 

of the 1999 Proc. 1999 ASAE Annual International Meeting/CIGR World 

Congress,  

Montas, H., Shirmohammadi, A., Okelo, P., Sexton, A., Butler, J. and Chu, T. 

(1999). Targeting agrichemical export hot spots in Maryland using 

Hydromod and GIS: ASAE Paper. 

MoWR-CRIM. (2007). Study of Improving the environmental Present Condition of 

Southern Marshes in Iraq (Al-Hammar, Al-Huwaiza):  Ministry of water 

resources (MoWR): Centere of the restoration of Iraq marshland (CRIM). 

Contract No 43, 1-45.  

Mujumdar, N. (2001). World development report, 2000/2001: attacking poverty. 

Indian Journal of Agricultural Economics, 56(1), 146.  

Mulla, D., Perillo, C. and Cogger, C. (1996). A site-specific farm-scale GIS approach 

for reducing groundwater contamination by pesticides. Journal of 

Environmental Quality, 25(3), 419-425.  

Mullins, J., Carsel, R., Scarbrough, J. and Ivery, A. (1993). PRZM-2, a model for 

predicting pesticide fate in the crop root and unsaturated soil zones: User's 

manual for release 2. 0: AScI Corp., Athens, GA (United States). 

Munro, D. and Touron, H. (1997). The estimation of marshland degradation in 

southern Iraq using multitemporal Landsat TM images. International Journal 

of Remote Sensing, 18(7), 1597-1606.  

MWR, C. (2007). Ministry of Water Resources and Center for the restoration of Iraqi 

marshlands: Study of improving the environmental present condition of 

southern marshes. 1(43), 21-22.  

Nasirian, H., Irvine, K., Sadeghi, S. M. T., Mahvi, A. H. and Nazmara, S. (2016). 

Assessment of bed sediment metal contamination in the Shadegan and Hawr 

Al Azim wetlands, Iran. Environmental Monitoring and Assessment, 188(2), 

1-15.  

Nations, U. (2005). New Eden Water & Energy Project: Abu Zirig Marshland 

Restoration Project. Italian Ministry for the Environment and Territory Free 

Iraq Foundation: Presented at the 13th session of the United Nations 

Commission on Sustainable Development (CSD-13).  



294 

 

Navulur, K. and Engel, B. (1998). Groundwater vulnerability assessment to non-

point source nitrate pollution on a regional scale using GIS. Transactions of 

the ASAE, 41(6), 1671.  

Nicholls, P. and Hall, D. (1995). Use of the pesticide leaching model (PLM) to 

simulate pesticide movement through macroporous soils.  

Nicholson, E. and Clark, P. (2003). Iraqi Marshlands: Politico's Pub.; AMAR 

International Charitable Foundation. 

Nofziger, D., Chen, J. S. and Haan, C. (1994). Evaluating the chemical movement in 

layered soil model as a tool for assessing risk of pesticide leaching to 

groundwater. Journal of Environmental Science & Health Part A, 29(6), 

1133-1155.  

Novo, E. M. L. M., Steffen, C. A. and Braga, C. Z. F. (1991). Results of a laboratory 

experiment relating spectral reflectance to total suspended solids. Remote 

Sensing of Environment, 36(1), 67-72.  

Novotny, V. (2003). Water quality: Diffuse pollution and watershed management: 

John Wiley & Sons. 

Ochieng, G. M., Ojo, O. I., Otieno, F. A. and Mwaka, B. (2013). Use of remote 

sensing and geographical information system (GIS) for salinity assessment of 

Vaal-Harts irrigation scheme, South Africa. Environmental Systems 

Research, 2(1), 1-12.  

Odeh, I. O. and Onus, A. (2008). Spatial analysis of soil salinity and soil structural 

stability in a semiarid region of New South Wales, Australia. Environmental 

management, 42(2), 265-278.  

Ongley, E. D. (2000). Water quality management: design, financing and 

sustainability considerations-II. Proceedings of the 2000 Invited presentation 

at the World Bank’s Water Week Conference: Towards a strategy for 

managing water quality management,  

Palange, R. C. and Zavala, A. (1987). Water-pollution control: guidelines for project 

planning and financing. World Bank technical paper: International Bank for 

Reconstruction and Development, Washington, DC (USA). 



