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ABSTRACT

Novel phosphoric acid (PA) doped proton exchange membranes were
synthesized by radiation induced graft copolymerization of 1-vinylimidazole (1-VIm)
and triallyl cyanurate (TAC), and 1-VIm-co-1-vinyl-2-pyrrolidone (1-VIm-co-1-V-2-
P) onto poly (ethylene-alt-tetrafluoroethylene) (ETFE) films followed by protonation
by PA doping. The ETFE base films were pre-irradiated by an electron beam (EB)
accelerator prior to grafting and PA doping. They were denoted as ETFE-g-P(1-VIm-
co-TAC) PA and ETFE-g-P(1-VIm-co-1-V-2-P) PA doped membranes. The main
focus of this work is to synthesize membranes that have desirable properties and to
investigate kinetics of 1-VIm and TAC onto ETFE base film and 1-VIm-co-1-V-2-P
onto ETFE base films. From the optimization study using Box-Behnken design
module of the response surface methodology available in the “Minitab®” software,
degree of grafting (DG) was found to depend strongly on grafting parameters such as,
crosslinker concentration and reaction temperature. Proton conductivity of the
membranes was measured using four-probe conductivity cell and conductivity
increased with an increase in doping level. ETFE-g-P(1-VIm-co-TAC) PA doped
membranes achieved maximum DG (%) of 53%, proton conductivity of 33 mS cm™!
at 120 °C and 0% relative humidity condition. ETFE-g-P(1-VIm-co-1-V-2-P) PA
doped membranes achieved maximum DG (%) of 76%, of 53 mS ¢cm™ at 120 °C and
0% relative humidity condition suggesting less water dependent conductivity.
Properties of the developed membranes were investigated using different equipment
such as, Fourier transform infrared spectrometer, thermal gravimetric analyzer and
differential scanning calorimeter. Kinetic modeling of radiation induced graft
copolymerization of 1-VIm-co-1-V-2-P was also attempted. It can be concluded that
the synthesized membranes possessed desirable properties including mechanical and
thermal stablility. This makes them appealing for possible application in high

temperature proton exchange membrane fuel cell operated above 100 °C
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ABSTRAK

Membran baharu pertukaran proton didopkan asid fosforik (PA) yang
disintesis secara cantuman pengkopolimeran aruhan radiasi 1-vinilimidazol (1-VIm)
dan triallil sianurat (TAC), dan 1-VIm-co-1-vinil-2-pirrolidon (1-VIm-co-1-V-2-P) ke
atas filem poli (etilena- alt-tetrafloroetilena) (ETFE) diikuti dengan pemprotonan oleh
pendopan PA. Filem asas ETFE diprasinarkan oleh pemecut alur elektron (EB)
sebelum cantuman dan pendopan PA. Filem-filem ini ditandakan sebagai membran
ETFE-g-P(1-VIm-co-TAC) PA dan membran ETFE-g-P(1-VIm-co-1-V-2-P)
didopkan PA. Fokus utama kajian ini adalah untuk mensintesis membran yang
mempunyai ciri-ciri diingini dan untuk mengkaji kinetik 1-VIm dan TAC ke atas filem
asas ETFE dan 1-VIm-co-1-V-2-P ke atas filem asas ETFE. Daripada kajian
pengoptimuman menggunakan modul reka bentuk Box-Behnken bagi kaedah tindak
balas permukaan yang terdapat dalam perisian "Minitab®", darjah cantuman (DG)
didapati bergantung kuat kepada parameter cantuman seperti kepekatan perangkai
silang dan suhu tindak balas. Kekonduksian proton membran diukur dengan
menggunakan sel kekonduksian empat prob dan kekonduksian meningkat dengan
peningkatan dalam tahap pendopan. Membran ETFE-g-P(1-VIm-co-TAC) didopkan
PA mencapai DG maksimum (%) sebanyak 53%, kekonduksian proton 33 mS c¢cm™
pada suhu 120 °C dan keadaan kelembapan relatif 0%. Membran ETFE-g-P(1-VIm-
co-1-V-2-P) didopkan PA mencapai DG (%) maksimum sebanyak 76%, kekonduksian
proton 53 mS cm! pada suhu 120 °C dan keadaan kelembapan relatif 0%. Sifat-sifat
membran yang dibangunkan dikaji dengan menggunakan peralatan yang berbeza
seperti spektrometer inframerah transformasi Fourier, penganalisis gravimetrik terma
dan kalorimetri pengimbasan pembezaan. Pemodelan kintetik pengkopolimeran
cantuman aruhan sinaran 1-VIm-co-1-V-2-P telah dicuba. Dapat disimpulkan bahawa
membran yang disintesis mempunyai sifat-sifat yang dikehendaki termasuk kestabilan
mekanikal dan terma. Keadaan ini menjadikan membran-membran ini menarik bagi
kemungkinan penggunaan sel bahan api membran pertukaran proton pada suhu yang

tinggi yang dikendalikan melebihi suhu 100 °C.



