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ABSTRACT 

In the past few years, substantial efforts have been invested into the synthesis 

and characterization of plasmonic gold nanostructures owing to their unique size and 

shape-dependent physical and chemical properties. Gold (Au) nanostructures (NSs) 

are of great interest for scientific research because of their attractive applications in 

numerous fields, built upon their interesting surface plasmon resonance (SPR) 

features and biocompatibility. Corresponding to these fascinating features, multi-

faceted Au NSs have been synthesized using a quaternary ammonium cationic 

surfactant, methyltrioctylammonium chloride (Aliquat 336), as a shaping and 

stabilizing agent. Transmission electron microscopy (TEM) and ultraviolet-visible 

(UV-Vis) spectroscopy analyses confirm the existence of Aliquat 336 stabilized NSs 

that are demonstrated to achieve minimal ligand density in the form of mono-

molecular layer onto the Au surface. Thermogravimetric analysis (TGA) and 

dynamic light scattering (DLS) experiments have been performed to quantify the 

ligand density on the surface of Au. Fourier transform infrared (FTIR) and X-ray 

photoelectron spectroscopy (XPS) measurements are accomplished to determine the 

structure and binding of ligand molecules to the Au surface. Zeta potential (+24.3 

mV) of the nanoparticles (NPs) shows that the particles are positively charged and 

sufficiently stable in nature. The quats surfactant also manipulates the growth of 

extremely elongated Au nanorods (aspect ratio within 10-57) and nanowires 

following one-step hydrothermal syntheses. A pronounced change in the shapes of 

Au NSs strongly depends on the growth parameters including ligand contents, 

reaction temperature and reaction duration. As-synthesized Au NSs i.e. multi-faceted 

and cubic nanoparticles are coated with cuprous oxide to form Au-Cu2O core-shell 

nano-morphologies in which efficient shape evolution of the Cu2O shell is achieved 

through fine adjustment of the ratio H2O:NH2OH∙HCl. The effect of particle 

morphology and shell thickness on the optical properties of truncated-octahedra, 

cuboctahedra and nanoflowers Au-Cu2O having sizes within 90-230 nm shows that 

the SPR band of the Au-core shifts progressively to red with increasing shell 

thickness. A comparative study to correlate the photoluminescence (PL) analyses of 

core-shell nanostructures with their photocatalytic activities towards the 

decomposition of methyl orange shows that truncated-octahedra and nanoflowers, 

bounded by (111) facets, are photocatalytically more active. The results are in good 

agreement with the PL analysis in that cuboctahedra with more (100) catalytically 

inactive sites reveal a comparatively sharp emission peak. 
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ABSTRAK 

Beberapa tahun kebelakangan ini, usaha yang besar telah dilaburkan dalam 

sintesis dan pencirian nanostruktur plasmonik aurum kerana sifat fizik dan kimia 

yang bergantung kepada saiz dan bentuknya yang unik. Nanostruktur (NS) aurum 

(Au) mendapat perhatian yang tinggi untuk penyelidikan saintifik kerana aplikasinya 

yang menarik dalam pelbagai bidang yang terbina di atas ciri resonans plasmon 

permukaan (SPR) yang menarik dan keserasian-bio. Sepadan dengan cirinya yang 

menarik, pelbagai bentuk NS Au telah disintesis menggunakan surfaktan kation 

ammonium kuaterner, metiltrioktilammonium klorida (Aliquat 336), sebagai agen 

pembentukan dan penstabilan. Analisis mikroskop elektron (TEM) dan spektroskopi 

ultra lembayung-nampak (UV-Vis) mengesahkan kehadiran nanostruktur yang 

distabilkan oleh Aliquat 336 yang menunjukkan pencapaian ketumpatan ligan 

minimum dalam bentuk lapisan molekul mono di atas permukaan Au. Analisis 

termogravimetri (TGA) dan serakan cahaya dinamik (DLS) telah dijalankan untuk 

mengukur ketumpatan ligan di atas permukaan Au. Pengukuran analisis spektroskopi 

inframerah (FTIR) dan specktroskopi fotoelektron sinar-X (XPS) disempurnakan 

untuk menentukan struktur dan ikatan molekul ligan pada permukaan Au. Keupayaan 

zeta nanozarah (+24.3 mV) menunjukkan bahawa zarah tersebut bercas positif dan 

berkeadaan cukup stabil. Surfaktan quats ini juga memanipulasi pertumbuhan 

nanorod Au memanjang (nisbah aspek antara 10-57) dan nanowayar mengikut 

sintesis hidroterma selangkah. Perubahan ketara pada bentuk NS Au amat 

bergantung kepada parameter pertumbuhan termasuk kandungan ligan, suhu tindak 

balas dan masa tindak balas. NS Au tersedia sintesis iaitu pelbagai permukaan dan 

nanozarah kubus adalah diselaputi oleh kuprus oksida untuk membentuk petala teras 