295 

 

Partow, H. (2001). The Mesopotamian Marshlands: Demise of an Ecosystem. 

Nairobi (Kenya): Division of Early Warning and Assessment, United Nations 

Environment Programme. UNEP publication UNEP/DEWA: TR. 01-3. 

Phua, M.-H., Tsuyuki, S., Soo Lee, J. and Ghani, M. A. (2012). Simultaneous 

detection of burned areas of multiple fires in the tropics using multisensor 

remote-sensing data. International journal of remote sensing, 33(14), 4312-

4333.  

Piedrahita, R., Nath, S., Bolte, J., Culberson, S., Giovannini, P. and Ernst, D. (1997). 

Computer applications in pond aquaculture—modeling and decision support 

systems. Dynamics of Pond Aquaculture. CRC Press, Boca Raton, FL, 289-

323.  

Platonov, A., Noble, A. and Kuziev, R. (2013). Soil salinity mapping using multi-

temporal satellite images in agricultural fields of syrdarya province of 

Uzbekistan Developments in Soil Salinity Assessment and Reclamation (pp. 

87-98): Springer. 

Potes, M., Costa, M. J., Da Silva, J., Silva, A. M. and Morais, M. (2011). Remote 

sensing of water quality parameters over Alqueva Reservoir in the south of 

Portugal. International journal of remote sensing, 32(12), 3373-3388.  

Potes, M., Costa, M. J. and Salgado, R. (2012). Satellite remote sensing of water 

turbidity in Alqueva reservoir and implications on lake modelling. Hydrology 

and Earth System Sciences, 16(6), 1623-1633.  

Pour, A. B. and Hashim, M. (2015). Hydrothermal alteration mapping from Landsat-

8 data, Sar Cheshmeh copper mining district, south-eastern Islamic Republic 

of Iran. Journal of Taibah University for Science, 9(2), 155-166.  

Pu, R. and Gong, P. (2011). Hyperspectral remote sensing of vegetation 

bioparameters. Advances in Environmental Remote Sensing: Sensors, 

Algorithm, and Applications, CRC Press, Taylor & Francis Group, 101-142.  

Quilbé, R. and Rousseau, A. (2007). GIBSI: an integrated modelling system for 

watershed management? sample applications and current developments. 

Hydrology and Earth System Sciences Discussions, 4(3), 1301-1335.  



296 

 

Rafailidis, S., Ganoulis, J., Bogardi, I., Matyasovszky, I. and Duckstein, L. (1996). 

Impact of climatic changes on coastal water quality Diachronic Climatic 

Impacts on Water Resources (pp. 349-392): Springer. 

Rewerts, C. C. and Engel, B. (1991). ANSWERS on GRASS: integrating a 

watershed simulation with a GIS. Paper-American Society of Agricultural 

Engineers (USA). no. 91-2621.  

Rogan, J. and Chen, D. (2004). Remote sensing technology for mapping and 

monitoring land-cover and land-use change. Progress in planning, 61(4), 

301-325.  

Rokni, K., Ahmad, A., Selamat, A. and Hazini, S. (2014). Water feature extraction 

and change detection using multitemporal Landsat imagery. Remote Sensing, 

6(5), 4173-4189.  

Salve, S. and Chakkarwar, V. (2013). Classification of Mammographic images using 

Gabor Wavelet and Discrete Wavelet Transform. International Journal of 

Advanced Research in Electronics and Communication Engineering 

(IJARECE) Volume, 2.  

Sanders, T. G. (1983). Design of networks for monitoring water quality: Water 

Resources Publication. 

Schaeffer, B. A., Schaeffer, K. G., Keith, D., Lunetta, R. S., Conmy, R. and Gould, 

R. W. (2013). Barriers to adopting satellite remote sensing for water quality 

management. International journal of remote sensing, 34(21), 7534-7544.  

Schwarte, C. (2003). Environmental protection in Islamic law: an overview on 

potential influences for legal developments in Iraq. Local Environment, 8(5), 

567-576.  

