ESTIMATION OF SALINITY AND HEAVY METALS OVER MARSHLADS BASED ON LANDSAT-8 DATA

HASHIM ALI HASAB

A thesis submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Geomatic Engineering)

Faculty of Geoinformation and Real Estate Universiti Teknologi Malaysia

MARCH 2017

Dedicated to my beloved family, to the most precious persons in my life, my mother, my wife and my handsome son.

ACKNOWLEDGEMENT

Thanks to ALLAH, the Most Gracious, the Most Merciful, the Most Bountiful who gave me the courage and patience to accomplish this research work. Without his help and mercy, this would not have come into reality.

I would like to deeply express my special appreciation and gratitude for the help and support from my Supervisor's, Associate Prof. Dr. Hj. Anuar Hj. Ahmad, Associate Prof. Dr. Maged Marghany, and Prof. Dr. Abdul Razzak Ziboon on their fascinating guidance, encouragement, and valuable comments throughout the research work. I was fortunate to be one of their students. Their experience and creativity gave me great profit for carving my future career. I would like to thank Associate Prof. Dr. Maged Marghany, he has taught me to build the models and algorithms in this study.

I would like to acknowledge the Universiti Teknologi Malaysia, Republic of Iraq-Ministry of Higher Education and Scientific Research (Al-Furat Al-Awsat Technical University) for providing the facilities and support during this research.

Last, but not the least, my greatest thanks from my heart to my family for giving the unlimited supports and patience to complete my study. I would never ever forget their sacrifice that they have done for me. I appreciate the sacrifice of my mother, wife, brothers and sisters in helping me morally to finish my study.

ABSTRACT

Marshes are the provider of habitat for several types of living creatures. Their preservation are prioritized for sustainable environment and eco-friendliness. Iraqi marshland is the largest wetland with an area of 15,000-20,000 km² in the Middle East and Western Eurasia and has a significant impact on the ecosystem. The salinity in the Tigris and Euphrates Rivers near their discharge point at the marsh ranges from 0.5 to 2ppt (parts per thousand). This thesis focuses on Al-Hawizeh marsh, which is one of the major marshes with an area of 2,500-3,000 km² in Iraq and considered as an enriched resource of fishing and irrigation. Of this mashland, 74% of it's agricultural land suffers from high degree of salination that need to be overcomed. Several man-made activities and post-war related events have caused radical deterioration of water quality in this marshland. The aim of this study is to monitor and assess the water quality parameters of this marsh. The optical remote sensing dataset (bands B6, B7, and B11) from Landsat-8 (OLI/TIRS) are synergistically integrated to the proposed salinity index (SI) and soil moisture index (SMI) model. By using the newly developed algorithms, the optimum water quality parameters in terms of salinity and minerals contents which comprised of iron, lead, zinc, nickel, calcium carbonate and sulphate are determined. This creative integration between remote sensing data and developed algorithms is established to successfully map the spatial variation of salinity and minerals distributions within Al-Hawizeh marsh during four seasons in the year 2013. The results of this study show that SMI model achieved better accuracy in retrieving the water quality parameters than the SI model. The average of the concentrations values for (salinity, SO₄, CaCO₃, Fe, Pb, Ni and Zn) by using SMI model are found to be minimal in winter as (746, 121, 84, 0.59, 0.49, 0.04 and 0.036) mg respectively and maximum in autumn as (1956, 202, 172, 0.64, 0.53, 0.08 and 0.05) mg respectively. The decision tree (DT) classification that uses single band outperformed the support vector machine (SVM) classification when combined with SMI model. This study also found that the change of value for salinity and mineral are minimum between winter and spring but maximum between summer and autumn. In conclusion, the developed systematic and generic approach may constitute a basis for determining the water quality parameters in the marshland worldwide.

ABSTRAK

Paya menjadi pembekal habitat untuk beberapa jenis hidupan. Pemeliharaan mereka diutamakan untuk mengekalkan kelastarian alam sekitar dan mesra alam. Tanah paya Iraq merupakan paya terbesar dengan keluasan 15,000-20,000 km² di Timur Tengah dan Barat Eurasia dan mempunyai kesan yang signifikan terhadap ekosistem. Kemasinan Sungai Tigris dan Euphrates berhampiran titik aliran mereka di kawasan paya adalah di antara 0.5-2ppt (bahagian per ribu). Tesis ini memberi tumpuan kepada tanah paya Al-Hawizeh yang merupakan salah satu daripada paya vang terbesar dengan keluasan kawasan 2,500-3,000 km² di Iraq dan dianggap sebagai sumber terkaya untuk perikanan dan pengairan. Bagi tanah paya ini, 74% daripada tanah paya ini adalah tanah pertanian yang mengalami tahap kemasinan tinggi yang perlu diatasi. Beberapa aktiviti buatan manusia dan peristiwa berkaitan pasca perang telah menyebabkan kemerosotan secara radikal terhadap kualiti air dalam tanah paya ini. Tujuan kajian ini adalah untuk memantau dan menilai parameter kualiti air paya ini. Set data penderiaan jauh optik (jalur B6, B7, dan B11) daripada Landsat-8 (OLI/TIRS) diintegrasikan secara sinergi dalam model indeks kemasinan (SI) dan indeks kelembapan tanah (SMI). Dengan menggunakan algoritma baru yang dibangunkan, parameter optimum kualiti air dari segi kemasinan dan kandungan mineral yang terdiri daripada besi, plumbum, zink, nikel, kalsium karbonat dan sulpid dapat ditentukan. Integrasi kreatif di antara data penderiaan jauh dan algoritma yang dibangunkan telah berjaya untuk memetakan variasi spatial kemasinan dan taburan mineral di dalam paya Al-Hawizeh sepanjang empat musim dalam tahun 2013. Hasil kajian ini menunjukkan bahawa model SMI mencapai ketepatan yang lebih baik bagi mendapatkan semula parameter kualiti air berbanding dengan model SI. Purata nilai kepekatan untuk kemasinan SO₄, CaCO₃, Fe, Pb, Ni dan Zn dengan menggunakan model SMI didapati adalah minimum pada musim sejuk iaitu masing masing adalah 746, 121, 84, 0.59, 0.49, 0.04 dan 0.036 mg dan maksimum pada musim luruh iaitu 1956, 202, 172, 0.64, 0.53, 0.08 dan 0.05 mg. Pengelasan keputusan pokok (DT) menggunakan jalur tunggal mengatasi pengelasan mesin vektor sokongan (SVM) apabila digabungkan dengan model SMI. Kajian ini juga mendapati bahawa nilai perubahan kemasinan dan mineral adalah minimum di antara musim sejuk dan musim bunga tetapi maksimum di antara musim panas dan musim luruh. Kesimpulannya, pendekatan yang sistematik dan generik yang dibangunkan boleh menyumbang kepada asas penentuan parameter kualiti air di tanah paya di seluruh dunia.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DECI	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABST	ГКАСТ	v
	ABST	ГКАК	vi
	TABI	LE OF CONTENTS	vii
	LIST	OF TABLES	xiv
	LIST	xvii	
	LIST	OF ABBREVIATIONS	xxxi
	LIST	OF SYMBOLS	XXXV
	LIST	OF APPENDICES	xxxvi
1	INTR	RODUCTION	1
	1.1	Background of the Study	1
	1.2	Problem Statement	4
	1.3	Aim and Objectives of Study	7
	1.4	Research Questions	7
	1.5	Significance of Study	8
	1.6	Scope of Study	9
	1.7	Thesis Outline	10

LITE	RATURE	REVIEW	11
2.1	Introdu	ction	11
2.2	Marshe	s	13
2.3	Marshe	s Pollutants Sources	15
	2.3.1	Water Pollution	16
	2.3.2	Soil Pollution	16
	2.3.3	Air Pollution	17
2.4	Water (Quality Parameters	18
	2.4.1	Physical Water Quality Parameters	19
	2.4.2	Chemical Water Quality Parameters	20
2.5	Remote	Sensing Approach	22
	2.5.1	Landsat-8 Imagery	24
	2.5.2	Surface Spectral Reflectance	25
2.6	Remote	Sensing Applications of Water Quality	
	Parame	ters Determination	27
	2.6.1	Salinity	28
	2.6.2	Nitrogen (N), Phosphorous (P) and	
		Potassium (K) as Nutrients	29
2.7	Water (Quality Models	30
	2.7.1	Concept of Modeling	31
	2.7.2	Water Quality Models Classification	32
	2.7.3	Water Quality Models Description	34
2.8	Water (Quality Models and GIS	38
2.9	Previou	s Studies on Water Quality Determination	
	Using F	RS and GIS	41
	2.9.1	Local Previous Studies	41
	2.9.2	International Previous Studies	51
	2.9.3	Mathematical Indexes Applied in	
		Previous Studies	85
2.10	Image I	Fusion	93
2.11	Image (Classification	93
	2.11.1	Support Vector Machines (SVM)	95
	2.11.2	Decision Tree (DT)	97

2.12	Data Va	alidation		98
	2.12.1	Standard	l Error (SE)	99
	2.12.2	R-Squar	$e(R^2)$	99
	2.12.3	Root Me	ean Square Error (RMSE)	100
2.13	Change	Detectior	1	101
2.14	Summa	ry		102
RESEA	ARCH M	IETHOD	OLOGY	104
3.1	Introdu	ction		104
3.2	Al-Haw	vizeh Mars	sh as Study Location	106
3.3	Field W	ork and D	Data Collection Procedure	107
	3.3.1	Topogra	phical Data	108
		3.3.1.1	Geographical Coordinates for	
			Pollution Sources	108
		3.3.1.2	Geographical Coordinates for	
			Sampling Stations	109
	3.3.2	Laborato	ory Data	111
		3.3.2.1	YSI Model 30 Meter	112
	3.3.3	Satellite	Images	113
3.4	Researc	ch Design	and Detailed Architecture	115
	3.4.1	Image P	re-processing	117
		3.4.1.1	Atmospheric Correction	118
		3.4.1.2	Layer Stacking	121
		3.4.1.3	Georeferencing	121
		3.4.1.4	Images Enhancement	122
		3.4.1.5	Region of Interest (ROI)	122
	3.4.2	Water Q	uality Parameters Estimation	122
		3.4.2.1	Salinity Index Model (SI)	123
		3.4.2.2	Soil Moisture Index (SMI)	
			Model	126
	3.4.3	Data Fus	sion	133
		3.4.3.1	Band Math	133
	3.4.4	Images (Classification	135

		3.4.4.1 Support Vector Machine	
		(SVM)	136
		3.4.4.2 Decision Tree (DT)	136
	3.4.5	Data Visualization	138
	3.4.6	Change Detection	138
	3.4.7	Ancillary Data	139
3.5	Summa	ary	139
RESU	JLTS AN	D DISCUSSION	141
4.1	Introdu	uction	141
4.2	Ground	d Measurements and Analysis	142
	4.2.1	Salinity Level	144
	4.2.2	Sulphate (SO ₄) Contents	145
	4.2.3	Calcium Carbonate (CaCO ₃) Contents	146
	4.2.4	Iron (Fe) Concentrations	147
	4.2.5	Lead (Pb) Contents	148
	4.2.6	Nickel (Ni) Concentrations	149
	4.2.7	Zinc (Zn) Contents	149
4.3	Results	s Based on Proposed Models	150
	4.3.1	Salinity Determination Using Salinity	
		Index Model	153
	4.3.2	Salinity Determination Using Soil	
		Moisture Index Model	155
	4.3.3	Determination of Sulphate (SO ₄)	
		Contents Using Salinity Index Model	157
	4.3.4	Determination of Sulphate (SO ₄)	
		Contents Using Soil Moisture Index	
		Model	159
	4.3.5	Determination of (CaCO ₃) Contents	
		Using Salinity Index Model	161
	4.3.6	Determination of (CaCO ₃) Contents	
		Using Soil Moisture Index Model	163
	4.3.7	Determination of Iron (Fe) Contents	165

