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ABSTRACT 

 

 

The progressive deterioration of concrete surface structures being the major 

concern in construction engineering requires special protection and precise repairing. 

The adverse physical, chemical, thermal and biological processes that cause such 

rapid decay need to be overcome. The durability of concrete structure is found to be 

strongly influenced by inappropriate use of materials as well as their physical and 

chemical condition of the surroundings. The immediate consequence is the 

anticipated need of maintenance and execution of repairs. Lately, many alkalis 

activated mortars are synthesized by selectively combining some waste materials 

containing alumina and silica compounds which are further activated via strong 

alkaline solution. Despite the emergence of various alkalis activated as prospective 

material toward emergency repairs and coating, a functional alkali activated with 

efficient repairing attributes and endurance is far from being achieved. Generally, the 

alkaline solution prepared by mixing concentrated sodium silicate and sodium 

hydroxide restrict the broad array of repairing applications of alkalis activated 

mortar. Furthermore, they are not only expensive and hazardous to the workers but 

negatively impact the environment. The research attempted to produce 

environmental friendly alkali activated by blending different ratios of sodium 

hydroxide and sodium silicate at low concentration. Durability and mechanical 

strength of the synthesized ternary blend alkalis activated mortars were evaluated to 

inspect their repairing effectiveness towards concrete surface damage. Tests were 

performed for determining the porosity, shrinkage, compressive strength and slant 

bond shear strength. Microstructures and thermal properties were evaluated using 

XRD, SEM, TGA, DTG and FTIR measurements. The prepared ternary blend 

contained the ground blast furnace slag, fly ash and palm oil fuel ash or ceramic 

waste powder. The prepared fresh, hardened and durable mortars were activated with 

affable alkaline solution (at low concentration) of sodium hydroxide and sodium 

silicate. The ground blast furnace slag that acted as the main resource of Ca
++

 was 

used to replace the low amount of Na
+
 in the geopolymerization process.  The 

amount of slag in the blend varied in the range of 20 - 70%. The addition of slag to 

the blend had improved the strength and durability properties as well the 

microstructure characteristics. This improvement is majorly attributed to the 

participation of calcium silicate hydrate and calcium aluminosilicate hydrate beside 

sodium aluminosilicate hydrate bonds in reaction products. The results revealed that 

all the prepared mixes developed appreciable strength under mild alkaline solution. 

Furthermore, the alkali activated specimens prepared with high slag content 

displayed good durability including abrasion, thawing-freezing and shrinkage. The 

research has established that the ternary blend alkalis activated mortars with friendly 

alkaline solution contributes towards the development of high strength and durable 

repairing materials for concrete structures. 
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ABSTRAK 

 

 

Kerosakan progresif struktur permukaan konkrit limpah merupakan masalah 

utama dalam bidang kejuruteraan pembinaan dan masalah ini memerlukan 

perlindungan khas dan pembaikan pulih. Kesan negatif fizikal, kimia, perubahan 

suhu dan biologi menyebabkan kerosakan yang cepat dan perlu diatasi dengan 

segera. Jangka panjang ketahanan struktur konkrit didapati dipengaruhi oleh 

penggunaan bahan serta keadaan fizikal dan kimia persekitaran. Sejak kebelakangan 

ini, banyak mortar berakali teraktif telah disintesis dengan menggabungkan 

beberapa bahan buangan yang mengandungi sebatian alumina dan silika yang 

seterusnya diaktifkan melalui larutan alkali yang kuat. Meskipun terdapat pelbagai 

alkali teraktif sebagai bahan untuk pembaikan pulih lapisan konkrit, namun, alkali 

teraktif yang mempunyai sifat-sifat pembaikan pulih yang cekap dan berketahanan 

tinggi masih belum dapat dihasilkan. Umumnya, larutan alkali yang disediakan 

dengan mencampurkan sebatian pekat silikat natrium dan sodium hidroksida mampu 

membaiki aplikasi mortar berakali teraktif dengan meluas. Di samping itu, sebatian 

ini bukan sahaja mahal dan berbahaya kepada pekerja tetapi memberi kesan negatif 

kepada alam sekitar. Kajian ini mengambil usaha untuk menghasilkan alkali teraktif 

yang mesra alam dengan menggabungkan nisbah natrium hidroksida dan natrium 

silikat yang berbeza pada kepekatan yang rendah. Ketahanan dan kekuatan 

mekanikal mortar berakali teraktif yang telah disentisis melalui pelbagai gabungan 