Au-Cu2O nanomorfologi yang mana evolusi bentuk petala Cu2O yang efisyen 

diperolehi melalui pelarasan kecil nisbah H2O:NH2OH∙HCl. Kesan morfologi zarah 

dan ketebalan petala terhadap sifat optik Au-Cu2O oktahedron terpenggal, 

kuboktahedra dan nanobunga dengan saiz sekitar 90-230 nm menunjukkan bahawa 

jalur SPR dari teras Au berganjak ke arah merah dengan pertambahan ketebalan 

petala. Satu kajian perbandingan untuk mengaitkan analisis kefotopendarcahayaan 

(PL) dari nanostruktur petala-teras dengan aktiviti pemangkinan berfoto mereka 

terhadap penguraian metil oren menunjukkan bahawa oktahedron terpenggal dan 

nanobunga disempadani oleh permukaan (111), adalah lebih aktif secara 

pemangkinan berfoto. Keputusan adalah sepadan dengan analisis PL yang mana 

kuboktahedra yang mempunyai banyak permukaan (100) yang tidak aktif katalitik 

mempamirkan puncak pemancaran lebih tajam. 



vii 

TABLE OF CONTENTS 

CHAPTER            TITLE   PAGE 

DECLARATION                ii 

DEDICATION                iii 

ACKNOWLEDGEMENT               iv 

ABSTRACT                 v 

ABSTRAK                 vi 

TABLE OF CONTENTS               vii 

LIST OF TABLES                xi 

LIST OF FIGURES                xii 

LIST OF ABREVIATIONS               xvii 

LIST OF SYMBOLS               xix 

LIST OF APPENDICES               xxi 

1 INTRODUCTION       1 

1.1 Research Background        1 

1.2 Problem statement      3 

1.3 Research Questions      5 

1.4 Research Objectives      6 

1.5 Scope of Research      6 

1.6 Significance of the Research     7 

2 LITERATURE REVIEW      8 

2.1 Introduction to Surface Plasmon Resonance     8 

2.2 Why Gold is Distinctive?     10 

2.3 Quaternary Ammonium Cations/Quats   11 

2.4 Quats Stabilized Gold Nanostructures    11 



viii 

2.4.1 Cetyltrimethylammonium Bromide (CTAB)  12 

2.4.2 Tetraoctylammonium Bromide (TOAB)  13 

2.4.3 Cetyltrimethylammonium Chloride (CTAC)  13 

2.4.4 Drawback of Long Chain Cationic Ligands  14 

2.5 Ionic Liquids (ILs) for Synthesis of Metal Nanoparticles 14 

2.6 Aliquat 336 As an Ionic Liquid (IL) Based on Quaternary 

Ammonium Cations      15 

2.7 Applications of Gold Nanostructures    16 

2.7.1 Detection of Metal Ions    17 

2.7.2 Enhancement of the Surface-enhanced Raman 

Scattering (SERS) Signals    18 

2.7.3 Biochemical Sensing     19 

2.7.4 Biomedical Applications    19 

2.7.5 Catalysis      20 

2.8 Metal-semiconductor Core-shell Nanostructures  21 

2.9 Applications of Metal-semiconductor Core-shell 

 Nanostructures      22 

2.9.1 Semiconductor Photoluminescence Enhancement 

 via Surface Plasmon Absorption in Metal-core 22 

2.9.2 LSPR-mediated Charge Separation at the Metal- 

semiconductor Interface    23 

2.9.3 Charge Transfer Activities    26 

2.10 Gold-Cuprous Oxide  (Au-Cu2O) Core-shell 

Nanostructures       27 

3 EXPERIMENTAL       30 

3.1 Materials       30 

3.2 Preparation of Gold Nanostructures    31 

3.2.1 Preparation of Aliquat 336 Stabilized Multi- 

faceted Gold Nanoparticles    31 

3.2.2 Preparation of Gold Nanostructures Including 

Nanorods, Nanowires, Nanotriangles and 

Nanocubes      32 



ix 

3.2.2.1 Effect of Reaction Duration   33 

3.2.2.2 Effect of Reaction Temperature  33 

3.2.2.3 Effect of Quantity of Aliquat 336  33 

3.2.2.4 Effect of the Ratio HAuCl4:Na3C6H5O7 34 

3.3 Preparation of Au-Cu2O Core-shell Nanostructures  34 

3.4 Characterization Techniques     36 

3.4.1 Ultraviolet and Visible (UV-Vis) Spectroscopy 36 

3.4.2 Transmission Electron Microscopy (TEM)  37 

3.4.3 Energy Dispersive X-ray Spectroscopy 

(EDX or DES)      38 

3.4.4 X-ray Diffraction Spectroscopy (XRD)  38 

3.4.5 Thermal Gravimetric Analysis (TGA)  39 

3.4.6 Dynamic Light Scattering (DLS)   40 

3.4.7 X-ray Photoelectron Spectroscopy (XPS)  41 

3.4.8 Fourier Transform Infrared (FTIR) Spectrosopy 42 

3.4.9 Photoluminescence Spectroscopy (PL)  43 

3.5 Photocatalytic Activity Measurements   44 

4 RESULTS AND DISCUSSION     45 

4.1 Multi-faceted Gold Nanoparticles with Minimal Ligand 

Density        45 