Using Salinity Index Model

	4.3.8	Determination of Iron (Fe) Contents	
		Using Soil Moisture Index Model	167
	4.3.9	Determination of Lead (Pb) Contents	
		Using Salinity Index Model	169
	4.3.10	Determination of Lead (Pb) Contents	
		Using Soil Moisture Index Model	171
	4.3.11	Determination of Nickel (Ni) Contents	
		Using Salinity Index Model	173
	4.3.12	Determination of Nickel (Ni) Contents	
		Using Soil Moisture Index Model	175
	4.3.13	Determination of Zinc (Zn) Contents	
		Using Salinity Index Model	177
	4.3.14	Determination of Zinc (Zn) Contents	
		Using Soil Moisture Index Model	179
4.4	Data Fi	ision	181
	4.4.1	Salinity Index Model Based Data Fusion	
		for Salinity, SO ₄ and CaCO ₃	182
	4.4.2	Soil Moisture Index Model Based Data	
		Fusion for Salinity, SO4 and CaCO3	184
	4.4.3	Salinity Index Model Based Data Fusion	
		for Fe, Pb, Ni and Zn	186
	4.4.4	Soil Moisture Index Model Based Data	
		Fusion for Fe, Pb, Ni and Zn	188
4.5	Images	Classification	190
	4.5.1	Support Vector Machine Based	
		Classification	190
		4.5.1.1 Salinity Index Model Based	
		SVM Classification for	
		Salinity, SO ₄ and CaCO ₃	190
		4.5.1.2 Soil Moisture Index Model	
		Based SVM Classification for	
		Salinity, SO ₄ and CaCO ₃	192

	4.5.1.3	Salinity Index Model Based	
		SVM Classification for Fe, Pb,	
		Ni and Zn Contents	194
	4.5.1.4	Soil Moisture Index Model	
		Based SVM Classification for	
		Fe, Pb, Ni and Zn Contents	196
4.5.2	Decision	n Tree (DT) Classification	198
	4.5.2.1	Salinity Index Model Based	
		DT Classification for Water	
		Quality Parameters	198
	4.5.2.2	Soil Moisture Index Model	
		Based DT Classification for	
		Water Quality Parameters	201
4.5.3	Image C	lassification Accuracy	204
	4.5.3.1	Accuracy of Decision Tree and	
		Support Vector Machine	
		Classification based on Salinity	
		Index Model	205
	4.5.3.2	Accuracy of Decision Tree and	
		Support Vector Machine	
		Classification based on Soil	
		Moisture Index Model	222
Change	e Detectio	n	239
4.6.1	Salinity	Change Detection Results Based	
	on Salin	ity Index Model	239
4.6.2	Salinity	Change Detection Results Based	
	on Soil I	Moisture Index Model	241
4.6.3	Sulphate	e (SO ₄) Change Detection Based	
	on Salin	ity Index Model	244
4.6.4	Sulphate	e (SO ₄) Change Detection Based	
	on Soil l	Moisture Index Model	246
4.6.5	(CaCO ₃)) Change Detection Based on	
	Salinity	Index Model	249

4.6

		4.6.6	(CaCO ₃) Change Detection Based on Soil	
			Moisture Index Model	251
		4.6.7	Iron (Fe) Change Detection Based on	
			Salinity Index Model	254
		4.6.8	Iron (Fe) Change Detection Based on Soil	
			Moisture Index Model	256
		4.6.9	Lead (Pb) Change Detection Based on	
			Salinity Index Model	259
		4.6.10	Lead (Pb) Change Detection Based on	
			Soil Moisture Index Model	261
		4.6.11	Nickel (Ni) Change Detection Based on	
			Salinity Index Model	264
		4.6.12	Nickel (Ni) Change Detection Based on	
			Soil Moisture Index Model	266
		4.6.13	Zinc (Zn) Change Detection Based on	
			Salinity Index Model	269
		4.6.14	Zinc (Zn) Change Detection Based on	
			Soil Moisture Index Model	271
	4.7	Summa	ry	274
5	CONC	LUSION	IS AND FUTURE OUTLOOK	276
	5.1	Conclus	sions	276
	5.2	Future	Outlook	281
REFERENC	CES			284

Appendices A–F	301-316
11	

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Band assignments and usefulness of OLI and TIR	
	sensors in Landsat-8	24
2.2	The attribute of some water quality model	37
2.3	Briefly summarizes local previous studies on water	
	quality parameters determination using GIS, RS and	
	various models	42

	various models	42
2.4	Briefly summarizes international previous studies	
	on water quality parameters determination using	
	GIS, RS and various models	58
2.5	Briefly summarizes international previous studies	
	on water quality parameters determination using	
	GIS, RS and various models	67
2.6	Briefly summarizes international previous studies	
	on water quality parameters determination using	
	GIS, RS and various models	81
2.7	Briefly summarizes international previous studies	
	on water quality parameters determination using	
	GIS, RS and various models	85
2.8	Briefly summarizes of previous studies on	
	mathematical indexes	86
3.1	Different data collection stages	108
3.2	Description of acquired Landsat-8 data that is used	
	in this research	114

3.3	Endowment of Landsat-8 (OLI and TIRS) bands	
	detail	114
4.1	Actual values of salinity and minerals contents	
	acquired during four seasons (Min: Minimum, Max:	
	Maximum and Mean: Average)	142
4.2	Evaluated water quality parameters (salinity and	
	minerals contents in mg/l) based on SI model	151
4.3	Evaluated water quality parameters (salinity and	
	minerals contents in mg/l) based on SMI model	152
4.4	The correlation accuracy between ground data and	
	DT classification results based on (SI) for marsh	
	water salinity and minerals contents during four	
	seasons of 2013	206
4.5	The correlation accuracy between ground data and	
	SVM classification results based on (SI) for marsh	
	water salinity and minerals contents during four	
	seasons of 2013	207
4.6	The correlation accuracy between ground data and	
	DT classification results based on (SMI) for marsh	
	water salinity and minerals contents during four	
	seasons of 2013	223
4.7	The correlation accuracy between ground data and	
	SVM classification results based on (SMI) for	
	marsh water salinity and minerals contents during	
	four seasons of 2013	224
4.8	SI and SMI models based salinity change values in	
	Al-Hawizeh marsh between four seasons	243
4.9	SI and SMI models based SO ₄ change values in Al-	
	Hawizeh marsh between four seasons	248
4.10	SI and SMI models based CaCO ₃ change values in	
	Al-Hawizeh marsh between four seasons	253
4.11	SI and SMI models based Fe change values in Al-	
	Hawizeh marsh between four seasons	258

4.12	SI and SMI models based Pb change values in Al-	
	Hawizeh marsh between four seasons	263
4.13	SI and SMI models based Ni change values in Al-	
	Hawizeh marsh between four seasons	268
4.14	SI and SMI models based Zn change values in Al-	
	Hawizeh marsh between four seasons	273

LIST OF FIGURES

TITLE

FIGURE NO.

2.1	Electromagnetic spectrum	23
2.2	Reflectance spectra of different targets on the earth	
	surface	26
2.3	Salinity map of the pilot site Dujaila	45
2.4	Salinity map of Mesopotamia from MODIS data in	
	2010	45
2.5	Spatial distribution of water quality parameter for	
	Mosul Dam Lake by TM5 image in 2011	49
2.6	Spatial distribution of water quality parameter for	
	Mosul Dam Lake by ETM ⁺ image in 2011	51
2.7	Distribution maps for Chl (a), SPIM (b) and ay	
	(420)(c)	54
2.8	Spatial distribution of turbidity in Reelfoot Lake as	
	determined by Landsat-5 TM imagery	56
2.9	Spatial distribution of chlorophyll-a concentration	
	in Reelfoot Lake as determined by Landsat-5 TM	
	imagery	56
2.10	Spatial distribution of total suspended solids in	
	Reelfoot Lake as determined by Landsat-5 TM	
	imagery	57
2.11	Thematic map of (TW) distribution in Kastoria	
	Lake	60
2.12	Thematic map of (DO) distribution in Kastoria	60

PAGE

	Lake	
2.13	Thematic map of (NH ₄ -N) distribution in Kastoria	
	Lake	61
2.14	Thematic map of (NO ₃ -N) distribution in Kastoria	
	Lake	61
2.15	Thematic map of (PO ₄ -P) distribution in Kastoria	
	Lake	62
2.16	Cyanobacteria density map over the whole	
	Alqueva reservoir surface for the year 2007: (a) 5	
	June; (b) 14 November	63
2.17	Chlorophyll a concentration maps over the whole	
	Alqueva reservoir surface for the year 2007: (a) 5	
	June; (b) 14 November	63
2.18	Concentration distributions of water quality	
	variables over the study area on 14 September	
	2003: (<i>a</i>) COD _{Mn} , (<i>b</i>) NH ₃ –N and (<i>c</i>) COD	64
2.19	Turbidity maps for Alqueva reservoir on (a) 11	
	February 2009 and (b) 15 March 2009	65
2.20	Modeling results of chlorophyll-a (a), turbidity (b),	
	and phosphorus (c) levels during the wet and dry	
	seasons of 1998–1999 and 2009–2010	69
2.21	Spatial variation pattern of surface salinity in	
	Florida Bay and coastal areas based on (GWR) and	
	TM data during 1999	70
2.22	TSS distribution maps of Lake Timsah	72
2.23	COD distribution maps of Lake Timsah	73
2.24	pH distribution maps of Lake Timsah	73
2.25	Chlorophyll-a distribution maps of Lake Timsah	74
2.26	Chlorophyll-b distribution maps of Lake Timsah	74
2.27	Chlorophyll-c distribution maps of Lake Timsah	75
2.28	Soil salinity maps of "Gafur Gulyam" farm created	
	by (a) conventional method and (b) RS/GIS	
	application	76

2.29	Soil salinity maps of Galaba farm created by (a)	
	conventional method and (b) RS/GIS application	76
2.30	Spatial distributions of the TP concentrations (mg	
	l-1) in Lake Taihu, produced by several different	
	date-recorded HJ1A/HSI images	78
2.31	Spatial distribution maps of the water heavy metal	
	concentrations of ELM area	79
2.32	Spatial distribution maps of the bottom sediments	
	heavy metal concentrations of ELM area	80
2.33	Soil salinity distribution in the north with slight-	
	moderately saline soils (a); along the Yellow River	
	with non-saline and slightly saline soils (b) and in	
	the south with moderate-to-highly saline soils (c)	82
2.34	Classification ISOCLUST with (NDSI, BI, ASI,	
	SI, SSSI and NDVI)	88
2.35	NDVI maps of Lake Timsah	91
2.36	NDWI maps of Lake Timsah	91
2.37	Image classification procedure	94
2.38	SVM classifications with support vectors critical	
	point close to decision boundary	96
2.39	DT classifications	98
3.1	Satellite image showing the geographical locations	
	of Iraqi marshes	105
3.2	Marshes located at southeastern region of Iraq	106
3.3	Al-Hawizeh Marsh	107
3.4	Satellite image of geographical coordinates for	
	pollution sources	109
3.5	Satellite images of geographical coordinates for	
	water sampling stations	110
3.6	Garmin eTrex Waterproof Hiking GPS	111
3.7	Central laboratories for environmental quality	
	monitoring (CLEQM) in center for the restoration	
	of Iraqi marshlands (CRIM)	112

3.8	YSI Model 30 measuring the water salinity of Al-	
	Hawizeh marsh	113
3.9	Flowchart of research methodology revealing	
	various phases	116
3.10	Image pre-processing stages	117
3.11	Composition of SI model	123
3.12	SM ₁ based on relation between salinity indexes	
	values from satellite image and salinity values from	
	ground measurements	125
3.13	GMM ₁ based on relation between salinity values	
	from satellite image and minerals values from	
	ground measurements	126
3.14	The architecture of SMI model	127
3.15	SM ₂ model based on relation between soil moisture	
	indexes values from satellite image and salinity	
	values from ground measurements	129
3.16	GMM ₂ model based on relation between salinity	
	values from satellite image and minerals values	
	from ground measurements	130
3.17	GMM ₃ model based on relation between indexes	
	values of clay minerals from satellite image and	
	minerals values from ground measurements	132
3.18	Band math process	134
3.19	Band math process for (Salinity, CaCO ₃ , and SO ₄)	135
3.20	Band math process for Pb, Ni, Fe, and Zn	135
3.21	DT classifications for water quality parameters	137
3.22	Change detection stages for salinity and minerals	139
4.1	Ground measured water salinity levels during four	
	seasons	144
4.2	Ground measured SO ₄ contents during four seasons	145
4.3	Ground measured CaCO3 contents during four	
	seasons	146
4.4	Ground measured Fe contents during four seasons	147