Searing, M. and Shirmohammadi, A. (1994). The design, construction, and analysis 

of a GIS database for use in reducing nonpoint source pollution on an 

agricultural watershed. Proceedings of the 1994 American Society of 

Agricultural Engineers. Meeting (USA),  

Searing, M., Shirmohammadi, A. and Magette, W. (1995). Utilizing GLEAMS 

model to prescribe best management practices for critical areas of a 

watershed identified using GIS. Paper No. 95, 3248.  



297 

 

Secunda, S., Collin, M. and Melloul, A. (1998). Groundwater vulnerability 

assessment using a composite model combining DRASTIC with extensive 

agricultural land use in Israel's Sharon region. Journal of Environmental 

Management, 54(1), 39-57.  

Singh, A. (1989). Review article digital change detection techniques using remotely-

sensed data. International journal of remote sensing, 10(6), 989-1003.  

Smith, V. H., Tilman, G. D. and Nekola, J. C. (1999). Eutrophication: impacts of 

excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. 

Environmental pollution, 100(1), 179-196.  

Srinivasan, R. and Arnold, J. G. (1994). Integration of a basin‐scale water quality 

model with GIS1. JAWRA Journal of the American Water Resources 

Association, 30(3), 453-462.  

Su, L., Chopping, M. J., Rango, A., Martonchik, J. V. and Peters, D. P. (2007). 

Support vector machines for recognition of semi-arid vegetation types using 

MISR multi-angle imagery. Remote Sensing of Environment, 107(1), 299-

311.  

Suárez, L. (2005). PRZM-3, a model for predicting pesticide and nitrogen fate in the 

crop root and unsaturated soil zones: users manual for release 3.12. 2. US 

Environmental Protection Agency (EPA), Washington, DC.  

Sui, H., Zhou, Q., Gong, J. and Ma, G. (2008). Processing of multi-temporal data and 

change detection. Proceedings of the 2008 Advances in Photogrammetry, 

Remote Sensing and Spatial Information Sciences: 2008 ISPRS Congress 

Book, Taylor & Francis, Nottingham, 227-247. 

Sun, D., Qiu, Z., Li, Y., Shi, K. and Gong, S. (2014). Detection of total phosphorus 

concentrations of turbid inland waters using a remote sensing method. Water, 

Air, & Soil Pollution, 225(5), 1-17.  

Torbick, N., Hession, S., Hagen, S., Wiangwang, N., Becker, B. and Qi, J. (2013). 

Mapping inland lake water quality across the Lower Peninsula of Michigan 

using Landsat TM imagery. International journal of remote sensing, 34(21), 

7607-7624.  



298 

 

Uppal, m. T. N. (2015). Classification of mammograms based on fusion of discrete 

cosine transform, discrete wavelet transform and shape features. UTM, 

Thesis, 156-158.  

USGS. (2013). Using the USGS Landsat-8 product. USGS. Science for a changing 

world, U.S. Department of the Interior, Geological Survey. 

http://landsat.usgs.gov.  

USGS. (2016). Landsat 8 Operational Land Imager (OLI) and Thermal Infrared 

Sensor (TIRS). Frequently Asked Questions about the Landsat Missions. 

USGS. Science for a changing world. http://landsat.usgs.gov.  

Ustin, S. (2004). Manual of Remote Sensing: Remote sensing for natural resource 

management and environmental monitoring: Wiley Hoboken, NJ, USA. 

Van der Meer, F., van der Werff, H. and van Ruitenbeek, F. (2014). Potential of 

ESA's Sentinel-2 for geological applications. Remote Sensing of 

Environment, 148, 124-133.  

Vieux, B. E. and Gauer, N. (1994). Finite‐Element Modeling of Storm Water Runoff 

Using GRASS GIS. Computer‐Aided Civil and Infrastructure Engineering, 

9(4), 263-270.  

Vladimir, N. and Olem, H. (1994). Water quality prevention, identification and 

management of diffuse pollution: Van Nostrand Reinhold, New York, NY 

pp29. 