4.1.1 Existence of Translational Gold Nanoparticles 45 

4.1.2 Multi-faceted Gold Nanoparticles   47 

4.1.3 Monolayer Illustration of the Ligand Molecules 

on Nanoparticle Surface    50 

4.1.4 Support to Mono-layer Assembly on the Surface 

of Gold Nanoparticles by Thermogravimetric 

Analysis (TGA)     51 

4.1.5 Measurement of the Size and Charge on the 

Nanoparticle      52 

4.1.6 Measurement of the Ligand Density   53 

4.1.7 EDX Spectra of Translational and Multi-faceted 

Au NPs      54 



x 

4.1.8 X-ray Photoelectron Spectroscopy (XPS) for 

Elemental Analysis     55 

4.1.9 The FTIR Studies     57 

4.1.10 Photoluminescence Spectra    58 

4.2 Variously Shaped Gold Nanostructures i.e. Nanorods, 

Nanowires, Nanotriangles, Nanocubes   59 

4.2.1 TEM Imaging and EDX Spectrum of Gold  

Nanorods      59 

4.2.2 XRD, Shape and Size Measurements   60 

4.2.3 Absorption Spectra of Gold Nanostructures  62 

4.2.4 Synthetic Parameters Dependent Shape Variation 64 

4.2.5 Mechanism of Growth of Gold Nanostructures 66 

4.2.6 Photoluminescence Study of Gold Nanostructures 68 

4.3 Au-Cu2O Metal-semiconductor Core-shell 

Nanostructures       69 

4.3.1 TEM Imaging of Au-Cu2O Core-shell 

Nanostructures      69 

4.3.2 XRD and EDX Analyses    73 

4.3.3 Influence of Synthetic Parameters on the Optical 

Properties of Au-Cu2O Nanostructures  74 

4.3.4 Photoluminescence Studies of Au-Cu2O 

Heterostructures      78 

4.3.5 Photocatalytic Analysis for Degradation of 

Organic Dye      79 

5 CONCLUSION AND FURTHER STUDIES   83 

5.1 Conclusion       83 

5.2 Further Studies       85 

REFERENCES         87 

Appendices A1-E           104-117 



xi 

LIST OF TABLES 

TABLE NO. TITLE PAGE 

3.1  Various growth conditions to prepare gold nanoparticles 

of different shapes       34 

3.2  Chemicals required for the synthesis of Au-Cu2O core-shell 

  nanostructures         35 

4.1  Effect of synthetic parameters on the shape of gold 

nanostructures        65 

4.2  Change in synthetic parameters of Au-Cu2O core-shell 

nanostructures for tunable optical properties    74 



xii 

LIST OF FIGURES 

FIGURE NO. TITLE PAGE 

2.1 Description of localized surface plasmon resonance (LSPR) 

phenomenon        9 

2.2  Properties of plasmonic particles: (a) Normalized 

extinction spectra of spherical Ag (38 ±12 nm diameter), 

Au (25 ±5 nm) and Cu (133 ±23 nm) NPs particles. 

(b) Calculated extinctions of Au nanostructures 

showing plasmon resonances      9 

2.3  Quaternary ammonium cation, where the R group may be 

the same or different alkyl or aryl groups. Also, the R 

groups may be connected      11 

2.4  The band alignment of Au and CdS                      23 

2.5  Schematic representation of the various transfer 

mechanisms that can occur in the Au-Cu2O structure  25 

2.6  TEM image and schematic illustration of photocatalytic 

H2 generation by Au@TiO2-CdS ternary nanostructures 

under visible-light irradiation      25 

3.1  Scematic illustration of synthesis of Au-Cu2O core-shell 

nanostructures. Here x equals 0.25, 0.35 and 0.65. The color 

shown is the approximate solution color observed in the 

synthesis of Au-Cu2O core-shell nanoflowers   34 

4.1  UV-Vis absorption spectra of translational Au NPs revealing 

the presence of two nearby absorption peaks at 535 nm and 

575 nm. The de-convolution (green and red) into Lorentzian 

peaks appeared at 526.8 nm and 583.2 nm. The dotted 

curve (blue)is the overall fit of two Lorentzian peaks  46 



xiii 

4.2  TEM images of translational Au NPs in the intermediate 

reaction stage (step 3): (a) bunch of NPs appearing to adopt 

some morphological transformation due to non-spherical 

shape and (b) two close-by NPs with an inset showing 

the size uniformity       46 

4.3  (a) De-convoluted UV-Vis spectra showing the LSPR 

absorption peaks of multi-faceted Au NPs at 534.5 and 

650 nm and (b) a comparison showing relevance 

absorption of seed nanoparticles with translational (step 3) 

and multi-faceted (step 4) NPs during the reaction. 