CHAPTER

TABLE OF CONTENT

TITLE
DECLARATION
DEDICATION
ACKNOWLEDGEMENT
ABSTRACT
ABSTRAK

TABLE OF CONTENT

LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATIONS

LIST OF SYMBOLS

LIST OF APPENDICES

INTRODUCTION

1.1 Proton Exchange Membrane Fuel Cells (PEMFCs)

1.2 Problem Statement
1.3 Objectives

1.4 Scope

LITERATURE REVIEW

2.1 Fuel Cells

viii

PAGE

il

1ii

v

vi

vii

viii

XV

XVii

XXVvii

XXX1

XXX1i1



2.2

23

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

Differences between LT-PEMFCs and HT-PEMFCs
Proton Conducting Membrane (PCM) for fuel cells

Requirements for new proton conducting membrane

(PCM) for PEMFCs
Membranes for HT-PEMFC
PEMs for HT-PEMFCs

Advantages of High Temperature Proton Exchange
Membrane Fuel Cells

Challenges facing Proton Exchange Membranes

(PEMs)
Problems and Challenges facing Nafion®

Approaches for Preparation of Alternative

Membranes

The Role of Proton Exchange Membrane (PEM) in
PEMFC Operation

Proton Conductivity in Less-Water Dependent

Membranes

Needs for high temperature proton exchange

membrane fuel cells

Challenges of High-Temperature Polymer
Electrolyte Fuel Cells

Graft Copolymerisation

2.15.1 Methods of graft copolymerisation

2.15.2 Advantages of Radiation induced grafting
for preparation of membranes

2.15.3 Radiation-Induced Graft Copolymerization
Method (RIGCM)

2.15.4 Methods of Radiation-Induced Graft
Copolymerization

2.15.5 Simultaneous Irradiation Method

22

23

27

28

30

31

33

34

35

37

39

46

46

48
50

50

52

65
66

X



2.16

2.17

2.18

2.15.6 Pre-Irradiation (Post-Irradiation) Method

2.15.7 Advantages of preirradiation over
simultaneous irradiation grafting technique

2.15.8 Advantages of preirradiation under argon
(nitrogen/vacuum) over pre-irradiation in
air

Graft Copolymerization Radiation-induced for

Preparing Membrane
Graft distribution in the membranes

Various Parametric Effects on Radiation Induced
Grafting
2.18.1 Nature of radiation
2.18.1.1 Merits of electron beam
accelerators (EBA)
2.18.1.2 Merits of y-rays
2.18.2 Dose Rate and Radiation Dose
2.18.3 Nature of the Monomer
2.18.3.1 Heterocycles (Heterocyclic
monomers)
2.18.3.2 Advantages of using 1-
vinylimidazole in membrane
preparation
2.18.3.3 Demerits of using imidazole as
dopant
2.18.3.4 Merit of using triazole in place of
imidazole in membrane
preparation
2.18.4 Monomer Concentration
2.18.5 Nature of Base Polymer
2.18.5.1 Advantages of using ETFE film
in membrane preparation
2.18.6 Film thickness
2.18.7 Reaction Temperature

67

71

74

75

76

77
80

81

81

82

84

86

87

88

89

91

94

99

100
101



2.19

2.20

2.18.8 Effect of Pressure

2.18.9 Type of Solvents

2.18.10 Effects of additives

2.18.11 Effect of Initiator

2.18.12 Addition of Inhibitor

2.18.13 Addition of acid

2.18.14 Addition of Crosslinking agents
(Crosslinkers)

2.18.15 Reaction Medium

2.18.16 Effect of storage time

Doping Level

Demerits of using Phosphoric acid composite

membranes for HT-PEMFC applications

RESEARCH METHODOLOGY

3.1

3.2

33

34

3.5

3.6

3.7

Introduction

Design of Experiment and optimization studies of

synthesis conditions

List of Materials and Equipment
Materials

Equipment

Preparation of membranes precursors/grafted films

3.6.1 Irradiation of ETFE Films

3.6.2  Grafting Solution Preparation

3.6.3  Grafting of 1-VIm-co-TAC, and 1-VIm-co-
1-V-2-P onto irradiated ETFE films

3.6.4  Acid doping reaction

Characterization of Grafted Films

3.7.1  Fourier transform infrared (FTIR)
Spectroscopy

3.7.2  X-ray photoelectron spectroscopy (XPS)

105
105
108
109
110
113

116
125
125

126

126

128

128

128

130

130

131

133
137
137

138
140

142

142
143

xi



3.73
3.7.4

3.7.5
3.7.6
3.7.7
3.7.8
3.7.9

X-ray Diffractometry (XRD)
Field-emission scanning electron
Microscopy & Energy Dispersive X-ray
analysis (FESEM-EDX) analysis
Thermal Stability

Thermal Properties

Ion Exchange Capacity (IEC)

Swelling

Ionic Conductivity Measurement

RESULTS AND DISCUSSIONS

4.1

4.2

43

4.4

4.5

Results obtained from Design of Experiment for

ETFE-g-P(1-VIm-co-TAC)/ETFE films

Kinetics analysis of the grafting of heterocyclic 1-

vinylimidazole onto EB-preirradiated

poly(ethylene-alt-tetrafluoroethylene), ETFE, films

Rate of Reaction analysis

4.3.1 Effect of absorbed dose

4.3.2  Effect of monomer concentration
4.3.3  Effect of temperature

4.3.4  Effect of crosslinkers

Acid doping kinetics

Characteristics of the grafted precursors and acid

nanoimpregnated polymer electrolyte membranes

4.5.1

452
453
454
4.5.5
4.5.6

FTIR-ATR spectroscopic analysis
performed on ETFE-g-P(1-VIm-co-
TAC)/PA doped membranes
Thermogravimetric analysis

Differential scanning calorimetry analysis
X-ray photoelectron spectroscopy analysis
X-ray Diffractometry analysis
FESEM-EDX analysis

144

145
146
147
149
149
150

152

153

157

158
159
161
163
166

169

173

173
177
180
181
184
186

xii



4.6

4.7

4.8

4.9

4.5.7 lon exchange capacity (IEC)
4.5.8 Membrane swelling
4.5.9  Effect of the crosslinker on the DG (%) and
PA doping level, and Ionic conductivity
4.5.9.1 Stability of thermal in terms of
ionic conductivity loss
4.5.9.2 Stability of membranes
4.5.9.3 Measurements of mechanical
properties (mechanical strength)
of the grafted ETFE films and