4.5	Ground measured Pb contents during four seasons	148
4.6	Ground measured Ni contents during four seasons	149
4.7	Ground measured Zn contents during four seasons	150
4.8	Seasonal variation of water salinity in Al-Hawizeh	
	marsh computed using SI model	153
4.9	Images showing the spatial distributions of water	
	salinity in Al-Hawizeh marsh obtained using SI	
	model during four seasons: (a) winter, (b) spring,	
	(c) summer, and (d) autumn	154
4.10	Seasonal variation of water salinity in Al-Hawizeh	
	marsh computed using SMI model	155
4.11	Images showing the spatial distributions of water	
	salinity in Al-Hawizeh marsh obtained using SMI	
	model during four seasons: (a) winter, (b) spring,	
	(c) summer, and (d) autumn	156
4.12	Seasonal variation of SO4 contents in Al-Hawizeh	
	marsh computed using SI model	157
4.13	Images showing the spatial distributions of SO ₄	
	contents in Al-Hawizeh marsh water obtained	
	using SI model during four seasons: (a) winter, (b)	
	spring, (c) summer, and (d) autumn	158
4.14	Seasonal variation of SO ₄ contents in Al-Hawizeh	
	marsh computed using SMI model	159
4.15	Images showing the spatial distributions of SO ₄	
	contents in Al-Hawizeh marsh water obtained	
	using SMI model during four seasons: (a) winter,	
	(b) spring, (c) summer, and (d) autumn	160
4.16	Seasonal variation of CaCO3 contents in Al-	
	Hawizeh marsh computed using SI model	161
4.17	Images showing the spatial distributions of CaCO ₃	
	contents in Al-Hawizeh marsh water obtained	
	using SI model during four seasons: (a) winter, (b)	
	spring, (c) summer, and (d) autumn	162

4.18	Seasonal variation of CaCO ₃ contents in Al-	
	Hawizeh marsh computed using SMI model	163
4.19	Images showing the spatial distributions of CaCO ₃	
	contents in Al-Hawizeh marsh water obtained	
	using SMI model during four seasons: (a) winter,	
	(b) spring, (c) summer, and (d) autumn	164
4.20	Seasonal variation of Fe contents in Al-Hawizeh	
	marsh water computed using SI model	165
4.21	Images showing the spatial distributions of Fe	
	contents in Al-Hawizeh marsh water obtained	
	using SI model during four seasons: (a) winter, (b)	
	spring, (c) summer, and (d) autumn	166
4.22	Seasonal variation of Fe contents in Al-Hawizeh	
	marsh water computed using SMI model	167
4.23	Images showing the spatial distributions of Fe	
	contents in Al-Hawizeh marsh water obtained	
	using SMI model during four seasons: (a) winter,	
	(b) spring, (c) summer, and (d) autumn	168
4.24	Seasonal variation of Pb contents in Al-Hawizeh	
	marsh water computed using SI model	169
4.25	Images showing the spatial distributions of Pb	
	contents in Al-Hawizeh marsh water obtained	
	using SI model during four seasons: (a) winter, (b)	
	spring, (c) summer, and (d) autumn	170
4.26	Seasonal variation of Pb contents in Al-Hawizeh	
	marsh water computed using SMI model	171
4.27	Images showing the spatial distributions of Pb	
	contents in Al-Hawizeh marsh water obtained	
	using SMI model during four seasons: (a) winter,	
	(b) spring, (c) summer, and (d) autumn	172
4.28	Seasonal variation of Ni contents in Al-Hawizeh	
	marsh water computed using SI model	173
4.29	Images showing the spatial distributions of Ni	174

	contents in Al-Hawizeh marsh water obtained	
	using SI model during four seasons: (a) winter, (b)	
	spring, (c) summer, and (d) autumn	
4.30	Seasonal variation of Ni contents in Al-Hawizeh	
	marsh water computed using SMI model	175
4.31	Images showing the spatial distributions of Ni	
	contents in Al-Hawizeh marsh water obtained	
	using SMI model during four seasons: (a) winter,	
	(b) spring, (c) summer, and (d) autumn	176
4.32	Seasonal variation of Zn contents in Al-Hawizeh	
	marsh water computed using SI model	177
4.33	Images showing the spatial distributions of Zn	
	contents in Al-Hawizeh marsh water obtained	
	using SI model during four seasons: (a) winter, (b)	
	spring, (c) summer, and (d) autumn	178
4.34	Seasonal variation of Zn contents in Al-Hawizeh	
	marsh water computed using SMI model	179
4.35	Images showing the spatial distributions of Zn	
	contents in Al-Hawizeh marsh water obtained	
	using SMI model during four seasons: (a) winter,	
	(b) spring, (c) summer, and (d) autumn	180
4.36	SI model based data fusion pattern for water	
	salinity, SO ₄ and CaCO ₃ contents (in mg/l) in Al-	
	Hawizeh marsh during four seasons: (a) winter, (b)	
	spring, (c) summer, and (d) autumn	183
4.37	SMI model based data fusion pattern for water	
	salinity, SO ₄ and CaCO ₃ contents (in mg/l) in Al-	
	Hawizeh marsh during four seasons: (a) winter, (b)	
	spring, (c) summer, and (d) autumn	185
4.38	SI model based data fusion pattern for Fe, Pb, Ni	
	and Zn contents (in mg/l) in Al-Hawizeh marsh	
	water during four seasons: (a) winter, (b) spring,	
	(c) summer, and (d) autumn	187

4.39	SMI model based data fusion pattern for Fe, Pb, Ni	
	and Zn contents (in mg/l) in Al-Hawizeh marsh	
	water during four seasons: (a) winter, (b) spring,	
	(c) summer, and (d) autumn	189
4.40	SI model based SVM classification images for	
	water salinity, SO ₄ and CaCO ₃ contents (in mg/l) in	
	Al-Hawizeh marsh during four seasons: (a) winter,	
	(b) spring, (c) summer, and (d) autumn	191
4.41	SMI model based SVM classification images for	
	water salinity, SO ₄ and CaCO ₃ contents (in mg/l) in	
	Al-Hawizeh marsh during four seasons: (a) winter,	
	(b) spring, (c) summer, and (d) autumn	193
4.42	SI model based SVM classification images for Fe,	
	Pb, Ni and Zn contents (in mg/l) in Al-Hawizeh	
	marsh water during four seasons: (a) winter, (b)	
	spring, (c) summer, and (d) autumn	195
4.43	SMI model based SVM classification images for	
	Fe, Pb, Ni and Zn contents (in mg/l) in Al-Hawizeh	
	marsh water during four seasons: (a) winter, (b)	
	spring, (c) summer, and (d) autumn	197
4.44	SI model based DT classification images for water	
	salinity, SO ₄ , CaCO ₃ , Fe, Pb, Ni, and Zn contents	
	in Al-Hawizeh marsh during four seasons: (a)	
	winter, (b) spring, (c) summer, and (d) autumn	200
4.45	SMI model based DT classification images for	
	water salinity, SO ₄ , CaCO ₃ , Fe, Pb, Ni, and Zn	
	contents in Al-Hawizeh marsh during four seasons:	
	(a) winter, (b) spring, (c) summer, and (d) autumn	203
4.46	The correlation accuracy between ground data and	
	DT classification results based on (SI) for marsh	
	water salinity during: (a) winter, (b) spring, (c)	
	summer, and (d) autumn	208
4.47	The correlation accuracy between ground data and	209

	SVM classification results based on (SI) for marsh	
	water salinity during: (a) winter, (b) spring, (c)	
	summer, and (d) autumn	
4.48	The correlation accuracy between ground data and	
	DT classification results based on (SI) for marsh	
	water SO ₄ level during: (a) winter, (b) spring, (c)	
	summer, and (d) autumn	210
4.49	The correlation accuracy between ground data and	
	SVM classification results based on (SI) for marsh	
	water SO ₄ level during: (a) winter, (b) spring, (c)	
	summer, and (d) autumn	211
4.50	The correlation accuracy between ground data and	
	DT classification results based on (SI) for marsh	
	water CaCO ₃ level during: (a) winter, (b) spring,	
	(c) summer, and (d) autumn	212
4.51	The correlation accuracy between ground data and	
	SVM classification results based on (SI) for marsh	
	water CaCO ₃ level during: (a) winter, (b) spring,	
	(c) summer, and (d) autumn	213
4.52	The correlation accuracy between ground data and	
	DT classification results based on (SI) for marsh	
	water Fe level during: (a) winter, (b) spring, (c)	
	summer, and (d) autumn	214
4.53	The correlation accuracy between ground data and	
	SVM classification results based on (SI) for marsh	
	water Fe level during: (a) winter, (b) spring, (c)	
	summer, and (d) autumn	215
4.54	The correlation accuracy between ground data and	
	DT classification results based on (SI) for marsh	
	water Pb level during: (a) winter, (b) spring, (c)	
	summer, and (d) autumn	216
4.55	The correlation accuracy between ground data and	
	SVM classification results based on (SI) for marsh	217

	water Pb level during: (a) winter, (b) spring, (c)	
	summer, and (d) autumn	
4.56	The correlation accuracy between ground data and	
	DT classification results based on (SI) for marsh	
	water Ni level during: (a) winter, (b) spring, (c)	
	summer, and (d) autumn	218
4.57	The correlation accuracy between ground data and	
	SVM classification results based on (SI) for marsh	
	water Ni level during: (a) winter, (b) spring, (c)	
	summer, and (d) autumn	219
4.58	The correlation accuracy between ground data and	
	DT classification results based on (SI) for marsh	
	water Zn level during: (a) winter, (b) spring, (c)	
	summer, and (d) autumn	220
4.59	The correlation accuracy between ground data and	
	SVM classification results based on (SI) for marsh	
	water Zn level during: (a) winter, (b) spring, (c)	
	summer, and (d) autumn	221
4.60	The correlation accuracy between ground data and	
	DT classification results based on (SMI) for marsh	
	water salinity during: (a) winter, (b) spring, (c)	
	summer, and (d) autumn	225
4.61	The correlation accuracy between ground data and	
	SVM classification results based on (SMI) for	
	marsh water salinity during: (a) winter, (b) spring,	
	(c) summer, and (d) autumn	226
4.62	The correlation accuracy between ground data and	
	DT classification results based on (SMI) for SO ₄	
	level in marsh water during: (a) winter, (b) spring,	
	(c) summer, and (d) autumn	227
4.63	The correlation accuracy between ground data and	
	SVM classification results based on (SMI) for SO_4	
	level in marsh water during: (a) winter, (b) spring,	228

	(c) summer, and (d) autumn	
4.64	The correlation accuracy between ground data and	
	DT classification results based on (SMI) for CaCO ₃	
	level in marsh water during: (a) winter, (b) spring,	
	(c) summer, and (d) autumn	229
4.65	The correlation accuracy between ground data and	
	SVM classification results based on (SMI) for	
	CaCO ₃ level in marsh water during: (a) winter, (b)	
	spring, (c) summer, and (d) autumn	230
4.66	The correlation accuracy between ground data and	
	DT classification results based on (SMI) for Fe	
	level in marsh water during: (a) winter, (b) spring,	
	(c) summer, and (d) autumn	231
4.67	The correlation accuracy between ground data and	
	SVM classification results based on (SMI) for Fe	
	level in marsh water during: (a) winter, (b) spring,	
	(c) summer, and (d) autumn	232
4.68	The correlation accuracy between ground data and	
	DT classification results based on (SMI) for Pb	
	level in marsh water during: (a) winter, (b) spring,	
	(c) summer, and (d) autumn	233
4.69	The correlation accuracy between ground data and	
	SVM classification results based on (SMI) for Pb	
	level in marsh water during: (a) winter, (b) spring,	
	(c) summer, and (d) autumn	234
4.70	The correlation accuracy between ground data and	
	DT classification results based on (SMI) for Ni	
	level in marsh water during: (a) winter, (b) spring,	
	(c) summer, and (d) autumn	235
4.71	The correlation accuracy between ground data and	
	SVM classification results based on (SMI) for Ni	
	level in marsh water during: (a) winter, (b) spring,	
	(c) summer, and (d) autumn	236