The absorption peak of the multi-faceted NPs is rather 

sharp as compared to conventional spherical NPs and 

translational NPs       47 

4.4 A comparison of absorption spectra of freshly prepared multi- 

  faceted Au NPs after six month storage at 4 ºC   48 

4.5 (a) and (b) TEM images of multi-faceted Au NPs, (c) magnified 

view of a multi-faceted Au NP with seven-fold of symmetry 

as marked, and (d) the HRTEM image displaying the lattice 

constant of 2.33 Å corresponding to the Au(111) lattice planes 49 

4.6  Aliquat 336 molecule (a) symbolic representation, (b) schematic 

view, (c) stabilized multi-faceted Au NP, (d) a monolayer 

of the ligand molecules illustrating a hexagonal pattern formed 

due to overlapping of long hydrophobic chains on three sides 

under van der Waals stabilization     50 

4.7  TGA spectrum of the Aliquat 336-stabilized multi-faceted 

Au NPs        52 

4.8  (a) DLS data showing the corresponding size distribution 

and (b) graph showing apparent ζ-potential of multi-faceted 

Au NPs at +24.3 mV       53 

4.9  EDX patterns of (a) intermediate translational and 

(b) multi-faceted Au NPs      55 

4.10  (a) XPS spectrum of Aliquat 336 stabilized multi-faceted 

Au NPs and (b) high-resolution XPS spectrum of the 

Au-4f7/2 at 84 eV and Au-4f5/2 at 87.75 eV    56 



xiv 

4.11  A comparison of FTIR spectra between (a) pure Aliquat 336 

and (b) washed and dried samples of Aliquat 336-coated 

gold nanoparticles supports both presence and nature of 

attachment of Aliquat 336 molecules with the gold 

nanostructures        57 

4.12  Room temperature PL spectra of Aliquat 336 stabilized gold 

NPs of multi-faceted (upper curve) and translational 

(lower curve)        59 

4.13  TEM images of as synthesized Au NRs. Most of them are 

mono-dispersed ((a), (b), (c), (d), (g) and (h)) and few have 

appeared in the bunch ((f) and (i))     60 

4.14  EDX spectrum showing the high purity formation of 

Aunanorods        61 

4.15  (a) XRD pattern of Au NRs, (b) shape distribution of Au    

nanostructures in Figure 4.13 and (c) length distribution 

of NRs in Figure 4.13       62 

4.16  The UV-Vis absorption spectra of gold NRs (orange),  

  NWs (red), NCs (blue) and NTs (green)    63 

4.17  TEM images of variously shaped gold nanostructures formed  

  due to variation in the synthetic parameters, including 

(a) nanowires, (b) nanocubes, (c) nanotriangles and 

(d) nanohexagons to nanotriangles. The actual solution 

colours are also shown by an inset in each image   65 

4.18  Schematic illustration of the reaction pathways that leads to 

  fcc Au nanocrystals of different shapes. The yellow, red  

  and purple colours represent the (100), (110) and (111)  

  facets,  respectively       67 

4.19  TEM images representing schematic of the formation of gold  

                        nanostructures including gradual change in shape   68 

4.20  Room temperature PL spectra of Aliquat 336-stabilized gold  

  NRs (blue curve), NTs (magenta curve) and nanocubes  

  (pink curve)        69 

 

 