PA doped membranes

Kinetic analysis of 1-vinylimidazole and 1-vinyl-2-
pyrrolidone onto EB-preirradiated poly(ethylene-
alt-tetrafluoroethylene), ETFE, films

Rate of Reaction Analysis
4.7.1 Effect of absorbed dose
4.7.2  Effect of monomer concentration

4.7.3  Effect of temperature
Acid doping kinetics

Properties of the grafted precursors and acid doped

proton conducting membranes

49.1 FTIR-ATR spectroscopic analysis for
ETFE-g-P(1-VIm-co-1-V-2-P)/ PA doped
membranes

4.9.2 Thermogravimetric analysis

4.9.3 Differential scanning calorimetry analysis

4.9.4  X-ray photoelectron spectroscopy analysis

4.9.5 X-ray diffractometry analysis

49.6 FESEM-EDX analysis

4.9.7 lon exchange capacity (IEC)

49.8 Swelling

4.9.9 Ionic conductivity

xiii

188
189

190

197
199

200

205

206
206
207
209

212

216

217
221
223
225
227
229
232
233
234



4.99.1 Thermal stability in terms of
ionic conductivity loss

4.9.10 Kinetic Modeling

5 CONCLUSIONS AND RECOMMENDATIONS
5.1 Conclusions

5.2 Recommendations

REFERENCES

Appendices A-D

X1V

238

239

256

256

259

261

289-292



TABLE NO.

2.1
22

23

24

2.5

2.6

4.1

4.2
4.3
4.4
4.5
4.6

4.7

LIST OF TABLES

TITLE

Types of fuel cells categorized by electrolytes
Differences between LT-PEMFCs and HT-PEMFCs

Summary of other acid doped radiation grafted

membranes

Categorization of monomers based on their

sensitivity to radiation and reactivity.

Summary of previous studies on radiation induced grafting
of 4-Vinylpyridine (4-VP) onto various polymeric base

films

Summary of previous studies on radiation induced grafting
of 1-Vinylimidazole (1-VIm) onto various polymeric base

films

Levels and parameters of optimization study for grafting of

1-VIm and TAC onto EB-preirradiated ETFE films.
Various combinations run according to RSM array.
Flynn Wall Ozawa Model (FWO)

Kissinger Akahira Sunose (KAS) Model

Flynn Wall Ozawa (FWO) Model

Kissinger Akahira Sunose (KAS) Model

Flynn Wall Ozawa (FWO) Model

22

36

85

90

91

154

155

242

243

245

246

248

XV

PAGE



4.8

4.9

4.10

4.11

4.12

Kissinger Akahira Sunose (KAS) Model
Flynn Wall Ozawa FWO Model
Kissinger Akahira Sunose (KAS) Model
Flynn Wall Ozawa (FWO) Model

Kissinger Akahira Sunose (KAS)

Xvi

249

251

252

254

255



FIGURE NO.

2.1

2.2

23

24

2.5

2.6

2.7

2.8

2.9

LIST OF FIGURES

TITLE

A diagram of the polymer electrolyte membrane fuel cell

A schematic drawing of the basic unit of proton exchange

membrane fuel cell

Schematic diagram of membrane electrode assembly and
the basic electrochemical unit of the proton conducting

membrane fuel cell

General molecular structure of commercial perfluorinated

sulphuric acid membrane.
Transport mechanism of a defective proton in water

Conductivity mechanism of phosphoric acid doped poly-
benzimidazole (PBI) membranes for operating
temperatures of ~ 180°C (a) water-acid proton transfer (b)
proton transfer through a phosphoric acid chain and (c)

benzimidazole ring-phosphoric acid proton transfer

Sketch depicting proton conductivity mechanisms in high

temperature proton conducting membranes
A representation of graft copolymer

Schematic representation of various classes of radiation-
induced grafting methods. ATRP, atom transfer radical
polymerization. RAFT, reversible addition-fragmentation

chain transfer

Xvii

PAGE

25

25

26

29

38

41

42

49

57



2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23

Pictorial representation of monomer ‘B’ grafting onto
polymer base ‘A’ forming copolymer using ionizing

radiation
Radiation-induced grafting

A schematic diagram (left) and a picture (right) of the
grafting system

Schematic representation of grafting front mechanism

A schematic representation of radiation-induced graft

copolymerisation methods
Different preparation routes for radiation grafted polymers
A schematic diagram of the electron beam source

Radiation induced grafting by preirradiation method under

air atmosphere at room temperature
Radiation induced grafting by preirradiation method

Processes for the preparation of the new polymer electrolyte

membranes

Processes for proton exchange membrane preparation from
poly (tetrafluoroethylene-alt-tetrafluoroethylene) (ETFE)

films preirradiated under argon and air

Schematic representation of parameters affecting degree of
grafting in membranes prepared by radiation induced graft

copolymerization technique.

Molecular structures of some nitrogen-containing

monomers

Molecular structures of some of crosslinkers used as co-
monomer with the primary monomer(s) during grafting

reaction in radiation-grafted fuel cell membranes

Xviil

59

63

63

64

70

70

72

72

73

73

74

80

87

121



2.24

2.25

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

39

3.10

3.11

4.1

Schematic representation of the various preparation
methods for radiation grafted membranes for LT-PEMFCs
and HT-PEMFCs

Reasonable mechanism of preparation of phosphoric acid

doped poly (4-vinyl pyridine) grafted ETFE membrane
Scope of work

A schematic diagram of grafting components (1) glass
ampoule (reaction vessel), (2) vacuum pump inlet, (3)
monomer bubbling vessel, (4) N2 inlet, (5) Triway

stopcock, (6) air and N2 outlet, (7) irradiated film.