Wang, F., Han, L., Kung, H. T. and Van Arsdale, R. (2006). Applications of 

Landsat‐5 TM imagery in assessing and mapping water quality in Reelfoot 

Lake, Tennessee. International Journal of Remote Sensing, 27(23), 5269-

5283.  

Wang, X., Fu, L. and He, C. (2011). Applying support vector regression to water 

quality modelling by remote sensing data. International journal of remote 

sensing, 32(23), 8615-8627.  

Watch, H. R. (2004). World Report 2004: Human Rights Watch. 

Weng, Q. (2011a). Advances in environmental remote sensing: sensors, algorithms, 

and applications: CRC Press. 



299 

 

Weng, Q. (2011b). Advances in environmental remote sensing: sensors, algorithms, 

and applications. Ch-7, Atmospheric correction methods for optical remote 

sensing imagery of land: CRC Press, 161-170. 

Williams, J., Dyke, P. and Jones, C. (1983). EPIC--A model for assessing the effects 

of erosion on soil productivity. Analysis of ecological systems: state-of-the-

art in ecological modelling: proceedings, 24-28 May 1982, Colorado State 

Univ., Ft. Collins, Colo./edited by WK Lauenroth, GV Skogerboe, M. Flug.  

Wolf, P. R. and Brinker, R. C. (1994). Elementary surveying: HarperCollins. 

Wu, Q. J., Ward, A. D. and Workman, S. R. (1996). Using GIS in simulation of 

nitrate leaching from heterogeneous unsaturated soils. Journal of 

environmental quality, 25(3), 526-534.  

Wu, W., Al-Shafie, W. M., Mhaimeed, A. S., Dardar, B., Ziadat, F. and Payne, W. B. 

(2013). Multiscale salinity mapping in Central and Southern Iraq by remote 

sensing. Proceedings of the 2013 Agro-Geoinformatics (Agro-

Geoinformatics), 2013 Second International Conference on, 470-475. 

Wu, W., Mhaimeed, A. S., Al-Shafie, W. M., Ziadat, F., Dhehibi, B., Nangia, V., et 

al. (2014). Mapping soil salinity changes using remote sensing in Central 

Iraq. Geoderma Regional, 2, 21-31.  

Xie, Z., Zhang, C. and Berry, L. (2013). Geographically weighted modelling of 

surface salinity in Florida Bay using Landsat TM data. Remote Sensing 

Letters, 4(1), 75-83.  

Yildirim, Y., Skonard, C., Arumi, J., Martin, D. and Watts, D. (1997). Evaluation of 

best management practices using an integrated GIS and SWAT model for 

field sized areas. Am. Soc. Agric. Eng, 2(9).  

Yoon, J. (1996). Watershed-scale nonpoint source pollution modeling and decision 

support system based on a model-GIS-RDBMS linkage. Hallam, CA, 

Lanfear, KJ, Salisbury, JM and Battaglin, WA GIS and Water Resources, 

Fort Lauderdale: American Water Resources Association, 99-108.  

Young, R. A., Onstad, C., Bosch, D. and Anderson, W. (1989). AGNPS: A nonpoint-

source pollution model for evaluating agricultural watersheds. Journal of soil 

and water conservation, 44(2), 168-173.  



300 

 

YSI. (2007). YSI Model 30M, Handheld Salinity, Conductivity andTemperature 

System, Operations Manual. YSI Inc., Yellow Springs, OH. Retrieved from. 

http://www.ysi.com/media/pdfs/030136-YSI-Model-30-Operations-Manual-

RevE.pdf.  

Zacharias, I. and Gianni, A. (2008). Hydrodynamic and dispersion modeling as a tool 

for restoration of coastal ecosystems. Application to a re-flooded lagoon. 

Environmental Modelling & Software, 23(6), 751-767.  

Zhang, H., Haan, C. and Nofziger, D. L. (1993). An approach to estimating 

uncertainties in modeling transport of solutes through soils. Journal of 

contaminant hydrology, 12(1-2), 35-50.  

Zhang, R., Hamerlinck, J. D., Gloss, S. P. and Munn, L. (1996). Determination of 

nonpoint-source pollution using GIS and numerical models. Journal of 

environmental quality, 25(3), 411-418. 