xv 

4.21  TEM images of Au-Cu2O core-shell nanostructures; ((a) and 

(b)) truncated-octahedral nanostructures formed from cubic Au  

  nanoparticles, ((c) and (d)) cuboctahedral nanostructures 

formed from the same cubic Au nanoparticles, ((e) and 

(f)) nanoflowers formed using multi-faceted Au nanoparticles 

as templetes        71 

4.22  HRTEM images performed to measure the fringe spacing of 

Cu2O shell. The inset shows the orientation of Cu2O-shell 

facets with respect to the Au nanocrystal facets   72 

4.23  XRD patterns of nanoflower and truncated-octahedra 

Au-Cu2O core-shell heterostructures          73 

4.24  UV-Vis spectra of cubic Au nanoparticles and truncated- 

  octahedral Au-Cu2O core-shell nanostructures. The solution 

colour for truncated-octahedra is gray with green hue having 

the SPR band of the composite structure at 716 nm   75 

4.25             ((a) and (b)) TEM images of truncated-octahedra with more 

shell thickness, evidenced by more red-shift of SPR band, and 

(c) UV-Vis absorption spectra of Samples A, B and C, 

showing the effect of ratio NH2OH.HCl:NaOH on their 

SPR bands. The solution colour of Sample B is green with 

yellow hue        76 

4.26  UV-Vis absorption spectra of cubic Au NPs and unique 

cuboctahedral Au-Cu2O nanostructures with their SPR band 

extending up to IR region of light. The solution colour 

shows an orange hue       77 

4.27  UV-Vis absorption spectra of multi-faceted Au nanoparticles 

and flower-like Au-Cu2O nanostructures (including Sample D 

and E) with the SPR band falling in the visible region of 

light. The solution colour is green           77 

4.28  Room temperature PL spectra of Au-Cu2O core-shell 

heterostructures including truncated-octahedra, cuboctahedra 

and nanoflowers       79 

 



xvi 

4.29  The UV-Vis absorption spectra of methyl orange as a function 

of UV-irradiation time using Au-Cu2O core-shell 

(a) truncated-octahedra, (b) cuboctahedra and (c) nanoflowers 

as the photocatalysts        80 

4.30  A plot of the amount of methyl orange photodegradation 

(At/A0) versus time in the presence of Au-Cu2O core-shell 

nanostructure catalysts. Rate constants of corresponding 

photoreactions are also given      82 



xvii 

LIST OF ABBREVIATIONS 

A336  - Aliquat 336 

AgNO3 - Silver Nitrate  

CH3  - Methyl 

CH2  - Methylene 

CTAB - Cetyltrimethyl Ammonium Bromide 

CTAC - Cetyltrimethyl Ammonium Bromide 

CTEAB - Cetyltriethyl Ammonium Bromide 

C25H54ClN - Methyltrioctyl Ammonium Chloride/Aliquat 336  

CuCl2 - Copper Chloride  

Cu2O  - Cuprous Oxide 

DI  - Deionized Water  

DLS  - Dynamic Light Scattering 

EDX  - Energy Dispersive X-rays 

FRET - Fluorescence Resonance Energy Transfer 

FTIR  - Fourier Transformation Infrared  

HAuCl4 - Hydrochloroauric Acid 

HR-TEM - High Resolution Transmission Electron Microscopy  

H2S  - Hydrogen Sulfide  

JCPD  - Joint Committee for Powder Diffraction 

KBr  - Potassium Bromide  

LSPR  - Localised Surface Plasmon Resonance 

MO  - Methyl Orange 

NaBH4 - Sodium Borohydride 

NaBr  - Sodium Bromide 

NaOH - Sodium Hydroxide  

NCs  - Nanocubes 

NPs  - Nanoparticles 



xviii 

NRs  - Nanorods 

NSs  - Nanostructures 

NTs  - Nanotriangles 

NWs  - Nanowires 

oop  - Out-of-plane 

PL  - Photoluminescence 

Quats  - Quaternary Ammonium Cations 

rpm  - Revolution per Minute  

RTILs - Room Temperature Ionic Liquids 

SDS  - Sodium Dodecyl Sulphate 

SHE  - Standard Hydrogen Electrode 

TEM  - Transmission Electron Microscopy 

TGA  - Thermogravimetric Analysis 

TOAB - Tetraoctyl Ammonium Bromide 

UV-Vis - Ultraviolet-Visible  

XPS  - X-ray Photoelectron Spectroscopy 

XRD  - X-ray Diffraction 

 