4.72	The correlation accuracy between ground data and	
	DT classification results based on (SMI) for Zn	
	level in marsh water during: (a) winter, (b) spring,	
	(c) summer, and (d) autumn	237
4.73	The correlation accuracy between ground data and	
	SVM classification results based on (SMI) for Zn	
	level in marsh water during: (a) winter, (b) spring,	
	(c) summer, and (d) autumn	238
4.74	SI model based pattern for salinity change	
	detection matrix in Al-Hawizeh marsh water	
	between different seasons of 2013: (a) winter and	
	spring, (b) spring and summer, (c) summer and	
	autumn, and (d) autumn and winter	240
4.75	SMI model based pattern for salinity change	
	detection matrix in Al-Hawizeh marsh water	
	between different seasons of 2013: (a) winter and	
	spring, (b) spring and summer, (c) summer and	
	autumn, and (d) autumn and winter	242
4.76	Salinity change ratio in Al-Hawizeh marsh during	
	four seasons based on SI model (left) and SMI	
	model (right)	244
4.77	SI model based pattern for SO ₄ change detection	
	matrix in Al-Hawizeh marsh water between	
	different seasons of 2013: (a) winter and spring, (b)	
	spring and summer, (c) summer and autumn, and	
	(d) autumn and winter	245
4.78	SMI model based pattern for SO ₄ change detection	
	matrix in Al-Hawizeh marsh water between	
	different seasons of 2013: (a) winter and spring, (b)	
	spring and summer, (c) summer and autumn, and	
	(d) autumn and winter	247
4.79	SO4 change ratio in Al-Hawizeh marsh during four	
	seasons based on SI model (left) and SMI model	248

(right)	
(

4.80	SI model based pattern for CaCO3 change detection	
	matrix in Al-Hawizeh marsh water between	
	different seasons of 2013: (a) winter and spring, (b)	
	spring and summer, (c) summer and autumn, and	
	(d) autumn and winter	250
4.81	SMI model based pattern for CaCO3 change	
	detection matrix in Al-Hawizeh marsh water	
	between different seasons of 2013: (a) winter and	
	spring, (b) spring and summer, (c) summer and	
	autumn, and (d) autumn and winter	252
4.82	CaCO3 change ratio in Al-Hawizeh marsh during	
	four seasons based on SI model (left) and SMI	
	model (right)	253
4.83	SI model based pattern for Fe change detection	
	matrix in Al-Hawizeh marsh water between	
	different seasons of 2013: (a) winter and spring, (b)	
	spring and summer, (c) summer and autumn, and	
	(d) autumn and winter	255
4.84	SMI model based pattern for Fe change detection	
	matrix in Al-Hawizeh marsh water between	
	different seasons of 2013: (a) winter and spring, (b)	
	spring and summer, (c) summer and autumn, and	
	(d) autumn and winter	257
4.85	Fe change ratio in Al-Hawizeh marsh during four	
	seasons based on SI model (left) and SMI model	
	(right)	258
4.86	SI model based pattern for Pb change detection	
	matrix in Al-Hawizeh marsh water between	
	different seasons of 2013: (a) winter and spring, (b)	
	spring and summer, (c) summer and autumn, and	
	(d) autumn and winter	260
4.87	SMI model based pattern for Pb change detection	262

	matrix in Al-Hawizeh marsh water between	
	different seasons of 2013: (a) winter and spring, (b)	
	spring and summer, (c) summer and autumn, and	
	(d) autumn and winter	
4.88	Pb change ratio in Al-Hawizeh marsh during four	
	seasons based on SI model (left) and SMI model	
	(right)	263
4.89	SI model based pattern for Ni change detection	
	matrix in Al-Hawizeh marsh water between	
	different seasons of 2013: (a) winter and spring, (b)	
	spring and summer, (c) summer and autumn, and	
	(d) autumn and winter	265
4.90	SMI model based pattern for Ni change detection	
	matrix in Al-Hawizeh marsh water between	
	different seasons of 2013: (a) winter and spring, (b)	
	spring and summer, (c) summer and autumn, and	
	(d) autumn and winter	267
4.91	Ni change ratio in Al-Hawizeh marsh during four	
	seasons based on SI model (left) and SMI model	
	(right)	268
4.92	SI model based pattern for Zn change detection	
	matrix in Al-Hawizeh marsh water between	
	different seasons of 2013: (a) winter and spring, (b)	
	spring and summer, (c) summer and autumn, and	
	(d) autumn and winter	270
4.93	SMI model based pattern for Zn change detection	
	matrix in Al-Hawizeh marsh water between	
	different seasons of 2013: (a) winter and spring, (b)	
	spring and summer, (c) summer and autumn, and	
	(d) autumn and winter	272
4.94	Zn change ratio in Al-Hawizeh marsh during four	
	seasons based on SI model (left) and SMI model	
	(right)	273

LIST OF ABBREVIATIONS

AGNPS	-	Agriculture Non Point Source Pollution			
ALI	-	Advanced Land Imager			
ANN	-	Artificial Neural Network			
ASI	-	Aster Salinity Index			
ASTER	-	Advanced Space borne Thermal Emission and Reflection			
		Radiometer			
BI	-	Brightness Index			
BM	-	Band Math			
BOD	-	Biochemical Oxygen Demand			
CAD	-	Computer Aided Design			
CASI	-	Compact Airborne Spectrographic Imager			
CDOM	-	Colored Dissolved Organic Matter			
Ch1	-	Chlorophyll-a			
CLEQM	-	Central Laboratories For Environmental Quality Monitoring			
СМ	-	Clay Mineral			
CN	-	Color Normalized			
COD	-	Chemical Oxygen Demand			
CPAs	-	Color Producing Agents			
CRIM	-	Center for the Restoration of Iraq's Ministry			
DN	-	Digital Numbers			
DO	-	Dissolved Oxygen			
DOC	-	Dissolved Organic Carbon			
DOS	-	Dark Object Subtraction			
DSS	-	Decision Support System			
DT	-	Decision Tree			

EC	- Electric Conductivity
EFs	- Enrichment Factors
EMR	- Electromagnetic Radiation
ETM	- Enhanced Thematic Mapper
FLAASH	- Fast Line of sight Atmospheric Analysis of Spectral
	Hypercubes
GA	- Genetic Algorithm
GB	- Green Bio-volume
GDSHW	- General Directorate Of State Hydraulic Works
GDVI	- Generalized Difference Vegetation Index
GIS	- Geographic Information System
GMM	- General Mineral Model
GPS	- Global Position System
GUAC	- Quick Atmospheric Correction
GWR	- Geographically Weighted Regression
HBI	- Hilsenhoff Biotic Index
HIS	- Hyperspectral Imaging System
HIS	- Hue-Saturation-Intensity
HRV	- High Resolution Visible
HSPF	- Hydrologic Simulation Program Fortran
HSV	- Hue Saturation Value
IAR	- Internal Average Reflectance
ICP-OES	- Inductively Coupled Plasma Optical Emission Spectrometry
IDL	- Interactive Data Language
IOPs	- Inherent Optical Properties
LST	- Land Surface Temperature
MD	- Minimum Distance
MERIS	- Medium Resolution Imaging Spectrometer
MIS	- Multispectral Imaging System
ML	- Maximum Likelihood
MNDWI	- Modified Normalized Difference Water Index
MOEE	- Ministry of Environment and Energy
MOS	- Modular Optical Scanner

MS	-	Multispectral Scanner
MWR	-	Ministry Water Resources
NDII	-	Normalized Difference Infrared Index
NDSI	-	Normalized Difference Salinity Index
NDVI	-	Normalized Difference Vegetation Index
NDWI	-	Normalized Difference Water Index
NIR	-	Near Infrared
NRMSE	-	Normalized Root Mean Squared Error
NPOC	-	Non-Purged Organic Carbon
NTD	-	Normalized Trough Depth
OCTS	-	Ocean Color and Temperature
OLI	-	Operational Land Imager
PC	-	Principal Components
PCA	-	Principal Components Analysis
PRZM	-	Pesticide Root Zone Model
RBF	-	Radial Basis Function
RMSE	-	Root Mean Square Error
ROI	-	Region of Interest
RS	-	Remote Sensing
SE	-	Standard Error
SI	-	Salinity Index
SIM	-	Salinity Index Modified
SMS	-	Suspended Minerals
SM	-	Salinity Model
SMI	-	Soil Moisture Index
SPIM	-	Suspended Particulate Inorganic Material
SRO	-	Salinity Ratio
SR	-	Surface Reflectance
SS	-	Suspended Sediments
SSSI	-	Soil Salinity and Sodicity Index
SVM	-	Support Vector Machine
SWM	-	Stanford Watershed Model
SWNIR	-	Short Wave Near-Infrared

TDS	-	Total Dissolved Soilds
TIRS	-	Thermal Infrared Sensor
TLID	-	Transmitted Light Intensity Depth
TM	-	Thematic Mapper
ТоА	-	Top of Atmosphere
TSM	-	Total Suspended Matters
TSS	-	Total Suspended Soilds
WQM	-	Water Quality Model
WQMISW	-	Water Quality Management Information System
WRI	-	Water Ratio Index

LIST OF SYMBOLS

Ca	-	Calcium
CaCO ₃	-	Calcium Carbonate
Cd	-	Cadmium
Cr	-	Chromium
Fe	-	Iron
Hg	-	Mercury
Mg	-	Magnesium
Ν	-	Nitrogen
Ni	-	Nickel
Pb	-	Lead
PPT	-	Parts per Thousand
SO ₄	-	Sulphate
Т	-	Temperature (°C)
Th	-	Thallium
TN	-	Total Nitrogen
TP	-	Total Phosphorus
Zn	-	Zinc

LIST OF APPENDICES

APPENDIX	TITLE
----------	-------

PAGE

А	Geographical coordinates for pollution sources		
	that are affecting the Al-Hawizeh Marsh	301	
В	Geographic coordinates for water sampling		
	stations around Al-Hawizeh Marsh	304	
С	Concentrations values for water quality		
	parameters of Al-Hawizeh marsh during four		
	Seasons-2013	307	
D	Iraq standards for water sources (Law		
	No.25/1967, protection of rivers and public water		
	from pollution)	312	
Ε	SI and SMI model based DT classification layers		
	for salinity and minerals content (in mg/ml) in		
	Al-Hawizeh marsh during four seasons: (a)		
	winter, (b) spring, (c) summer, and (d) autumn	313	
F	List of publications	316	

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Marshes being the provider of habitat for several types of plants, animals, and insects often form a transition between the aquatic and terrestrial ecosystems. Prediction of marshes water quality by developing an accurate model and its subsequent remediation of water pollutants is prerequisite for sustainable development and ecological balance. Presently, many environmental problems such as pollution, frequent earth quake, tsunami, global warming, ozone hole, etc. certainly posed severe threat to humankind and nature (Abdul Jabbar, 2010). Literature hinted that some of these environmental crises are manmade, however the actual reasons still to be clarified.

