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ABSTRACT

Technology ease human life in every aspects. Some machine save human’s
effort, some machine save time and increase efficiency in work. Machine is designed
to complete specific task or multiple tasks without any intelligence needed. The
next level of machine is machine which has intelligent and capable to think like
human being while doing jobs, moreover, learn by themselves. Recently, Machine
Learning are becoming more and more popular in 21stcentury. Machine learning can
explores study and algorithms construction for making prediction. Data analytic by
machine learning is a trend that used by Google, Facebook, Baidu and others big
company nowadays. One of data analysis in machine learning which is Human Facial
Expression Recognition is one of the hot topics now. Many researchers are proposed
their techniques used in emotion recognition like PCA, LBP and etc. Goal in this
project, is to analyze Inception v-3, the best performing high resolution image classifier
based on Convolutional Neural Network, and also implement it in Raspberry Pi to see
how it performs on detecting Facial Expressions.
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ABSTRAK

Teknologi memudahkan kehidupan manusia dalam setiap aspek. Beberapa
mesin menjimatkan usaha manusia, beberapa mesin menjimatkan masa dan
meningkatkan kecekapan dalam kerja. Mesin direka untuk menyelesaikan tugas
tertentu atau pelbagai tugas tanpa apa-apa kecerdasan yang diperlukan. Tahap
seterusnya mesin adalah mesin yang pintar dan mampu berfikir seperti manusia
ketika melakukan pekerjaan, apalagi belajar sendiri. Baru-baru ini, Pembelajaran
Mesin menjadi semakin popular di abad ke-21. Pembelajaran mesin boleh meneroka
pembinaan dan pembinaan algoritma untuk membuat ramalan. Analisis data oleh
pembelajaran mesin adalah trend yang digunakan oleh Google, Facebook, Baidu dan
syarikat besar lain sekarang. Salah satu analisis data dalam pembelajaran mesin
yang merupakan Pengiktirafan Ungkapan Wajah Manusia adalah salah satu topik
hangat sekarang. Ramai penyelidik mencadangkan teknik mereka yang digunakan
dalam pengiktirafan emosi seperti PCA, LBP dan sebagainya. Matlamat dalam
projek ini, adalah untuk menganalisis Inception v-3, pengeluar imej resolusi tinggi
yang terbaik berdasarkan Rangkaian Neural Convolutional, dan juga melaksanakannya
dalam Raspberry Pi untuk melihat bagaimana ia berfungsi dalam mengesan Ekspresi
Wajah.
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CHAPTER 1

INTRODUCTION

1.1 Problem Background

Emotion is a mental state which involves a lot of behaviors, actions, thoughts
and feelings. In 1969, Charles Darwin wrote “The Expression of the Emotions in
human and Animals” after recognizing the universality among emotions in different
groups of people despite the cultural differences [7]. Ekman and Friesen classified six
emotional expressions to be universal: happiness, sadness, disgust, surprise and fear
[8]. Facial expressions can be considered as the most natural form of displaying human
emotions and as a non-verbal communication technique . Implementation of efficient
automatic facial expression recognition techniques may yield lot of improvements in
the area of Human Computer Interaction.

The universality of facial expressions on the presence of emotions and
micro-expressions can help people face face-to-face interactions in order to improve
their skills and read other people’s emotions in many different occupations.
Reading emotional expressions, especially microcosmic expressions, can help develop
relationships, beliefs and agreements; they can be used to assess credibility, assess
truth and detect fraud; better information on emotional status is provided for better
cooperation, advice or sales. Health professionals can build better relationships with
patients, interact with patients with sympathy and sympathy, and make the right
diagnosis by getting complete information. Teachers can read the emotions of the
students to get a hint of progress on their lessons, so that they can make appropriate
adjustments and communicate more effectively. School administrators who read
teacher emotions can reduce fires, maintain and improve teacher effectiveness.
Businessmen and consultants who can read the emotions of others can promote
mutually beneficial cooperation. Researchers can improve qualitative data, and they
give a true sense of what they feel when they can read the user’s emotional assessment
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product, even though they have clues. Parents, spouses, friends, and everyone who is
interested in building a strong and constructive relationship can benefit from improving
their reading emotions.

Emotional expression may or may not be accompanied by self-awareness. Over
the past 200 years, researchers have presented different, often competing, models to
explain emotional and emotional expression and have been traced back to Charles
Darwin. The different types of expressions namely joy, sadness, surprise, anger,
disgust and fear are given below:

• Happy – Happy is an emotion caused by welfare, glory, luck, excitement or
prospects.

• Sadness – Sadness is an emotional pain associated with or despair,
helplessness, disappointment, sadness, related to defects, loss, and sadness. A
person experiencing sadness may become quiet or drowsy and withdraw from
others.

• Surprise – Surprise is defined as to cause of someone to feel in amazing
feelings.

• Anger – Anger can occur when a person feels their personal boundaries are
being or going to be violated.

• Disgust – Disgust is an aversion. Humans will feel disgusted from any sound,
smell, taste, or difficulty.

1.2 Motivation

What makes embedded devices great?