xix 

LIST OF SYMBOLS 

Å  - Angstrom 

Al  - Aluminium   

Au  - Gold 

a.u.  - Arbitrary unit 

Ag  - Silver 

Br  - Bromine 

C  - Carbon 

ca.  - Circa 

Cl  - Chlorine 

cm
-1

  - Frequency 

Cu  - Copper 

o
  - Degree angle 

o
C  - Degree Celsius  

eV  - Electron volt 

h  - Hours 

H  - Hydrogen 

kV  - Kilo volt 

λ  - Lambda 

L  - Length 

µL  - Micro litre 

mg  - Milli gram 

mL  - Milli litre 

mV  - Milli volt 

min  - Minute 

M  - Molarity 

nm  - Nanometre 

N  - Nitrogen 



xx 

N  - Number 

n  - Number of carbon atoms 

O  - Oxygen 

Pd  - Palladium  

%  - Percentage 

R  - Radius 

ρ  - Density 

s  - Second 

θ  - Theta 

W  - Watt 

x  - Volume of NH2OH∙HCl in mL 

Xe  - Xenon 

ζ  - Zeta



xxi 

LIST OF APPENDICES 

APPENDIX    TITLE           PAGE 

A1  EDX spectrum of Au-Cu2O truncated-octahedra                      104 

A2  EDX spectrum of Au-Cu2O truncated-octahedra 

with thicker shell                      105 

A3  EDX spectrum of Au-Cu2O cuboctahedra               106 

A4  EDX spectrum of Au-Cu2O nanoflowers               107 

B  Procedure showing the steps involved in the formation 

               of Au-Cu2O nanoparticles                108 

C1  Aliquat 336 stabilized triangular Au NPs, sample C             109 

C2  Aliquat 336 stabilized hexagonal-triangular Au NPs,  

sample A                  110 

C3  Aliquat 336 stabilized Au NRs and NWs, sample B             111 

C4  Aliquat 336 stabilized Au nanobars (NBs), sample D            112 

D1  XPS spectra of Au-Cu2O core-shell nanoflowers             113 

D2  HR-XPS spectra of the Au-4f                114 

D3  HR-XPS spectra of the Cu-2p                 115 

D4  HR-XPS spectra of the O-1s                116 

E  Publications and Conferences                117 

  



 

 CHAPTER 1 

INTRODUCTION 

1.1   Research Background 

Undeniably, plasmonic gold (Au) nanostructures (NSs) are promising 

material for their novel applications in various emerging fields of science, 

technology and engineering [1, 2]. They have been a material of choice owing to a 

combination of unique properties including the flexibility for surface alteration, the 

tunable localized surface plasmon resonance (LSPR), the fascinating catalytic 

activities at the nanoscale, and biocompatibility. Indeed, these Au NSs exhibiting 

strong resonances in the visible/NIR region are model candidates for the 

enhancement of Raman signals [3, 4] and diverse biomedical applications [5]. 

The growth of plasmonic Au NSs through wet chemical processes typically 

requires a surfactant as capping and shape-directing agent. In fact, cationic 

quaternary ammonium salts (quats) are used as the most essential surfactants [6]. It 

is acknowledged that cetyltrimethylammonium bromide (CTAB) being very efficient 

as directing agent allows the formation of Au nanoparticles (NPs) with varying 

shapes including nanorods, hexagons and triangles [7, 8]. Especially, Au nanorods 

with high aspect ratio are prepared using a seed-mediated growth method in an 

aqueous micellar template by properly adjusting the CTAB concentration during the 

reaction [9, 10]. The CTAB analogue, cetyltrimethylammonium chloride (CTAC) is 

also used for the synthesis of anisotropic Au NPs with different shapes such as cubic, 

trisoctahedra, and rhombic dodecahedra [11]. Nevertheless, these long chain cationic 
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ligands with higher ligand density in terms of bilayer have appeared to be more toxic 

and thus limit their potential biomedical applications [12]. 

Methyltrioctylammonium chloride (Aliquat 336) is another quats reagent. It 

is a less stable cationic ligand than the usual CTAB/CTAC ligands due to its three 

dimensional short hydrocarbon chains and low affinity. However, it is more stable 

against air and moisture attack than other cationic ligands and easier to handle [13]. 

Unlike a bilayer in CTAB/CTAC ligands, a mono-hydrophobic layer of Aliquat 336 

molecules can stabilize Au NPs, where three hydrocarbon chains of the ligand 

molecule overlap on three sides with those of another ligand molecules on the NPs 

surface. Accordingly, the formation of a hexagonally patterned monolayer of the 

ligand molecules on the Au NPs surface may overcome the ligand density problem 

related to in vivo applications. 

Another limitation with the CTAB assisted, seed-mediated gold nanorods 

(NRs) synthesis is that the growth conditions control using these synthetic strategies 

usually offers complexes like its aspect ratio reduction with the growth progression 

[14, 15]. In this research, Au NRs of very high aspect ratio (ranging from 10 to 57) 

have been prepared in an aqueous solution at 85 
o
C using Aliquat 336 as a phase 

transfer reagent. Such anisotropic Au nanoparticles (NPs) have been used for various 

biological and sensing applications due to their unique size, composition and 

structure dependent optical properties [5]. However, the stability and surface 

functionalization of Au NPs still remain problematic in many situations [16] due to 

physicochemical limitations associated with them. An ideal solution is to encapsulate 

these Au NPs with a semiconductor protective shell. 