A large portion of earth's landscape is covered by marshes so called wetland, which is one of the most important habitats that support more life than any other type of habitat. They are also essential to keep our environment clean. Thus, proper restoration of marshes and effective maintenance of their water quality is mandatory for environmental sustainability and human safety in terms of health and hygiene. Marshes being ubiquitous all over the Earth surface, the landscape of Iraq is not an exception. Actually, a large part of Iraq is covered by marshes where keeping the environmental affability to protect the communities from harsh weather conditions, supporting breeding grounds for commercially valuable fishes, and offering recreational opportunities are significant. Controlling the marshes water quality by detecting the presence of heavy metals including mercury (Hg), cadmium (Cd), arsenic (As), chromium (Cr), thallium (Th) and lead (Pb) and subsequently remediating them is an essential requirement to preserve such habitat for sustainability. Definitely, clean water is an essential requirement for aquatic life and human survival (Wu *et al.*, 2014).

Categorically, several environmentally destructive development and human non-ethical activities such as water pollutions, inadequately discharges of sewage and industrial waste waters, poor agricultural practices, and lack of integrated watersheds management created major problems. Consequently, the water quality in rivers, lakes, and marshes are severely affected. These indicators posed a serious concern to the ecosystem, water resources degradation, public health risks and watersheds especially prone to water quality problems (Azab, 2012). Therefore, the quality of surface water is rapidly deteriorating. This is categorized as point sources involving the discrete flows of polluted water that enters the watersheds through a channel or pipe such as the effluent from a sewage treatment plants. They are often associated with municipalities or industries. Conversely, the non-point sources are usually associated with the widely covered land usage including forest management practices, agricultural cultivation, and livestock grazing. Generally, these pollution sources enter watersheds area through groundwater flow, overland flow or flow from small tributaries (Wu *et al.*, 2013).

The surface water quality of watersheds such as marshes, lakes and reservoirs often vary depending on natural of hydrological, biological, chemical, morphological and sedimentation processes. Salinity, heavy metals, and pathogens such as parasites, bacteria and viruses being the waste materials are most dangerous environmental pollutants (Azab, 2012; Kerekes and Baum, 2005; Mather and Koch, 2011; Ongley, 2000; Ustin, 2004; Zacharias and Gianni, 2008). Supply of poor water quality severely affects the sanitation and causes soil erosions (Ustin, 2004) unless inhibited. Globally, approximately 25,000 deaths occur daily due to the water borne diseases (Amel Mustafa, 2012; Mujumdar, 2001; Ongley, 2000). Over the years, aerial or

space sensor technologies so called remote sensing are intensively used to detect and classify marshes on Earth, which played a significant role towards natural resource management. It is worth mentioning that the water quality of rivers, streams, lakes and marshes in Iraq (Schwarte, 2003; Ustin, 2004) became questionable due to American-Iraq war related activities during 1991 and 2003 and proliferation of chemicals.

In the past few decades the problems regarding water quality is greatly cropped up in Iraq. Water pollutions in the form of discharges of sewage and industrial waste waters, poor agricultural practices, and lack of integrated watersheds management intensified the soil erosion and sedimentation. Furthermore, the poor public awareness on the water resources protection threatened the ecosystems, endangered the public health and degraded the water quality in Iraq (Kerekes and Baum, 2005; Schwarte, 2003; Ustin, 2004). Thus, proper management, assessment, monitoring and solving the problems of surface water quality require an in-depth analyses of watersheds, where an integrated catchment approach is believed to play a major role (Amel Moustafa, 2012; Haith and Tubbs, 1981).

The watershed database and modeling tools coupled GIS is prospective to simulate hydrological processes on a daily time step including surface water quality, runoff, evapotranspiration, soil erosion and agricultural pollutant transport (Quilbé and Rousseau, 2007). The mathematical modeling of water quality is essential for developing management plans for watersheds. The integration between GIS, different computer technologies, remote sensing techniques, and water quality models act as a powerful tool for water quality management, especially with complicated surface networks in watersheds. Moreover, GIS assist to collect, store, analyze, manipulate and display data that can be used easily to construct models for water quality management (Azab, 2012; Goodchild *et al.*, 1996). The integrated model with the spatial capabilities of GIS together with spatial and temporal capacities of remote sensing can provide a powerful tool for management and assessment the surface water quality problems (Ammenberg *et al.*, 2002; Amel Moustafa, 2012). In this view, the present thesis takes an attempt to model the

marshes water quality accurately based on optical remote sensing information acquisition.

It is needless to mention that remote sensing is highly useful for monitoring and mapping the water quality on earth's surface (Ammenberg *et al.*, 2002; Ustin, 2004). It is greatly potential for estimating, monitoring and mapping various parameters relating water quality. Recent advancement in remote sensing towards data acquisition and integration of spatial and temporal water quality models provided a renewed prospect for managing and evaluating the surface water quality problems in the marshes zone of southern Iraq. This study proposes some novel mathematical algorithms to retrieve numerous water quality parameters using Landsat-8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) data acquired for four seasons in 2013. The developed model is implemented to assess and map these water quality parameters distributions in the context of marshland situated in Al-Hawizeh (southern Iraq).

1.2 Problem Statement

The over-exploitation, political reprisals against the inhabitants, and lack of coordinated management caused several problems connecting the Iraqi water quality over the past fifteen years. Thus, the primary water resources in Iraq including the marshes are contaminated, in which the marshlands water quality is declined and appeared very much harmful for human consumption. The repeated construction of dams due to acute water storage in Turkey and Syria which is the major reason for water quality deterioration in the Iraqi marshlands needs further clarification. Besides, the domestic industrial pollution and hydroelectric power generation along the Euphrates and Tigris rivers also declined the marshland water quality in Iraq (Khattab and Merkel, 2014; Abdul Jabbar, 2010; Nicholson and Clark, 2003; Sun *et al.*, 2014; Ustin, 2004; Wu *et al.*, 2013; Wu *et al.*, 2014). Despite the necessity,

research is seldom carried out to model the Iraqi marshlands water quality for effective remediation of pollutants.

Wars related destructive manmade events added extra impulses towards environmental crises, in which the natural water recourses are the greatest victim. The unforgettable Gulf war's over past three decades that majorly deteriorated the Iraqi marsh resources and caused irreparable environmental damage in the Arabian Gulf coastal waters need to be assessed. During Gulf War, million tons of oil that are spilled in the Arabian Gulf is eventually affected the water quality of rivers, streams, lakes and marshes in Iraq (Schwarte, 2003; Ustin, 2004). In addition, scantily treated sewage, poor land use practices, industrial wastewaters discharges, excessive use of fertilizers, and a lack of integrated watershed management are other factors that impacted the marshland water quality in Iraq (Ustin, 2004). Yet, no comprehensive study is made to determine their influence on marshlands water quality declination.

The water resources degradation being threatening to the ecosystems and public health requires special attention in term of remediation. A mathematical model enclosing all these negative effects such as environmentally destructive development, lack of information regarding water quality, poor public awareness and education on the protection of water resources, rapid deterioration of marshland water quality, etc. are far from being achieved (Kerekes and Baum, 2005; Schwarte, 2003; Sun *et al.*, 2014; Ustin, 2004; Wu *et al.*, 2013; Wu *et al.*, 2014). Advancement of such model on marshland water quality prediction, monitoring and assessment may be advantageous to solve several socio-economic problems especially health, hygiene and food security.

With modernization and rapid industrialization, the ever-increasing water and soil salinity appears detrimental unless overcome. For instance, salinity in the Tigris and Euphrates rivers near their discharge point at the marsh ranges from 0.5 to 2 parts per thousand (PPT). Thus, 74% of irrigated land that is suffering from certain degree of salination needs remediation (Wu *et al.*, 2013; Wu *et al.*, 2014). In fact,

salinity being the key parameter to understanding the water quality in marshland zones requires accurate measurement methods. Marshland salinity is a vital index for all living creatures including vegetations, species, microorganisms, animals, birds, insects, and plants. Thus, salinity monitoring, predicting, modelling, and simulation are crucial in the evaluation of ecological resources in Iraqi marshland zones.

Better management and assessment of marshes water quality requires the identification of diverse components of watershed, the land categories usage, and the interaction among various connected water bodies. By determining the salinity, heavy metals, hydrodynamics of the water bodies and their various affecting factors, one develops better understanding of the marshes water quality problems. This truly reflects the requirements of effective tools for water quality management. By synergistically combining the existing tools for the surface water quality management one can develop a better approach to determine the appropriate solutions connecting water pollution problems. Water quality models are considered as key tools in understanding such problems. They also act as main components in management and decision support systems. Accurate interpretation of aquatic environment water quality in terms of salinity and existence of heavy metals require comprehensive models describing the detailed parameters. Using such models, much authentic data can be produced in an efficient manner. This introduces the integration of information technology tools with modeling and remote sensing that can be readily designed to support the marshland water quality management and assessment process.

The advances made in water quality modeling using remote sensing data and information systems coupled to decision support systems in the management process are increasingly being recognized. This thesis combines the optical remote sensing data with water quality modeling to develop and support system concerning surface water quality management in marshes. It also explores the development in these tools to solve particular water quality problems. The main scope of the integration is to clearly understand the water quality of different types of connected water bodies in marshes. This integration is expected to provide a precise assessment of the water quality problems and to develop remedial management actions for environmental protection in the future.

1.3 Aim and Objectives of Study

The aim of this study is to monitor and assess the parameters governing the water quality such as salinity and heavy metals (SO₄, CaCO₃, Fe, Pb, Ni and Zn) in Al-Hawizeh Marsh (Iraq) by developing a model based on optical Remote Sensing (RS) data. Based on the problem statement the following objectives are set:

- 1. To develop a mathematical model based on Landsat-8 (OLI) and (TIRS) data for determining marshland water quality parameters including salinity and heavy metals (SO₄, CaCO₃, Fe, Pb, Ni and Zn).
- 2. To determine the spatial distributions of the salinity and metals in marshland water using data fusion techniques for monitoring and assessment.
- 3. To classify the marshland water quality parameters by using Support Vector machine (SVM) and Decision Tree (DT) classification depending on the mathematical models for optimization.

1.4 Research Questions

Based on the problem statement and cited objectives the following research questions are set:

1. Is it possible to retrieve the water quality parameters by developing a model based on Landsat-8 data?

- 2. How data fusion techniques can assess and monitor the water quality parameters?
- 3. Can Decision Tree effectively classify the water quality parameters?
- 4. How to optimize the developed model for achieving the results closer to the reality?

1.5 Significance of Study

Marshes are considered as an important water source for the humans and the agricultural areas south of Iraq. The environmental pollution such as the domestic, agricultural and industrial activities as well as the remnants wars and the heavy or toxic metals are considering as significant effects on marshes water quality parameters. Thus effects have both direct and indirect impacts on the economic wealth, natural resources and human activities of all the regions around marshes.

This study discovered the surface water quality problems and derived a computational framework for assessing salinity and numbers of minerals in Al-Hawizeh. The assessment of surface water quality on a watershed in Al-Hawizeh Marsh southern Iraq, involves the examination of all activities in the watershed for their possible effects on the existing water bodies. Agricultural irrigated watersheds are of complex physical nature because they include interacting irrigation and drainage networks which may be connected to marshes. Studying surface water quality problems in such watersheds of marsh zone for better management practices calls for a reassessment and integration of information technology tools designed to support the management process. Therefore, the integration between mathematical modeling and remote sensing applications could provide a powerful tool for management and decision making process related to the solution of surface water quality problems. The present research aims to contribute to the field of surface water quality management through integrating water quality mathematical models with the spatial and temporal capabilities of remote sensing.

New models are developed and integrated with the optical remote sensing data such as Landsat-8 for retrieving, monitoring and assessment of spatiotemporal changes and mapping the spatial distributions patterns for water quality parameters such as salinity and heavy metals (SO₄, CaCO₃, Fe, Pb, Ni, Zn) in Al-Hawizeh Marsh southern Iraq during four seasons in 2013. This study distinguishes to be unique for retrieving water quality parameters depending on Landsat-8 images. Thus, an attempt is made to develop an integrated water quality management information system that is applicable to watersheds of Al-Hawizeh Marsh. The developed models of this study are generic and can be applied to other marshes of local and international regions with similar conditions.