Schematic diagram of acid doping reactor (1) three neck
glass flask, (2) condenser, (3) dip-in tube for nitrogen
delivery, (4) thermometer, (5) heating mantle, (6) doping

solution.

Picture of Shimadzu Cary 660 FTIR spectrometer fitted
with attenuated total reflectance (ATR)

Picture of X-ray photoelectron spectrometer (XPS)

Picture of Philips Almelo Netherlands PW 1840, X-ray

diffractometer
Picture of Hitachi SU8010 FESEM-EDX

Picture of Netzsch TG 209 F3 Tarsus Thermogravimetric
Analyzer

Picture of Shimadzu DSC-60 analyzer

Schematic diagram of Four probes conductivity cell
Schematic diagram of Ionic conductivity measurement set-
up

Variation of the DG (%) versus reaction time at different
absorbed doses. Grafting conditions are 1-VIm

concentration, 60 vol%; TAC concentration, 3 vol%;

reaction time 24 h and reaction temperature 60°C.

XiX

122

127

136

139

141

143

144

145

146

147

148

150

151

160



4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Difference in the DG (%) versus reaction time at different
concentrations of monomer. Grafting conditions are
absorbed dose, 100 kGy; reaction time 24 h and reaction

temperature 60°C.

Difference in the DG (%) versus reaction time at different
reaction temperature. Conditions of grafting are absorbed
dose, 100 kGy; time of reaction 24 h; 1-VIm concentration,

60 vol% and TAC concentration, 3 vol%.

Plots of characteristic radical recombination rate, y and
initial polymerization rate, 1o against the inverse

temperature.

Difference in the DG (%) versus reaction time at different
crosslinker concentrations. Conditions of grafting are
concentration of 1-VIm, 60 vol%; time of reaction 24 h and

temperature of reaction 60°C.

Level of doping of membranes [ETFE-g-P(1-VIm-co-
TAC)] versus change in doping time for different
concentrations of phosphoric acid (a) 30%, (b) 40%, (c)
50% and (d) 60%.

Doping rate of membranes [ETFE-g-P(1-VIm-co-TAC)]
versus change in doping time in different concentrations of

phosphoric acid (a) 30%, (b) 40%, (c) 50% and (d) 60%.

Level of doping of membranes ETFE-g-P(1-VIm-co-TAC)
versus variation in the time of doping for 50%

concentration of phosphoric acid.

The relationship between the rate of acid doping in
membranes [ETFE-g-P(1-VIm-co-TAC)] and doping
solution’s concentration for different times of reaction (a) 1
day, (b) 2 days, (c) 3 days, (d) 4 days, (e) 5 days, (f) 6 days
and (f) 7 days.

162

164

165

167

169

170

171

172

XX



4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

ATR-FTIR spectra of (a) PA doped membrane, (b) 53%
grafted ETFE film and (c) original ETFE film.

Proposed mechanism based on the literature study of
preparation of PEMs through RIG of 1-VIm-co-TAC onto
ETFE film followed by PA doping.

Thermograms of TGA (a) original ETFE film, (b) 53%
grafted ETFE film and (c) PA doped membrane.

Thermograms of DTG (a) original ETFE film, (b) TAC
grafted ETFE film and (c) PA-doped membrane.

Thermograms of DSC (a) original ETFE film, (b) 53%
grafted ETFE film and (c) PA doped membrane.

Wide scan spectra of XPS for (A) pristine ETFE film and
(B) 53% ETFE film graft and (C) corresponding PA

nanoimpregnated membrane.

Diffractograms of XRD for (a) pristine ETFE film, (b) 53%
ETFE film graft and (c) corresponding membrane
nanoimpregnated by PA.

Images of FESEM images for (a) pristine ETFE film, (b)
53% P(1-VIm&TAC) ETFE film graft and (c)

corresponding PA nanoimpregnated membrane.

EDX analysis spectra for (a) pristine ETFE film, (b) 53%
ETFE film graft and (c) corresponding PA nanoimpregnated

membrane.

Level of PA nanoimpregnation versus exchanged ion

capacities.

Membranes’ swelling percentage from vapour phase versus
relative humidity (%) for various levels of PA
nanoimpregnation (a) 5.4, (b) 3.1 and (c) 1.1 mmol repeat

polymer unit!.

xxi

174

176

178

179

181

183

184

186

187

188

189



4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.21 presents variation of degree of grafting with
crosslinker (TAC) concentrations and 4.22 presents
variation of phosphoric acid doping level withcrosslinker

(TAC) concentrations.

Variation of degre of grafting with crosslinker (TAC)
concentrations. Grafting conditions are 100 kGy absorbed

dose, 24 hrs reaction time, 60°C reaction temperature.

Variation of phosphoric acid doping level with crosslinker

(TAC) concentrations.

Variation of proton conductivity with temperature for
grafted and crosslinked PA doped membrane prepared by
copolymerization of 1-VIm solutions with various TAC

contents.

Arrhenius plot for proton conductivity of uncrosslinked and
crosslinked 1-VIm doped membranes versus reciprocal of

temperature at various percentages of TAC.

Differences in ionic conductivity related to time for PA
nanoimpregnated P(1-VIm-co-TAC)-g-ETFE membranes
at different levels of acid nanoimpregnation (a) 5.44, (b)

3.08 and (c¢) 1.07 mmol repeat polymer unit™' at 120°C.
Results of the membrane’s stability tests.

Disparity in tensile strength (a), Young’s modulus (b) and
elongation at break (c) with DG (%) before and after doping
with PA.

Effect of the crosslinker (TAC) concentration on the tensile
strength of the ETFE film graft and PA nanoimpregnated

membrane. a) Elongation at break, b) Tensile strength.