The interest in cuprous oxide, Cu2O, as a semiconductor began with the 

invention of the Cu2O rectifier by Grondahl in the 1920s [17]. Cuprous oxide is a 

semiconductor material with p-type conductivity due to copper vacancies. The 

energy band gap of Cu2O is 2.17 eV and it has a high optical absorption coefficient 

in the visible region [18]. The crystal structure of Cu2O is cuprite with a lattice 

constant of 4.27 Å [19]. Considerable work was done on Cu2O characterization from 

1930 to 1940. Photosensitive devices based on Cu2O were investigated in the 1930s 
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and B. Lange reviewed this work in 1939 [20]. The successful preparation of Cu2O 

nanocrystals with systematic shape evolution from cubic to hexapod and octahedral 

structures by a facile aqueous solution approach have shown enhanced photocatalytic 

activity [21].  

Formation of localized surface plasmon resonant (LSPR) cuprous oxide 

coated gold (Au-Cu2O) core-shell nanostructures, during the last few years, with 

precise geometrical and shape control of the components and their characterization 

has presented remarkable attention. The characterization of these metal-

semiconductor core-shell nanostructures plays an important role either in 

fundamental research or in technological uses, covering from fabrication and 

characterization to device processing. It has been investigated that several 

geometrical parameters (shell thickness, size of the core, spacing between core and 

shell, etc.) of Au-Cu2O core-shell nanoparticles systematically fine-tune the light 

absorption and scattering properties of these particles across the visible and near-

infrared regions [22]. Despite significant lattice mismatch of 4.3% between the 

different gold surfaces and the lattice planes of Cu2O, excellent interfacial epitaxial 

growth and systematic morphological evolution of these structures can still be 

achieved [23] to have enhanced optical and catalytic properties. 

1.2 Problem Statement  

Quaternary ammonium cations/quats surfactants such as CTAC, CTAB and 

cetyltriethylammonium bromide (CTEAB)-stabilized Au NSs have drawn an 

interesting attention for applications based on their size and shape dependent optical 

properties [24-26]. The drawback of these bilayer-surfactants protection of 

nanoparticles has been their toxicity due to higher ligand density for in vivo [27] and 

deficient long-term stability in terms of aggregation as the long alkyl chains of 

CTAB/CTAC tend to trigger more van der Waals interactions among themselves 

[28]. This research involves the use of another cationic ligand, 

metyhyltrioctylammonium chloride (Aliquat 336), with rather short alkyl chains as a 
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phase transfer reagent to produce multi-faceted Au nanoparticles stabilized by 

monolayer of the ligand molecules. 

The preparation of Au NRs traditionally involves a seed-mediated growth 

mechanism in the presence of cetyltrimethylammonium bromide/CTAB as a shape 

directing and capping agent [3] and has been reported many times. This seed-growth 

approach can produce Au NRs with aspect ratios (length/diameter) as much as 27:1. 

However, the growth conditions control usually offers complexes [15] with another 

limitation related to its aspect ratio reduction with the growth progression [14]. Thus, 

an alternative synthesis method is required to achieve dispersed and elongated Au 

NRs with localized surface plasmon resonance (LSPR) effects in the IR region. 

The surface ligand and aspect ratio of Au NRs are prerequisite for near-field 

optical response [29]. Usually, NRs aspect ratio is directing surfactant‟s nature 

dependent (in an aqueous solution) [30] and a surfactant‟s (CTAB) concentrated 

solution is necessary. CTAB binds to the surface of Au as bilayer structure and has 

limitations in terms of its toxicity and stability [27, 31]. Often, AgNO3 is used as 

additive for selective binding and packing of CTAB but it reduces the repulsion 

between the surfactant head groups [32]. Despite this additive, preparation of NRs 

with aspect ratio > 7 becomes difficult [9]. Many experiments exhibited the effect of 

alkyltrimethylammonium (surfactant) tail length [30] and surfactant‟s head group 

[26] on Au NRs growth. The change of Au NRs morphology (aspect ratio) via 

different synthesis temperature programs has been reported [33], but the impact of 

reaction time duration on morphological change is not yet documented. Here, an 

alternative single-step synthesis method is adopted to achieve dispersed and 

elongated Au NRs and nanowires (NWs) with localized surface plasmon resonance 

(LSPR) effects in the near IR region to avoid a complex seed-mediated growth 

mechanism in the presence of CTAB as a shape directing and capping agent. 

Au NRs of very high aspect ratio (ranging from 10 to 57) have been prepared 

in an aqueous solution at 85 
o
C using Aliquat 336 as a phase transfer reagent. The 

effects of the ligand concentration, reaction temperature and time on the structure, 

optical behavior, and the product yield are determined. Aliquat 336 has also shown a 
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capability to produce a variety of Au NSs, like Au nanocubes (NCs) and 

nanotriangles (NTs), by controlling the growth parameters during the reaction.  