1.6 Scope of Study

This study focuses on Al-Hawizeh Marsh, which is the largest wetland ecosystem in the southern Iraq. This marshland is facing a declination in recent decades. The monitoring and assessment of spatiotemporal changes of water quality in Al-Hawizeh marsh is the main focus. The dataset used in this study comprise of satellite data (Landsat-8) acquired for four different seasons in 2013. These data are obtained from Iraq's ministry of water resources (MWR) and center for the restoration of Iraq's marshlands (CRIM). Landsat-8 data is greatly authentic because it has multi-spectral band images. In addition, the hyper-spectral imaging system that refers to high resolution (1-30m) imaging of the surface water is included. This study depends on the bands of B1 to B11. Additional topographical survey data is also used in the study. The software used for data processing includes ERDAS 2011 and ArcGIS10.1 coupled to ENVI 5.1. In order to reach the first objective of this research, the study considers the water quality modeling technical approaches to retrieve the water quality from Landsat-8 data. New algorithms are developed and integrated with remote sensing data for monitoring and assessing the water quality parameters such as heavy metals and salinity. ENVI techniques are used to map and assess water quality distribution patterns seasonally in Al-Hawizeh Marsh in southern Iraq.

1.7 Thesis Outline

This chapter provides a brief background to justify the importance of undertaken research on marshland water quality modeling based on optical remote sensing. The existing problems are highlighted as problem statement. To bridge the gap, a set of objectives are set with appropriate research questions. The significance and the scope of this research for developing an accurate water quality model are emphasized. Furthermore, the feasibility assessing and monitoring the water quality parameters using the satellite data in Al-Hawizeh Marsh of southern Iraq is underscored.

Chapter two provides a comprehensive literature review in terms of theories and applications regarding this study. Existing relevant literatures are critically evaluated to obtain useful information on remote sensing (RS) and appropriate parameters for water quality models (WQM).

Chapter three describes in detail the research methodology. It covers the procedures of data collection and data processing. It evaluates the accuracy and capability of water quality modeling to assess and monitor water quality parameters.

Chapter four presents the results and analyses for accomplishing the stated objectives, where the implementation of the developed model is demonstrated.

Chapter five discusses the results and interprets those using different mechanisms.

Chapter six concludes the thesis together with useful suggestions and recommendations for pursuing future research.

REFERENCES

- Abdollahi, Y., Zakaria, A., Abbasiyannejad, M., Masoumi, H. R. F., Moghaddam, M.
 G., Matori, K. A., et al. (2013). Artificial neural network modeling of pcresol photodegradation. *Chemistry Central Journal*, 7(1), 1-7.
- Abdul Jabbar, A. F. S. (2010): Change detections in marsh areas, south iraq, using remote sensing and gis applications. *Iraqi Bulletin of Geology and Mining*, 6(2), 17-39
- Adams, D. S., Trauth, K. M., Adhityawarma, J., Peyton, R. L. and Corrêa, A. C.
 (2001). Water quality modeling for watershed management: using AGNPS 98
 and satellite remote sensing image information. Proceedings of the 2001 *Proc ASCE World Water and Environmental Resources Congress*, 20-24.
- Agency, U. E. P. (2000). Water quality conditions in the United States: A profile from the 1998 national water quality inventory report to congress: EPA-841-F-00-006, U. S. Environmental Protection Agency, Office of Water (4503 F), Washington, D. C.
- Al-Ansari, N., Knutsson, S. and Ali, A. (2012). Restoring the Garden of Eden, Iraq. Journal of Earth Sciences and Geotechnical Engineering, 2(1), 53-88.
- Al-Ansari, N. A. (2013). Management of water resources in Iraq: Perspectives and prognoses.
- Al-Handal, A. and Hu, C. (2015). MODIS observations of human-induced changes in the Mesopotamian Marshes in Iraq. *Wetlands*, 35(1), 31-40.
- Allbed, A. and Kumar, L. (2013). Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review. Advances in Remote Sensing, 2013.

- Aller, L., Bennett, T., Lehr, J. H. and Petty, R. (1986). DRASTIC: a system to evaluate the pollution potential of hydrogeologic settings by pesticides.
 Proceedings of the 1986 ACS Symposium series-American Chemical Society (USA),
- Ammenberg, P., Flink, P., Lindell, T., Pierson, D. and Strombeck, N. (2002). Biooptical modelling combined with remote sensing to assess water quality. *International Journal of Remote Sensing*, 23(8), 1621-1638.
- Amel Moustafa. (2012). Integrating GIS, remote sensing and mathematical modelling for surface water quality management in irrigated watersheds: TU Delft, Delft University of Technology.
- Aoki, C. and Kugaprasatham, S. (2010). Support for Environmental Management of the Iraqi Marshlands, 2004-2009: UNEP/Earthprint.
- Argent, R. M. and Grayson, R. B. (2001). Design of information systems for environmental managers: an example using interface prototyping. *Environmental Modelling & Software*, 16(5), 433-438.
- Arnold, J. and Soil, G. (1994). SWAT (Soil and Water Assessment Tool): Grassland, Soil and Water Research Laboratory, USDA, Agricultural Research Service.
- Arnold, J. G., Williams, J., Nicks, A. and Sammons, N. (1990). SWRRB; a basin scale simulation model for soil and water resources management: Texas A & M University Press.
- Arnous, M. O. and Hassan, M. A. (2015). Heavy metals risk assessment in water and bottom sediments of the eastern part of Lake Manzala, Egypt, based on remote sensing and GIS. *Arabian Journal of Geosciences*, 8(10), 7899-7918.
- Azab, A. M. (2012). Integrating GIS, remote sensing and mathematical modelling for surface water quality management in irrigated watersheds: TU Delft, Delft University of Technology.
- Bian, L., Sun, H., Blodgett, C., Egbert, S., Li, W., Ran, L., et al. (1996). An integrated interface system to couple the SWAT model and ARC/INFO.
 Proceedings of the 1996 Proceedings of the 3rd International Conference on Integrating GIS and Environmental Modeling. US National Center for Geographic Information and Analysis, Santa Fe, New Mexico, CD-ROM,

- Bilge, F., Yazici, B., Dogeroglu, T. and Ayday, C. (2003). Statistical evaluation of remotely sensed data for water quality monitoring. *International journal of remote sensing*, 24(24), 5317-5326.
- Bonta, J. (1998). Spatial variability of runoff and soil properties on smallwatersheds in similar soil-map units. *Transactions of the ASAE*, 41(3), 575.
- Bouraoui, F. and Dillaha, T. A. (1996). ANSWERS-2000: Runoff and sediment transport model. *Journal of Environmental Engineering*, 122(6), 493-502.
- Bukata, E. W. T. R. (2005). 2 Remote sensing of inland water quality: a science primer and 3 The science of remotely sensing case2 water quality: Satellite monitoring of inland and coastal water quality: retrospection, introspection, future directions. *CRC Press*, 40-47 and 54-75.
- Carsel, H., Cheplick. (1998). PRZM-3, A Model for Predicting Pesticide and Nitrogen Fate in the Crop Root and Unsaturated Soil Zones. Users Manual for Release 3.0, USEPA-Athen, GA,.
- Carsel, R. F., Jones, R. L., Hanse, J. L., Lamb, R. L. and Anderson, M. P. (1988). A simulation procedure for groundwater quality assessments of pesticides. *Journal of Contaminant Hydrology*, 2(2), 125-138.
- Chao, X., Jia, Y., Shields, F. D., Wang, S. S. and Cooper, C. M. (2007). Numerical modeling of water quality and sediment related processes. *Ecological Modelling*, 201(3), 385-397.
- Chapra, S. C. (2008). Surface water-quality modeling: Waveland press.
- Chebud, Y., Naja, G. M., Rivero, R. G. and Melesse, A. M. (2012). Water quality monitoring using remote sensing and an artificial neural network. *Water, Air,* & Soil Pollution, 223(8), 4875-4887.
- Chung, S., Ward, A. and Schalk, C. (1992). Evaluation of the hydrologic component of the ADAPT water table management model. *Transactions of the ASAE*, 35(2), 571-579.
- Clausen, J. (1996). National Handbook of Water Quality Monitoring. Part 1. United States Department of Agriculture. *Natural Resources Conservation Service*.

- Coyne, K. J. (1999). Prediction of pesticide transport through the vadose zone using stochastic modeling.
- Cronshey, R. G. and Theurer, F. D. (1998). AnnAGNPS-non point pollutant loading model. Proceedings of the 1998 Proceedings First Federal Interagency Hydrologic Modeling Conference, 19-23.
- Cruise, J. F. and Miller, R. L. (2003). Hydrologic Modeling Using Remotely Sensed Databases. GIS for Water Resources and Watershed Management, Taylor & Francis, New York, 189-205.
- D'sa, E., Zaitzeff, J. and Steward, R. (2000). Monitoring water quality in Florida Bay with remotely sensed salinity and in situ bio-optical observations. *International Journal of Remote Sensing*, 21(4), 811-816.
- Deer, P. (1995). Digital change detection techniques: Civilian and military applications. Proceedings of the 1995 *International Symposium on Spectral Sensing Research*,
- Dehni, A. and Lounis, M. (2012). Remote sensing techniques for salt affected soil mapping: application to the Oran region of Algeria. *Procedia Engineering*, 33, 188-198.
- Dellapenna, J. W., Nicholason, E. and Clark, P. (2002). The Iraqi Marshlands: A Human and Environmental Study.
- Depriest, D. (2003). A Gps User Manual: Working With Garmin Receivers: AuthorHouse.
- Diagne, N. A. (2013). Evaluation of sewer leakage into the stormwater drainage system in Singapore. Massachusetts Institute of Technology.
- Donigan, A. S., Imhoff, J. C., Bicknell, B. R. and Kittle, J. L. (1984). Application
 Guide for Hydrological Simulation Program: FORTRAN(HSPF). EPA-600/3-84-065 June 1984. Environmental Research Laboratory, Athens, GA. 177 p, 19 fig, 17 tab, 3 app, 20 ref. 68-01-6207.
- Donigian Jr, A. and Crawford, N. (1976). Modeling Pesticides and Nutrients on Agricultural Lands, Office of Research and Development, US Environmental Protection Agency: EPA-600/3-76-043.

- El-Din, M. S., Gaber, A., Koch, M., Ahmed, R. S. and Bahgat, I. (2013). Remote Sensing Application for Water Quality Assessment in Lake Timsah, Suez Canal, Egypt. *Journal of Remote Sensing Technology*, 1(3), 61.
- eTrex. (2003). Personal navigator, owners manual. Garmin international, Lnc.Garmin eTrex Waterproof Hiking GPS.
- Fan, X., Liu, Y., Tao, J. and Weng, Y. (2015). Soil salinity retrieval from advanced multi-spectral sensor with partial least square regression. *Remote Sensing*, 7(1), 488-511.
- Fisher, P. (1997). The pixel: a snare and a delusion. *International Journal of Remote Sensing*, 18(3), 679-685.
- Fraser, R. H., Barten, P. K. and Pinney, D. A. (1998). Predicting stream pathogen loading from livestock using a geographical information system-based delivery model. *Journal of Environmental Quality*, 27(4), 935-945.
- Gh, M. (2014). Artificial neural network analysis in preclinical breast cancer. *Cell J*, 15(4), 324-331.
- Ghadiri, H. and Rose, C. (1992). *Modeling chemical transport in soils: natural and applied contaminants:* CRC Press.
- Goodchild, M. F., Steyaert, L. T. and Parks, B. O. (1996). *GIS and environmental modeling: progress and research issues*: John Wiley & Sons.
- Gowda, P., Ward, A., White, D., Lyon, J. and Desmond, E. (1999). The sensitivity of ADAPT model predictions of streamflows to parameters used to define hydrologic response units. *Transactions of the ASAE*, 42(2), 381.
- Green, E. A. (1993). Hydropolitics in the Middle East and US policy: DTIC Document.
- Guerrero, D. V. C. and NO, U. G. A. (1991). The Anacostia River: Ecological studies of water pollution biology. *A report by the DC Water Resources Research Center, US*.
- Guide, E. U. s. (2008). ENVI on-line software user's manual. *ITT Visual Information Solutions*.