Tensile strength-strain curves of the (a) pristine ETFE film,
(b) grafted ETFE film, (c) uncrosslinked PA doped

membrane and (d) crosslinked PA doped membrane.

xXXxii

190

190

191

192

196

198

200

201

203

205



431

4.32

4.33

4.34

4.35

4.36

4.37

4.38

Variation of the DG (%) versus reaction time at different
absorbed doses. Grafting conditions are 1-VIm
concentration, 30 vol%; 1-V-2-P concentration, 30 vol%;

time of reaction 30 h and temperature of reaction 60°C.

Disparity in the DG (%) versus reaction time at different
monomer concentrations. Conditions of grafting are
absorbed dose, 100 kGy; time of reaction 30 h and

temperature of reaction 60°C.

Variation of the degree of grafting versus reaction time at
different reaction temperature. Grafting conditions are
absorbed dose, 100 kGy; reaction time 30 h; 1-VIm
concentration, 30 vol%; 1-V-2-P concentration, 30 vol%, 3

vo01%.

Plots of characteristic radical recombination rate, y and
initial polymerization rate, 10 against the inverse

temperature.

Doping level of membranes [ETFE-g-P(1-VIm-co-1-V-2-
P)] versus change in doping time for various phosphoric

acid concentrations (a) 30%, (b) 40%, (c) 50% and (d) 60%.

Doping rate of membranes [ETFE-g-P(1-VIm-co-1-V-2-P)]
versus change in doping time for various phosphoric acid

concentrations (a) 30%, (b) 40%, (c) 50% and (d) 60%.

Doping level of membranes [ETFE-g-P(1-VIm-co-1-V-2-
P)] versus variation in the time of doping for 50%

concentration of PA.

The relationship between the rate of acid doping in
membranes [ETFE-g-P(1-VIm-co-1-V-2-P)] and
concentration of doping solution for various reaction times
(a) 1 day, (b) 2 days, (c) 3 days, (d) 4 days, (e) 5 days, (f) 6
days and (f) 7 days.

XX1il

207

208

210

212

213

214

215

216



4.39

4.40

4.41

4.42

4.43

4.44

4.45

4.46

4.47

4.48

4.49

FTIR spectra of (a) PA doped membrane, (b) 76% grafted
ETFE film and (c) original ETFE film.

Proposed mechanism based on the literature study of
preparation of PEMs by RIG of 1-VIm-co-1-V-2-P onto
ETFE film followed by PA doping.

TGA thermograms of (a) original ETFE film, (b) 76%
grafted ETFE film and (c) corresponding PA doped

membrane.

DTG thermograms of (a) original ETFE film, (b) 76%
grafted ETFE film and (c) corresponding PA doped

membrane.

DSC thermograms of (a) original ETFE film, (b) 76%
grafted ETFE film and (c) corresponding PA doped

membrane.

Wide scan spectra of XPS (A') original ETFE film and (B')
76% grafted ETFE film and (C') corresponding PA

nanoimpregnated membrane.
XRD diffractograms of (a) original ETFE film, (b) 76%
poly (1-VIm-co-1-V-2-P) grafted ETFE film and (c)

corresponding PA nanoimpregnated membrane.

FESEM images of (a) original ETFE film, (b) 76% P(1-
VIm-co-1-V-2-P) grafted ETFE film and (c) corresponding

PA nanoimpregnated membrane.

Spectra of EDX analysis of (a) original ETFE film, (b) 76%
grafted ETFE film and (c) corresponding PA

nanoimpregnated membrane.
Ion exchange capacities versus the PA doping level.

Swelling (%) of the membranes from vapour phase versus
relative humidity (%) for different PA doping levels (a) 7.6,
(b) 4.2 and (c¢) 2.3 mmol repeat polymer unit™!

XXiv

218

220

221

223

224

226

228

230

231

232

233



4.50

4.51

4.52

4.53

4.54

4.55

4.56

4.57

4.58

4.59

4.60

4.61

4.62

4.63

Variation in ionic conductivity of the membrane with

temperature.

Arrhenius plot of log ionic conductivity versus reciprocal

of temperature.

Variation of ionic conductivity in relation with time for PA
doped poly (1-VIm-co-1-V-2-P) grafted membranes at
various acid doping level (a) 7.60, (b) 4.20 and (c) 2.29

mmol repeat polymer unit™! at 120°C.
TGA of the original ETFE film at (10, 20 and 30°C/min).
DTG of the original ETFE film at (10, 20 and 30°C/min).

Flynn Wall Ozawa plot for the original ETFE film at (10,
20 and 30°C/min).

Kissinger Akahira Sunose plot for the original ETFE film at
(10, 20 and 30°C/min).

TGA of the ETFE-g-P(1-VIm-co-TAC) at (10, 20 and
30°C/min).

DTG of the ETFE-g-P(1-VIm-co-TAC) at (10, 20 and
30°C/min).

Flynn Wall Ozawa plot for the ETFE-g-P(1-VIm-co-TAC)
at (10, 20 and 30°C/min).

Kissinger Akahira Sunose plot for the ETFE-g-P(1-VIm-
co-TAC) at (10, 20 and 30°C/min).

TGA of the ETFE-g-P(1-VIm-co-TAC)/PA  doped
membrane at (10, 20 and 30°C/min).

DTG of the ETFE-g-P(1-VIm-co-TAC)/PA doped
membrane at (10, 20 and 30°C/min).

Flynn Wall Ozawa plot for the ETFE-g-P(1-VIm-co-
TAC)/PA doped membrane at (10, 20 and 30°C/min).

XXV

234

236

238

241

241

242

243

244

244

245

246

247

247

248



4.64

4.65

4.66

4.67

4.68

4.69

4.70

4.71

Kissinger Akahira Sunose plot for the ETFE-g-P(1-VIm-
co-TAC)/PA doped membrane at (10, 20 and 30°C/min).
TGA of the ETFE-g-P(1-VIm-co-1-V-2-P) at (10, 20 and
30°C/min).