• Small in size
• Low power consumption
• Large operating range
• Low per-unit cost
• Standalone system

Applications of facial expression recognition:
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• Medicine sector

– Rehabilitation

– Companion

– Counseling

– Autism therapy

• E-learning

– Tutoring system

• Monitoring

– ATM machine

• Entertainment

– Gaming

– Music player

• Marketing

– Impact of ads

1.3 Problem Statement

To lead the way in Human-Android communication. The purpose of this
research is to improve the way of android understand human by only human
expression. Many researchers already proposed their method in classify human
expression by using machine learning. However, there is still has a lot of work
needed to be done in order to achieved high performance and accuracy in human
expression recognition. One of our non-verbal communication methods is to
understand emotional as well as psychological states of people’s facial expressions
such as happiness, sadness, fear, disgust, surprise and anger [7, 9]. The exciting and
challenging field of automatic facial recognition recognition (FER) [10] has become a
branch of computer vision. Using the embedded device in FER is paving the way
for the future. This is because embedded device is small in size and low power
consumption, so it is widely applicable. The use of FER include mental identification
[11], security [12], automated counseling systems, face synthesis expressions, lie
detection, music mood detection [13], automated tutoring systems [14], operator
fatigue detector [15], and others. Capturing spontaneous expressions on images and
video is one of the biggest challenges.
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1.4 Research Aim and Objectives

The aim of this research is to produce an embedded device that can preform
FER in real-time. The objectives of research are:

• To investigate a method to run Real-time Face Expression Recognition (FER)
based on deep learning in a low cost embedded system.

• To develop a method to train the deep neural network approach.

• To evaluate and compare the performance and accuracy between PC and
embedded system.

1.5 Scope of Work

• Raspberry Pi 3 Model B is been using as the embedded device which has
properties of low power consumption, small size, a wide range of overall work,
and low unit cost.

• The Raspberry Pi is used only for the inference part of deep learning, the
training is done on the PC

• Tensor-Flow will be used as tool in this project and the programming language
is Python.

• One six basic facial expressions are recognized: happiness, sadness, surprise,
fear, disgust, and anger.

1.6 Organization

The organization of this thesis consists of seven chapter.

Chapter one describes the project background, problem statement, objectives,
scope of work and the outline of this thesis.

Chapter two describes the literature review on the existing human expression
detection methods including face detection and pre-processing, and feature extraction
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and classification.

Chapter three discusses the research methodology of this project, as well as
the methods are used for achieving objectives. The tools and dataset are used in this
project also be discussed as well.

Chapter four illustrates the proposed design. The architecture of the proposed
design will be discussed. The training details will be covered as well in this chapter.

Chapter five shows the result of this project. Discussion on the result will be
carried on in this chapter.

Chapter six is the conclusion of this project. Some potential future work will
be discussed on this chapter.
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approach for face expressions recognition. Intelligent Systems and Informatics

(SISY), 2012 IEEE 10th Jubilee International Symposium on. IEEE. 2012.
537–541.

39. Zhen, W. and Zilu, Y. Facial expression recognition based on adaptive local
binary pattern and sparse representation. Computer Science and Automation

Engineering (CSAE), 2012 IEEE International Conference on. IEEE. 2012,
vol. 2. 440–444.

40. Kumar, S. and Gupta, A. Facial expression recognition: A review. Proceedings

of the National Conference on Cloud Computing and Big Data, Shanghai,

China. 2015. 4–6.

41. Yi, J., Mao, X., Chen, L., Xue, Y. and Compare, A. Facial expression
recognition considering individual differences in facial structure and texture.
IET Computer Vision, 2014. 8(5): 429–440.

42. Li, J., Zhao, C., Wang, H. and Ying, Z. Facial expression recognition based on
completed local binary pattern and SRC. Natural Computation (ICNC), 2013

Ninth International Conference on. IEEE. 2013. 333–337.

43. Yi, J., Mao, X., Xue, Y. and Compare, A. Facial expression recognition
based on t-SNE and adaboostM2. Green Computing and Communications

(GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE

International Conference on and IEEE Cyber, Physical and Social Computing.
IEEE. 2013. 1744–1749.

44. Lee, J., Uddin, M. Z. and Kim, T.-S. Spatiotemporal human facial expression
recognition using fisher independent component analysis and Hidden Markov
Model. Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th

Annual International Conference of the IEEE. IEEE. 2008. 2546–2549.

45. Zilu, Y. and Guoyi, Z. Facial expression recognition based on NMF and SVM.
Information Technology and Applications, 2009. IFITA’09. International

Forum on. IEEE. 2009, vol. 3. 612–615.

46. Dhavalikar, A. S. and Kulkarni, R. Face detection and facial expression
recognition system. Electronics and Communication Systems (ICECS), 2014



51

International Conference on. IEEE. 2014. 1–7.


	DECLARATION
	DEDICATION
	ACKNOWLEDGEMENT 
	ABSTRACT
	ABSTRAK
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Problem Background
	Motivation
	Problem Statement
	Research Aim and Objectives
	Scope of Work
	Organization

	Literature Review
	Face Detection and Pre-processing
	Viola Jones Algorithm

	Feature Extraction And Classification
	Local Binary Pattern (LBP)
	Principal Component Analysis (PCA)
	Active Appearance Model (AAM)
	Facial Action Coding System (FACS)
	Inception V3
	General Design Principles
	Factorizing Convolutions with Large Filter Size
	Utility of Auxiliary Classifiers
	Softmax Layer
	Overall Inception V3 model structure

	Transfer Learning

	Chapter Summary

	Research Methodology
	Implement Facial Expression Recognition on Personal Computer
	Design Flow
	Implement Facial Expression Recognition on Raspberry Pi
	Training
	Fine tuning 


	Datasets
	Cohn-Kanade AU-Coded Expression Database
	Cohn-Kanade Dataset (CK)
	The Extended Cohn-Kanade Dataset (CK+)


	Tools and Platforms
	Chapter Summary

	Results and Discussion
	Result of Processing Inception V3
	Bottlenecks
	Training
	Training (A)
	Result and Analysis after Training (A)
	Training (B)
	Result and Analysis after Training (B)
	Discussion

	Running Facial Recognition in Real-time

	Chapter Summary

	Conclusion
	Conclusion
	Future work

	REFERENCES 