- Haan, C. T., Johnson, H. P. and Brakensiek, D. L. (1982). Hydrologic modeling of small watersheds: American Society of Agricultural Engineers.
- Haddock, G. and Jankowski, P. (1993). Integrating nonpoint source pollution modeling with a geographic information system. *Computers, environment and urban systems*, 17(5), 437-451.
- Haith, D. A. and Tubbs, L. J. (1981). Watershed loading functions for nonpoint sources. *Journal of the Environmental Engineering Division*, 107(1), 121-137.
- Harrington, J. A., Schiebe, F. R. and Nix, J. F. (1992). Remote sensing of Lake Chicot, Arkansas: Monitoring suspended sediments, turbidity, and Secchi depth with Landsat MSS data. *Remote Sensing of Environment*, 39(1), 15-27.
- Huang, C., Davis, L. and Townshend, J. (2002). An assessment of support vector machines for land cover classification. *International Journal of remote sensing*, 23(4), 725-749.
- Hunt, G. R. (1977). Spectral signatures of particulate minerals in the visible and near infrared. *Geophysics*, 42(3), 501-513.
- Hutson, J. and Wagenet, R. (1993). A pragmatic field-scale approach for modeling pesticides. *Journal of Environmental Quality*, 22(3), 494-499.
- Hutson, J. and Wagenet, R. (1995). Multi-region water flow and chemical transport in heterogeneous soils: theory and application.
- Jansson, P. (1991). Simulation model for soil water and heat conditions. Description of the SOIL model. Report 165. Swedish University of Agric. Science, Department of Soil Science, Uppsala, Sweden.
- Jarvis, N., Bergström, L. and Brown, C. (1995). Pesticide leaching models and their use for management purposes. *Progress in Pesticide Biochemistry and Toxicology*, 9, 185-185.
- Jerome, J., Bukata, R. and Miller, J. (1996). Remote sensing reflectance and its relationship to optical properties of natural waters. *Remote Sensing*, 17(16), 3135-3155.

- Johnsson, H., Bergstrom, L., Jansson, P.-E. and Paustian, K. (1987). Simulated nitrogen dynamics and losses in a layered agricultural soil. Agriculture, Ecosystems & Environment, 18(4), 333-356.
- Jokela, A., Sarjala, T., Kaunisto, S. and Huttunen, S. (1997). Effects of foliar potassium concentration on morphology, ultrastructure and polyamine concentrations of Scots pine needles. *Tree physiology*, 17(11), 677-685.
- Kadhem, A. J. (2005). Water Quality Monitoring of Abu Zirig Marsh In Southern Iraq (After Drying). Thesis of Master of Science in Environmental Engineering: , AL- Mustansiriya University in Baghdad, Iraq, 1-5.
- Kennedy, R. E., Townsend, P. A., Gross, J. E., Cohen, W. B., Bolstad, P., Wang, Y., et al. (2009). Remote sensing change detection tools for natural resource managers: Understanding concepts and tradeoffs in the design of landscape monitoring projects. *Remote sensing of environment*, 113(7), 1382-1396.
- Kerekes, J. P. and Baum, J. E. (2005). Full-spectrum spectral imaging system analytical model. *Geoscience and Remote Sensing, IEEE Transactions on*, 43(3), 571-580.
- Kerekes, J. P. and Schott, J. R. (2007). Hyperspectral imaging systems. *Hyperspectral data exploitation: Theory and applications*, 19-45.
- Khattab, M. F. and Merkel, B. J. (2014). Application of Landsat 5 and Landsat 7 images data for water quality mapping in Mosul Dam Lake, Northern Iraq. *Arabian Journal of Geosciences*, 7(9), 3557-3573.
- Knisel Jr, W. C. (2000). 9 Water Quality Models. *Agricultural Nonpoint Source Pollution: Watershed Management and Hydrology*, 233.
- Knisel, W. G. (1980). CREAMS: a field scale model for Chemicals, Runoff, and Erosion from Agricultural Management Systems [USA]. United States. Dept. of Agriculture. Conservation research report (USA).
- Koch, P. M. a. M. (2011). 1 Remote Sensing: Basic Principles: Computer processing of remotely-sensed images: an introduction. *John Wiley & Sons.*, 1-27.
- Kumar, V., Sharma, A., Chawla, A., Bhardwaj, R. and Thukral, A. K. (2016). Water quality assessment of river Beas, India, using multivariate and remote sensing techniques. *Environmental monitoring and assessment*, 188(3), 1-10.

- Lahlou, M., Shoemaker, L., Choudhury, S., Elmer, R. and Hu, A. (1998). Better assessment science integrating point and nonpoint sources (BASINS), version 2.0. Users manual: Tetra Tech, Inc., Fairfax, VA (United States); EarthInfo, Inc., Boulder, CO (United States); Environmental Protection Agency, Standards and Applied Science Div., Washington, DC (United States).
- Li, X., Wang, S.-H. and Harman, M. (2005). Improved Lake/Reservoir Water Quality Modeling Using an Environmental Model and GIS. *GIScience & Remote Sensing*, 42(4), 320-332.
- Liao, H. H. and Tim, U. S. (1997). An interactive modeling environment for nonpoint source pollution control1. *JAWRA Journal of the American Water Resources Association*, 33(3), 591-603.
- Lillesand, T., Kiefer, R. W. and Chipman, J. (2014). *Remote sensing and image interpretation*: John Wiley & Sons.
- Lillesand, T. M., Kiefer, R. W. and Chipman, J. (2004). Remote Sensing and Image Interpretation. New York: JohnWiley and Sons: Inc.
- Line, D., Coffey, S. and Osmond, D. L. (1997). Watershedss grass-AGNPS model tool. *Transactions of the ASAE*, 40(4), 971-975.
- Logan, T., Urban, D., Adams, J. and Yaksich, S. (1982). Erosion control potential with conservation tillage in the Lake Erie basin: estimates using the universal soil loss equation and the land resource information system (LRIS). *Journal of Soil and Water Conservation*, 37(1), 50-55.
- Lowi, M. R. (1995). Rivers of conflict, rivers of peace. *Journal of International Affairs*, 123-144.
- Lu, D., Mausel, P., Brondizio, E. and Moran, E. (2004). Change detection techniques. *International journal of remote sensing*, 25(12), 2365-2401.
- Lu, D., Moran, E., Hetrick, S. and Li, G. (2011). Land-use and land-cover change detection. Advances in Environmental Remote Sensing Sensors, Algorithms, and Applications. CRC Press Taylor & Francis Group, New York, 273-290.
- Maltby, E. (1994). An Environmental & Ecological Study of the Marshlands of Mesopotamia: Draft Consultative Bulletin: AMAR appeal Trust.

- Mantzafleri, N., Psilovikos, A. and Blanta, A. (2009). Water quality monitoring and modeling in Lake Kastoria, using GIS. Assessment and management of pollution sources. *Water resources management*, 23(15), 3221-3254.
- Marcello, J., Medina, A. and Eugenio, F. (2013). Evaluation of spatial and spectral effectiveness of pixel-level fusion techniques. *Geoscience and Remote Sensing Letters, IEEE*, 10(3), 432-436.
- Martin, M., Plourde, L., Ollinger, S., Smith, M.-L. and McNeil, B. (2008). A generalizable method for remote sensing of canopy nitrogen across a wide range of forest ecosystems. *Remote Sensing of Environment*, 112(9), 3511-3519.
- Mather, P. and Tso, B. (2009). *Classification methods for remotely sensed data*: CRC press.
- Mather, P. M. and Koch, M. (2011a). *1 Remote Sensing: Basic Principles: Computer processing of remotely-sensed images: an introduction:* John Wiley & Sons.
- Mather, P. M. and Koch, M. (2011b). *Computer processing of remotely-sensed images: an introduction:* John Wiley & Sons.
- Mawahib F. Abdul Jabbar, A. F. A.-M. a. a. A. T. S. (2010): Change detections in marsh areas, south iraq, using remote sensing and gis applications. *Iraqi Bulletin of Geology and Mining*, 6(2), 17-39
- McKinney, D. C. and Tsai, H.-L. (1996). Multigrid methods in GIS grid-cell-based modeling environment. *Journal of Computing in Civil Engineering*, 10(1), 25-30.
- Moghaddam, M. G., Ahmad, F. B. H., Basri, M. and Rahman, M. B. A. (2010).
 Artificial neural network modeling studies to predict the yield of enzymatic synthesis of betulinic acid ester. *Electronic Journal of Biotechnology*, 13(3), 3-4.
- Monmonier, M. S. (1982). *Computer-assisted cartography: principles and prospects:* Prentice-Hall Englewood Cliffs, NJ.
- Montas, H., Shirmohammadi, A., Butler, J., Chu, T., Okelo, P. and Sexton, A. (1999). Decision support for precise BMP selection in Maryland. Proceedings

of the 1999 Proc. 1999 ASAE Annual International Meeting/CIGR World Congress,

- Montas, H., Shirmohammadi, A., Okelo, P., Sexton, A., Butler, J. and Chu, T. (1999). Targeting agrichemical export hot spots in Maryland using Hydromod and GIS: ASAE Paper.
- MoWR-CRIM. (2007). Study of Improving the environmental Present Condition of Southern Marshes in Iraq (Al-Hammar, Al-Huwaiza): Ministry of water resources (MoWR): Centere of the restoration of Iraq marshland (CRIM). Contract No 43, 1-45.
- Mujumdar, N. (2001). World development report, 2000/2001: attacking poverty. Indian Journal of Agricultural Economics, 56(1), 146.
- Mulla, D., Perillo, C. and Cogger, C. (1996). A site-specific farm-scale GIS approach for reducing groundwater contamination by pesticides. *Journal of Environmental Quality*, 25(3), 419-425.
- Mullins, J., Carsel, R., Scarbrough, J. and Ivery, A. (1993). PRZM-2, a model for predicting pesticide fate in the crop root and unsaturated soil zones: User's manual for release 2. 0: AScI Corp., Athens, GA (United States).
- Munro, D. and Touron, H. (1997). The estimation of marshland degradation in southern Iraq using multitemporal Landsat TM images. *International Journal* of Remote Sensing, 18(7), 1597-1606.
- MWR, C. (2007). Ministry of Water Resources and Center for the restoration of Iraqi marshlands: Study of improving the environmental present condition of southern marshes. 1(43), 21-22.
- Nasirian, H., Irvine, K., Sadeghi, S. M. T., Mahvi, A. H. and Nazmara, S. (2016).
 Assessment of bed sediment metal contamination in the Shadegan and Hawr
 Al Azim wetlands, Iran. *Environmental Monitoring and Assessment*, 188(2), 1-15.
- Nations, U. (2005). New Eden Water & Energy Project: Abu Zirig Marshland Restoration Project. Italian Ministry for the Environment and Territory Free Iraq Foundation: Presented at the 13th session of the United Nations Commission on Sustainable Development (CSD-13).

- Navulur, K. and Engel, B. (1998). Groundwater vulnerability assessment to nonpoint source nitrate pollution on a regional scale using GIS. *Transactions of the ASAE*, 41(6), 1671.
- Nicholls, P. and Hall, D. (1995). Use of the pesticide leaching model (PLM) to simulate pesticide movement through macroporous soils.
- Nicholson, E. and Clark, P. (2003). *Iraqi Marshlands*: Politico's Pub.; AMAR International Charitable Foundation.
- Nofziger, D., Chen, J. S. and Haan, C. (1994). Evaluating the chemical movement in layered soil model as a tool for assessing risk of pesticide leaching to groundwater. *Journal of Environmental Science & Health Part A*, 29(6), 1133-1155.
- Novo, E. M. L. M., Steffen, C. A. and Braga, C. Z. F. (1991). Results of a laboratory experiment relating spectral reflectance to total suspended solids. *Remote Sensing of Environment*, 36(1), 67-72.
- Novotny, V. (2003). *Water quality: Diffuse pollution and watershed management:* John Wiley & Sons.
- Ochieng, G. M., Ojo, O. I., Otieno, F. A. and Mwaka, B. (2013). Use of remote sensing and geographical information system (GIS) for salinity assessment of Vaal-Harts irrigation scheme, South Africa. *Environmental Systems Research*, 2(1), 1-12.
- Odeh, I. O. and Onus, A. (2008). Spatial analysis of soil salinity and soil structural stability in a semiarid region of New South Wales, Australia. *Environmental management*, 42(2), 265-278.
- Ongley, E. D. (2000). Water quality management: design, financing and sustainability considerations-II. Proceedings of the 2000 Invited presentation at the World Bank's Water Week Conference: Towards a strategy for managing water quality management,
- Palange, R. C. and Zavala, A. (1987). Water-pollution control: guidelines for project planning and financing. World Bank technical paper: International Bank for Reconstruction and Development, Washington, DC (USA).