DTG of the ETFE-g-P(1-VIm-co-1-V-2-P) at (10, 20 and
30°C/min).

Flynn Wall Ozawa plot for the ETFE-g-P(1-VIm-co-1-V-2-
P) at (10, 20 and 30°C/min).

Kissinger Akahira Sunose plot for the ETFE-g-P(1-VIm-
co-1-V-2-P) at (10, 20 and 30°C/min).

TGA of the ETFE-g-P(1-VIm-co-1-V-2-P)/PA doped
membrane at (10, 20 and 30°C/min).

DTG of the ETFE-g-P(1-VIm-co-1-V-2-P)/PA doped
membrane at (10, 20 and 30°C/min).

Kissinger Akahira Sunose plot for the ETFE-g-P(1-VIm-
co-1-V-2-P)/PA doped membrane at (10, 20 and 30°C/min).

XXVvi

249

250

250

251

252

253

253

255



XXvil

LIST OF ABBREVIATIONS
1-VIm - 1-Vinylimidazole
1-V-2-P - 1-Vinyl-2-pyrrolidone
N-VIm - N-Vinylimidazole
NVF - N-vinylformamide
NVP - N-vinyl-pyrrolidone
2-V-P - 2-Vinyl pyridine
4-V-P - 4-Vinyl pyridine
A - Pre-exponential factor or frequency factor
ABPBI - Poly (2,5-bibenzimidazole)
ADL - Acid doping level
AFC - Alkaline fuel cell
AHOR - Anodic hydrogen oxidation reaction
AMS - a-Methyl styrene
ATR - Attenuated total reflectance
BVPE - p,p-bis (vinyl phenyl) ethane
co - Copolymerization
CO - Carbon (ii) oxide
CORR - Cathodic oxygen reduction reaction
CsPMA - Caesium silico-tungstic acid
CsSiMA - Caesium phosphotungstic acid
CsSiTA - Caesium silico-tungstic acid
D - Absorbed dose
DG (%) - Degree of grafting
DL - Doping level
DIPB - 1,3-diisopropenylbenzene

DMFC - Direct methanol fuel cell



DSC

DT

Dt

DTG

DVB

EB

EDX

EIS

ETFE
ETFE-g-P(1-VIm)
ETFE-g-P(1-V-2-P)
ET-PCFC
FEP
FESEM
FTIR

g

GT

Gt

HBr

HCI
HT-PEMFC
HPA

IEC

IL
LT-PEMFC
Im

LDPE

MBAA
MCFC
NASA
MEA
NVF

XXviii

Differential scanning calorimetry

Doping temperature

Doping time

Differential/first derivative thermogravimetric
Divinyl benzene

Electron beam

Energy Dispersive X-ray spectroscopy
Electrochemical impedance spectroscopy
Poly(ethylene-alt-tetrafluoroethylene)

ETFE films grafted with poly(1-vinylimidazole)
ETFE films grafted with poly(1-vinyl-2-pyrrolidone)
Elevated temperature proton conducting fuel cell
Poly(tetrafluoroethylene-co-hexafluoropropylene)
Field emission scanning electron microscopy
Fourier transform infrared spectroscopy

Grafted

Grafting temperature

Grafting time

Hydrogen bromide

Hydrochloric acid

High temperature proton exchange membrane fuel cell
Heteropolyacid

Ion exchange capacity

Ionic liquid

Low temperature proton exchange membrane fuel cell
Imidazole

Low density polyethylene

Monomer concentration
N,N-methylene-bis-acrylamide

Molten carbonate fuel cell

National Aeronautics and Space Administration
Membrane electrode assembly

N-vinylformamide



NVP
PA
PAFC
PEEK
PEI
PEO
PET
PFSA
PBI
PBI/H3PO4
PBI-imi
PBI-ph
PCMs
PE
PEMs
PEMFC
PCM
PFA
PFSA
PEI
PES

PO

PP

PPA
PPO

PS

PSA
PSEPVE
PTFE
PVA
PVDF
PVDF-co-HFP
PVF

XXiX

N-vinyl-2-pyrrolidone

Phosphoric acid

Phosphoric acid fuel cell

Poly (ether ether ketone)

Poly (ethylene imine)

Poly (ether oxide)

Poly (ethylene terephthalate)
Perfluorosulphonic acid

Poly (benzimidazole)

Phosphoric acid-doped Poly(benzimidazole)
Poly (2,2'-imidazole-5,5'-bibenzimidazole)
Poly (2,2'-m-phenylene)-5,5'-bibenzimidazole
Proton conducting membranes

Polyethylene

Proton exchange membrane

Proton exchange membrane fuel cell

Proton conducting membrane
Poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether
Perfluorosulfonic acid

Poly(ether imide)

Poly (ether sulfone)

Propylene oxide

Polypropylene

Polyphosphazene

Polyphenylene oxide

Polystyrene

Perfluorocarbon sulphonic acid ionomer
Perfluoro-sulfonylfluoride ethyl-propyl-vinyl-ether
Polytetrafluoroethylene

Poly (vinyl alcohol)

Poly (vinylidene fluoride)

Poly(vinylidene fluoride-co-hexafluoropropylene)

Poly (vinyl fluoride)



PVP
P-1VIm
P4-VIm
P2VP
P4VP
R

RH
RIG
RIGC
RIGCTech
RSM
RT

R¢?