As one distinctive combination of metal nanoparticles with localized surface 

plasmon resonance and metal-oxide semiconductors, Au-Cu2O metal-semiconductor 

core-shell nanostructures have attracted a great deal of attention because of their 

novel structure and potential application in solar energy conversion [34]. Despite the 

recent achievements in the systematic growth of these heterostructures at different 

levels and their catalytic activities, further investigation on various shapes-dependent 

optical properties of Au-Cu2O nanocrystals are lacking. For example, a lot of 

attention has been given to measurements of photocatalytic performance of Au-Cu2O 

core-shell nanostructures [35], but the effect of various shaped Au-Cu2O 

nanoparticles (e.g. cuboctahedron, octahedron) on other optical properties like 

photoluminescence has not been systematically investigated. Furthermore, most 

studies are lacking the rich structural variety of semiconductor-shell that may be 

produced by employing core particles of different shapes, and their characterization. 

In this research, Au-Cu2O core-shell nano-morphologies are synthesized by 

facile wet chemical approach and exposed to light with different shapes in order to 

investigate for correlation between photoluminescence and photocatalytic 

performance. Furthermore, the cooperative morphology between plasmonic metal 

and semiconductor nanostructures is explored along with their special plasmon 

resonant optical properties that show interesting tunability during the structural 

evolution. 

1.3 Research Questions 

The study involves following research questions: 

i. How the shape evolution of gold (Au) and Au-Cu2O core-shell 

nanostructures can be obtained by using Aliquat 336 surfactant and 

gold-cores of different shapes, respectively? 
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ii. Does the surface functionalization of these nanostructures require the 

ability to tune the nanoparticles morphology? 

iii.  How does the shape and surface orientation of gold and Au-Cu2O 

nanostructures affect the LSPR based optical properties and how these 

can be harvested towards applications, like Photoluminescence and 

photocatalysis? 

1.4 Research Objectives 

The research objectives of the study include: 

i. To synthesize quats-functionalized gold (Au) nanostructures (NSs) 

for the measurement of the ligand density on the surface of Au NSs.  

ii. To prepare Au-Cu2O core-shell nanostructures using gold-cores of 

different shapes, for improved LSPR based optical properties.  

iii. To determine the influence of growth parameters on the 

structural/optical properties of Au and Au-Cu2O core-shell 

nanostructures. 

iv. To determine the relationship between photoluminescence and 

photocatalytic properties of Au-Cu2O core-shell nanostructures.  

1.5    Scope of the Research 

This research involves the syntheses of functionalized gold (Au) and cuprous 

oxide coated gold (Au-Cu2O) core-shell nanostructures with various shape evolution 

by varying the growth parameters. In the first, preparation of multi-faceted Au 

nanoparticles (NPs) with minimal ligand density using a quaternary ammonium 

cationic ligand as a shaping and stabilizing agent was encountered. The stability and 

nature of binding of the ligand to the Au NPs surface was accomplished by Fourier 

transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), 
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dynamic light scattering (DLS), Zeta potential and thermogravimetric analysis 

(TGA). Then, the effect of different synthetic parameters like reaction temperature, 

reaction duration, gold precursor and the ligand concentration on the syntheses of 

other Au NSs (e.g. cubic, triangular, rod and wire-like) were studied. The 

modification of multi-faceted and cubic Au NSs with Au-Cu2O core-shell 

nanostructures for enhanced LSPR based optical properties was successfully 

accomplished. The unique surface plasmon absorption of various gold nanostructures 

and Au-Cu2O core-shell nanostructures was taken by UV-Vis spectroscopy. The size, 

morphology and chemical composition of these nanostructures were studied by 

transmission electron microscope (TEM), X-ray diffractometer (XRD) and energy 

dispersive X-ray (EDX). Influence of growth parameters on structural and optical 

properties of Au-Cu2O core-shell nanostructures was investigated. Gold and Au-

Cu2O core-shell nanostructures were also supposed to explore the influence of the 

LSPR on the photoluminescence emission peaks of these nanostructures. The Au-

Cu2O core-shell nanostructures were also examined comparatively as photocatalysts 

towards the decomposition of organic dye. The results showed that the core-shell 

nanostructures with more exposed (111) surfaces were catalytically more active, in 

good agreement with PL analysis where catalytically inactive (100) surfaces revealed 

a comparatively sharp emission peak. 

1.6     Significance of the Research 

In this research, the motivation for the syntheses of plasmonic Au NSs with 

shape-dependent optical properties comes from the choice of another cationic ligand, 

methyltrioctylammonium chloride/Aliquat 336, having superior properties while 

altering the growth parameters. Especially, Aliquat 336 surfactant is utilized to 

prepare high aspect ratio Au NRs and NWs without any usual seed-mediated growth 

mechanism. The modification of Au NSs with Au-Cu2O metal-semiconductor core-

shell NSs resulted in enhanced LSPR based optical and photocatalytic properties. 
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