- Partow, H. (2001). The Mesopotamian Marshlands: Demise of an Ecosystem. Nairobi (Kenya): Division of Early Warning and Assessment, United Nations Environment Programme. UNEP publication UNEP/DEWA: TR. 01-3.
- Phua, M.-H., Tsuyuki, S., Soo Lee, J. and Ghani, M. A. (2012). Simultaneous detection of burned areas of multiple fires in the tropics using multisensor remote-sensing data. *International journal of remote sensing*, 33(14), 4312-4333.
- Piedrahita, R., Nath, S., Bolte, J., Culberson, S., Giovannini, P. and Ernst, D. (1997). Computer applications in pond aquaculture—modeling and decision support systems. *Dynamics of Pond Aquaculture. CRC Press, Boca Raton, FL*, 289-323.
- Platonov, A., Noble, A. and Kuziev, R. (2013). Soil salinity mapping using multitemporal satellite images in agricultural fields of syrdarya province of Uzbekistan *Developments in Soil Salinity Assessment and Reclamation* (pp. 87-98): Springer.
- Potes, M., Costa, M. J., Da Silva, J., Silva, A. M. and Morais, M. (2011). Remote sensing of water quality parameters over Alqueva Reservoir in the south of Portugal. *International journal of remote sensing*, 32(12), 3373-3388.
- Potes, M., Costa, M. J. and Salgado, R. (2012). Satellite remote sensing of water turbidity in Alqueva reservoir and implications on lake modelling. *Hydrology* and Earth System Sciences, 16(6), 1623-1633.
- Pour, A. B. and Hashim, M. (2015). Hydrothermal alteration mapping from Landsat-8 data, Sar Cheshmeh copper mining district, south-eastern Islamic Republic of Iran. *Journal of Taibah University for Science*, 9(2), 155-166.
- Pu, R. and Gong, P. (2011). Hyperspectral remote sensing of vegetation bioparameters. Advances in Environmental Remote Sensing: Sensors, Algorithm, and Applications, CRC Press, Taylor & Francis Group, 101-142.
- Quilbé, R. and Rousseau, A. (2007). GIBSI: an integrated modelling system for watershed management? sample applications and current developments. *Hydrology and Earth System Sciences Discussions*, 4(3), 1301-1335.

- Rafailidis, S., Ganoulis, J., Bogardi, I., Matyasovszky, I. and Duckstein, L. (1996). Impact of climatic changes on coastal water quality *Diachronic Climatic Impacts on Water Resources* (pp. 349-392): Springer.
- Rewerts, C. C. and Engel, B. (1991). ANSWERS on GRASS: integrating a watershed simulation with a GIS. *Paper-American Society of Agricultural Engineers (USA). no. 91-2621.*
- Rogan, J. and Chen, D. (2004). Remote sensing technology for mapping and monitoring land-cover and land-use change. *Progress in planning*, 61(4), 301-325.
- Rokni, K., Ahmad, A., Selamat, A. and Hazini, S. (2014). Water feature extraction and change detection using multitemporal Landsat imagery. *Remote Sensing*, 6(5), 4173-4189.
- Salve, S. and Chakkarwar, V. (2013). Classification of Mammographic images using Gabor Wavelet and Discrete Wavelet Transform. *International Journal of Advanced Research in Electronics and Communication Engineering* (IJARECE) Volume, 2.
- Sanders, T. G. (1983). *Design of networks for monitoring water quality*: Water Resources Publication.
- Schaeffer, B. A., Schaeffer, K. G., Keith, D., Lunetta, R. S., Conmy, R. and Gould, R. W. (2013). Barriers to adopting satellite remote sensing for water quality management. *International journal of remote sensing*, 34(21), 7534-7544.
- Schwarte, C. (2003). Environmental protection in Islamic law: an overview on potential influences for legal developments in Iraq. *Local Environment*, 8(5), 567-576.
- Searing, M. and Shirmohammadi, A. (1994). The design, construction, and analysis of a GIS database for use in reducing nonpoint source pollution on an agricultural watershed. Proceedings of the 1994 American Society of Agricultural Engineers. Meeting (USA),
- Searing, M., Shirmohammadi, A. and Magette, W. (1995). Utilizing GLEAMS model to prescribe best management practices for critical areas of a watershed identified using GIS. *Paper No. 95*, 3248.

- Secunda, S., Collin, M. and Melloul, A. (1998). Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel's Sharon region. *Journal of Environmental Management*, 54(1), 39-57.
- Singh, A. (1989). Review article digital change detection techniques using remotelysensed data. *International journal of remote sensing*, 10(6), 989-1003.
- Smith, V. H., Tilman, G. D. and Nekola, J. C. (1999). Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. *Environmental pollution*, 100(1), 179-196.
- Srinivasan, R. and Arnold, J. G. (1994). Integration of a basin-scale water quality model with GIS1. JAWRA Journal of the American Water Resources Association, 30(3), 453-462.
- Su, L., Chopping, M. J., Rango, A., Martonchik, J. V. and Peters, D. P. (2007).
 Support vector machines for recognition of semi-arid vegetation types using MISR multi-angle imagery. *Remote Sensing of Environment*, 107(1), 299-311.
- Suárez, L. (2005). PRZM-3, a model for predicting pesticide and nitrogen fate in the crop root and unsaturated soil zones: users manual for release 3.12. 2. US Environmental Protection Agency (EPA), Washington, DC.
- Sui, H., Zhou, Q., Gong, J. and Ma, G. (2008). Processing of multi-temporal data and change detection. Proceedings of the 2008 Advances in Photogrammetry, *Remote Sensing and Spatial Information Sciences: 2008 ISPRS Congress Book, Taylor & Francis, Nottingham, 227-247.*
- Sun, D., Qiu, Z., Li, Y., Shi, K. and Gong, S. (2014). Detection of total phosphorus concentrations of turbid inland waters using a remote sensing method. *Water*, *Air, & Soil Pollution*, 225(5), 1-17.
- Torbick, N., Hession, S., Hagen, S., Wiangwang, N., Becker, B. and Qi, J. (2013).
 Mapping inland lake water quality across the Lower Peninsula of Michigan using Landsat TM imagery. *International journal of remote sensing*, 34(21), 7607-7624.

- Uppal, m. T. N. (2015). Classification of mammograms based on fusion of discrete cosine transform, discrete wavelet transform and shape features. *UTM*, *Thesis*, 156-158.
- USGS. (2013). Using the USGS Landsat-8 product. USGS. Science for a changing world, U.S. Department of the Interior, Geological Survey. http://landsat.usgs.gov.
- USGS. (2016). Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS). Frequently Asked Questions about the Landsat Missions. USGS. Science for a changing world. http://landsat.usgs.gov.
- Ustin, S. (2004). Manual of Remote Sensing: Remote sensing for natural resource management and environmental monitoring: Wiley Hoboken, NJ, USA.
- Van der Meer, F., van der Werff, H. and van Ruitenbeek, F. (2014). Potential of ESA's Sentinel-2 for geological applications. *Remote Sensing of Environment*, 148, 124-133.
- Vieux, B. E. and Gauer, N. (1994). Finite-Element Modeling of Storm Water Runoff Using GRASS GIS. Computer-Aided Civil and Infrastructure Engineering, 9(4), 263-270.
- Vladimir, N. and Olem, H. (1994). Water quality prevention, identification and management of diffuse pollution: Van Nostrand Reinhold, New York, NY pp29.
- Wang, F., Han, L., Kung, H. T. and Van Arsdale, R. (2006). Applications of Landsat-5 TM imagery in assessing and mapping water quality in Reelfoot Lake, Tennessee. *International Journal of Remote Sensing*, 27(23), 5269-5283.
- Wang, X., Fu, L. and He, C. (2011). Applying support vector regression to water quality modelling by remote sensing data. *International journal of remote sensing*, 32(23), 8615-8627.
- Watch, H. R. (2004). World Report 2004: Human Rights Watch.
- Weng, Q. (2011a). Advances in environmental remote sensing: sensors, algorithms, and applications: CRC Press.

- Weng, Q. (2011b). Advances in environmental remote sensing: sensors, algorithms, and applications. Ch-7, Atmospheric correction methods for optical remote sensing imagery of land: CRC Press, 161-170.
- Williams, J., Dyke, P. and Jones, C. (1983). EPIC--A model for assessing the effects of erosion on soil productivity. Analysis of ecological systems: state-of-theart in ecological modelling: proceedings, 24-28 May 1982, Colorado State Univ., Ft. Collins, Colo./edited by WK Lauenroth, GV Skogerboe, M. Flug.
- Wolf, P. R. and Brinker, R. C. (1994). *Elementary surveying*: HarperCollins.
- Wu, Q. J., Ward, A. D. and Workman, S. R. (1996). Using GIS in simulation of nitrate leaching from heterogeneous unsaturated soils. *Journal of environmental quality*, 25(3), 526-534.
- Wu, W., Al-Shafie, W. M., Mhaimeed, A. S., Dardar, B., Ziadat, F. and Payne, W. B. (2013). Multiscale salinity mapping in Central and Southern Iraq by remote sensing. Proceedings of the 2013 Agro-Geoinformatics (Agro-Geoinformatics), 2013 Second International Conference on, 470-475.
- Wu, W., Mhaimeed, A. S., Al-Shafie, W. M., Ziadat, F., Dhehibi, B., Nangia, V., et al. (2014). Mapping soil salinity changes using remote sensing in Central Iraq. *Geoderma Regional*, 2, 21-31.
- Xie, Z., Zhang, C. and Berry, L. (2013). Geographically weighted modelling of surface salinity in Florida Bay using Landsat TM data. *Remote Sensing Letters*, 4(1), 75-83.
- Yildirim, Y., Skonard, C., Arumi, J., Martin, D. and Watts, D. (1997). Evaluation of best management practices using an integrated GIS and SWAT model for field sized areas. *Am. Soc. Agric. Eng*, 2(9).
- Yoon, J. (1996). Watershed-scale nonpoint source pollution modeling and decision support system based on a model-GIS-RDBMS linkage. *Hallam, CA, Lanfear, KJ, Salisbury, JM and Battaglin, WA GIS and Water Resources, Fort Lauderdale: American Water Resources Association,* 99-108.
- Young, R. A., Onstad, C., Bosch, D. and Anderson, W. (1989). AGNPS: A nonpointsource pollution model for evaluating agricultural watersheds. *Journal of soil* and water conservation, 44(2), 168-173.

- YSI. (2007). YSI Model 30M, Handheld Salinity, Conductivity and Temperature System, Operations Manual. YSI Inc., Yellow Springs, OH. Retrieved from. http://www.ysi.com/media/pdfs/030136-YSI-Model-30-Operations-Manual-RevE.pdf.
- Zacharias, I. and Gianni, A. (2008). Hydrodynamic and dispersion modeling as a tool for restoration of coastal ecosystems. Application to a re-flooded lagoon. *Environmental Modelling & Software*, 23(6), 751-767.
- Zhang, H., Haan, C. and Nofziger, D. L. (1993). An approach to estimating uncertainties in modeling transport of solutes through soils. *Journal of contaminant hydrology*, 12(1-2), 35-50.
- Zhang, R., Hamerlinck, J. D., Gloss, S. P. and Munn, L. (1996). Determination of nonpoint-source pollution using GIS and numerical models. *Journal of environmental quality*, 25(3), 411-418.