SPBI
SPEEK
SPES
SPPO
Sty
TAC
TFE
TFS
THF

TGA

Tm
UHMWP
VA

VBC

VP

XPS

ZrP

Poly (vinyl pyrrolidone)
Poly (1-vinylimidazole)
Poly (4-vinylimidazole)
Poly (2-vinylpyridine
Poly (4-vinyl pyridine)
Grafting rate

Relative humidity
Radiation induced grafting

Radiation induced graft copolymerization

XXX

Radiation induced graft copolymerization technique

Response surface methodology
Reaction temperature

Reaction time

Sulphonated polybenzimidazole
Sulphonated poly (ether ether ketone)
Sulphonated polyether sulfones

Sulphonated poly (2, 6-dimethyl-1, 4-phenylene oxide)

Solvent type

Triallyl cyanurate
Tetrafluoroethylene
a,0,pB-trifluorostyrene
Tetrahydrofuran

Glass transition temperature
Thermogravimetric analysis
Crystalline melting temperature
Ultra-high molecular weight polyethylene
Vinylamine

Vinylbenzyl chloride

Vinyl pyrrolidone

X-ray photoelectron spectroscopy

Zirconium phosphate



A

A

DG (%)
Ea

AHn
AHm 100

[P.]0

LIST OF SYMBOLS

Area (m?)

Surface area of the sample (cm?)

Degree of grafting (wt%)

Activation energy

Heat of melting of ETFE film (J g™')

Heat of melting of 100% crystalline ETFE polymer (J g™')
Rate constant

Polymerization rate constant (L mol™! s1)
Rate constant of bimolecular termination (L mol™! s71)
Distance between probes (cm)

Thickness of membrane sample (cm)
Weight of the grafted film (g)

Weight of the original ETFE film (g)
Monomer concentration (vol%)

Molar mass of phosphoric acid (g mol™")
Molar mass of polymer repeat unit (g mol-1)
Initial radical concentration

Initial polymerization rate

Gas constant = 8.314 (J K! mol™)
Resistance (£2)

Delay time

Thickness of the membrane sample (cm)
Temperature (°C)

Absolute temperature (K)

Reciprocal of absolute temperature (K™)

Glass transition temperature (°C)

XXXx1



Tm

Ty

T onset
VNaoH
w

wWd

wi

Wdry

Wo
Wivet
Xe
Xp4

Melting temperature (°C)

Peak temperature (°C)

Onset temperature of degradation (°C)

Volume of NaOH (ml)

Width of the membrane (cm)

Mass fraction of dopant (g)

Percentage of weight increase of the grafted ETFE film
Weight of dry membrane (g)

Weight of the grafted ETFE film (g)

Weight of the original ETFE film (g)

Weight of the swelled membrane (g)

Degree of crystallinity

Acid doping level per repeated unit of polymer
(mmol repeat unit™!)

Characteristic radical recombination rate

Proton conductivity (S cm™)

XxXxii



Xxxiii

LIST OF APPENDICES

APPENDIX TITLE PAGE
A Examples of the calculation of the degree 289
of grafting for ETFE-g-P (1-VIm-co-
TAC) films
B Examples of the calculation of the degree 290
of grafting for ETFE-g-P (1-VIm-co-1-V-
2-P) films
C Doping level calculation for ETFE-g-P (1- 291

VIm-co-TAC)/PA-doped membranes

D Doping level calculation for ETFE-g-P (1- 292
VIm-co-1-V-2-P)/PA-doped membranes



CHAPTER 1

INTRODUCTION

1.1 Proton Exchange Membrane Fuel Cells (PEMFCs)

PEMFC:s cells are simple, silent, single step, low noise, reliable, environmental
friendly and potentially high electrochemical energy converter (devices for electricity
generation) which provides a suitable primary power source for stationary and
transportation applications (Abdulkareem, 2009, Ahmad, 2005, Barbir, 2005). They
have the ability to electro-catalytically converts directly and continuously the gaseous
fuel’s free chemical energy in the presence of oxidant through electrochemical redox
reaction into electrical energy. Water and heat are usually the by-products (Sopian and
Wan Daud, 2006, Zhang and Shen, 2012a, Zhang and Shen, 2012b). As there is no
occurrence of thermal combustion of fuel with air, production of pollutants such as
nitric oxides are avoided (Zhang, 2008, Zhang et al., 2006). General Electric initially
developed the first practical fuel cell application where it was used as a power source
for the Gemini Earth-orbiting programme in the early 1960s. A potentially great future
sources of clean energy for various uses is fuel cells (Ergiin, 2009, Scott et al., 2014,

Xu, 2013).

Up to now, however, fuel cells production in large scale is limited to
governmentally subsidized programmes, niche markets and premium power sector.

Consumer electronics, power backup, cogeneration and forklift traction power were



the early markets (Gubler, 2014). Cost and durability are the main barriers to
commercialization of fuel cells. Furthermore, in aging processes, the conditions of
operation perform an important function. Consequently, to drive forward the
technology of fuel cell development and to ensure its early commercialization.
Continuous research into components and material’s fundamental in needed. In
addition, introduction of novel materials is necessary or improving the ones in
existence. Furthermore, it is essential to identify limitations of existing materials. From
application view-point, it is important to know the requirements for the synthesis of
PEMs having desirable properties suitable for application in HT-PEMFC and
structure—property—performance relationships should be established (Gubler, 2014).

In PEMFCs, typically, the oxidant is oxygen and the fuel is hydrogen.
However, for practical reasons the hydrogen may be derived from reformed organics
such as natural gas, gasified coal, methanol or other hydrocarbons and the oxygen is
replaced with air. As long as the oxygen is supplied to the cathode and hydrogen to the
anode, PEMFCs continue to generate electricity, dissimilar to batteries possessing an
output dependent on the chemical energy being stored. Furthermore, compared to other
conventional power sources, they possess high current densities, high energy per
volume as well as per weight. In addition, it has significant emission reduction,
neatness, easy refueling, quite operation, high current density, high energy per weight
as well as per volume and etcetera (Nasef et al., 2013a). PEMFC fundamental
operation unit consists of an electrolyte otherwise called proton conducting membrane
(PCM) which separate two porous gas diffusion electrodes (GDEs), similar to other
electrochemical cells. The two electrodes are often loaded with a small amount of a
noble metal (catalyst) such as platinum and are conventionally made of polymer-

bonded carbon-cloth/-paper having porous structure (Hickner, 2003, Zhang, 2006).

Despite being a challenging research work the interest in the development of
desirable, highly conductive and stable PEMs for HT-PEMFC application is fast
growing. New alternative low cost membranes with appropriate structure that can
withstand the operation in HT-PEMFC application in the temperature range of 100-

200°C are being designed and developed continuously. This is done using various



approaches and applying different preparation routes to overcome the high cost and

other problems associated with PFSA membranes (Nasef et al., 2013b).

To solve problems associated with PFSA membranes such as, Nafion® used in
PEMFC. High temperature operation (above 100°C) is highly desirable due to these
advantages: improve efficiency and overcoming of some of the inherent problem
associated with the use of hydrogen obtained from the reformed hydrocarbon fuels and
water management system. Particularly, better electrode kinetics, elimination of
humidification, high tolerance to fuel impurities for example, carbon monoxide (CO).
Furthermore, higher efficiency and higher values of excess heat by cogeneration can
be achieved. Development of membranes that are less-water dependent, low relative-
humidity dependent and operational above 100°C is another excellent solution to

myriad problems facing Nafion® membrane (Nasef et al., 2013b).

The main focus of this dissertation is the proposed acid-base polymers and their
composite membranes such as, PEM having PA and its derivatives loaded onto base
films were recently proposed as alternative PEM. For example, excellent alternative
acid-base composite membranes such as, PA doped poly (benzimidazole) (PBI)

membrane (Nasef et al, 2013a, Schmidt and Schmidt-Naake, 2007b).

1.2 Problem Statement

Nafion® membrane is considered to be the most effective PCM for PEMFC
application and they have been employed extensively due to striking characteristics
which include: higher oxidative stability, higher mechanical strength, hydrolytically
stable and higher conductivity. Presently, comparing PEMFC to conventional
technology, one of the main barrier that must be surmounted to guarantee its
commercialization is the cost of production. Using expensive materials such as, solid
polymer electrolyte (Nafion®) and noble metal (catalyst) leads to this high cost. Some

of the problems associated with the use of Nafion® include: it is costly (~700 $/m?),



PEM cost 27-30% of the overall estimate PEMFC. In addition, it dehydrates at
temperature > 80°C and operating it at relative humidity less than 100% reduces its

efficiency and ability to conduct protons.

Furthermore, the requirement of full hydration to maintain higher conductivity
pegs its temperature of operation to 90°C and high dependence of its operations on full
humidification for conductivity of proton which makes it very highly problematic to
use it at elevated temperatures. Moreover, it swells excessively in solvents and it is
highly permeable to fuel and other species. CO intolerance leads to higher dependence
on pure H» in place of reformed H2 obtained from gasified coal, natural gas, biomass,
ethanol and etcetera. It degrades easily at temperatures 110-130°C owing to low glass
transition temperature (Tg) which leads to reduction in its durability. ETFE-g-P(1-
VIm-co-TAC)/PA and ETFE-g-P(1-VIm-co-1-V-2-P)/PA doped membranes were
synthesized in this research work, in order to reduce cost, to improve desirable
properties such as proton conductivity, improve stability and durability. Synthesized
membranes have the capacity to simplify water and heat management. Thus,

eliminating the risk of cell flooding.

a.  What are the effects of using RIGC method to prepare membrane from
1-VIm, 1-V-2-P, TAC, ETFE films followed by PA doping and the
effects of RIGC on the DG (%) and level of doping?

b.  Isitnecessary to optimize membranes’ synthesis conditions using Box-
Behnken module of response surface methodology (RSM) available in
“Minitab®” Software?

c. In PA doped PBI membranes, what are the limiting factors that could
be overcome possibly in this research?

d. Do PA doped PBI PEMs qualify for applications in HT-PCMFCs? Is
there any room for improvement?

e. Do the present synthesized HT-PCMs possess some merits over PA

doped PBI membranes?



1.3

14

Objectives

Scope

To establish optimal synthesis conditions for the membranes using
Box-Behnken module of response surface methodology (RSM)
available in “Minitab®” Software.

To synthesize membranes that have desirable properties such as high
proton conductivity, high thermal and mechanical stability applicable
in HT-PEMFC.

To study grafting kinetics of 1-VIm and TAC onto ETFE base film and
1-VIm-co-1-V-2-P onto ETFE base films.

To characterize the synthesized membranes’ properties namely: proton
conductivity, thermal and mechanical stability.

To attempt model free kinetic modeling of Radiation induced graft
copolymerization of 1-VIm-co-1-V-2-P using Flynn Wall Ozawa
(FWO) model and Kissinger Akahira Sunose (KAS) model.

Optimization of the synthesis parameters using RSM available in
“Minitab®” Software.

Radiation induced co-grafting of 1-VIm and TAC onto the EB-
preirradiated ETFE films under selected conditions.

Radiation induced copolymerization of 1-VIm-co-1-V-2-P onto the
EB-preirradiated ETFE films under selected conditions.

Acid doping of the grafted ETFE films with PA under controlled
conditions.

Characterization of the synthesized membranes to determine desirable
properties that are applicable to HT-PEMFC employing equipment
such as: FTIR-ATR, DSC, TGA, FESEM-EDX, XRD and XPS.
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