sebatian tersebut telah diuji untuk menilai keberkesanan pembaikan pulih kerosakan 

permukaan konkrit.  Ujian dilaksanakan bagi menentukan keliangan, pengecutan, 

mampatan dan kekuatan ricihan condong. Mikrostruktur dan sifat haba pula dinilai 

dengan menggunakan ukuran XRD, SEM, TGA, DTG dan FTIR. Sebatian ternar 

yang disediakan mengandungi galian sanga relau bagas, abu terbang dan abu bahan 

bakar kelapa sawit atau serbuk sisa seramik. Mortar yang baharu, terkeras dan tahan 

lasak kemudiannya diaktifkan dengan larutan alkali  (pada kepekatan rendah) 

natrium hidroksida dan natrium silikat. Galian sanga relau bagas sebagai sumber 

utama Ca
++

 telah digunakan untuk menggantikan Na
+
 dalam proses geopolimerisasi. 

Jumlah sanga dalam campuran dikekalkan dalam lingkungan 20% hingga 70%. 

Penambahan sanga keatas campuran telah meningkatkan ciri-ciri kekuatan dan 

ketahanan serta sifat mikrostruktur. Kesan peningkatan ini disebabkan oleh hasil 

tindak balas campuran sebatian kalsium silikat hidrat dan kalsium aluminosilikat 

hidrat dan natrium aluminosilikat.  Hasil kajian menunjukkan bahawa semua 

campuran meningkatkan kekuatan ketara di bawah larutan alkali yang sederhana. 

Tambahan pula, spesimen alkali teraktif yang disediakan dengan kandungan sanga 

tinggi  memaparkan ketahanan tinggi termasuk lelasan, pencairan-pembekuan dan 

pengecutan. Kajian ini membuktikan bahawa pelbagai campuran mortar berakali 

teraktif sebatian tenar yang dihasilkan dengan larutan alkali yang sederhana boleh 

menyumbang ke arah pembangunan bahan-bahan pembaikan pulih struktur konkrit 

yang mempunyai kekuatan yang tinggi dan tahan lama. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

1.1 Introduction  

 

Over the years, Ordinary Portland Cement (OPC) has been widely employed 

as concrete binder and various building substances worldwide. It is known that, large 

scale manufacturing of OPC causes serious pollution in the environment in terms of 

considerable amount of greenhouse gases emission (Duxson et al., 2007c; Rashad et 

al., 2013). The OPC production alone is accountable for nearly 6 to 7% of total CO2 

emissions as estimated by International Energy Agency (IEA) (Palomo et al., 2011). 

In fact, among all the greenhouse gases approximately 65% of the global warming is 

ascribed to the CO2 emission. It was predicted that the mean temperature of globe 

could raise by approximately 1.4–5.8 °C over the next 100 years (Rehan and Nehdi, 

2005). Globally, in the present backdrop of CO2 emissions mediated climate change, 

the sea level is expected to rise and the frequent occurrence of natural disasters will 

cause huge economic loss (Stern, 2007). On top, the emitted greenhouse gases such 

as CO2, SO3 and NOX from the cement manufacturing industries can cause acid rain 

and damage the soil fertility (Zhang et al., 2011). Generally, the industrial 

consumption of raw materials is around 1.5 tonnes per each tonne of OPC production 

(Rashad, 2013b). To surmount such problems, both scientists, engineers and 

industrial personnel have been continuously dedicating many efforts to develop 

novel construction materials to achieve alternate binders (Rashad, 2013a).  

 

The term ‘‘geopolymers’’ was coined by Joseph Davidovits in 1972 

(Komnitsas and Zaharaki, 2007) to describe the zeolite like polymers. Geopolymers 



2 

  

 

that are being commonly synthesized by activating slag, fly ash (FA), calcined clay 

and other aluminosilicate materials using alkali have been realized as promising 

alternative binders. Geopolymers are the alumino-silicate polymers which consist of 

three dimensional amorphous structures formed due to the geopolymerization of 

alumino-silicate monomers in alkaline solution (Rowles and O'connor, 2003). In the 

past, intensive studies have been carried out on calcined clays (metakaolin) or 

industrial wastes such as FA, palm oil fuel ash and slag (Chang, 2003; Kong et al., 

2007; Temuujin et al., 2010b). Yet, the complex process so called geopolymerization 

is not fully understood (Yao et al., 2009). Davidovits proposed a reaction pathway 

involving the polycondensation of orthosialiate ions (hypothetical monomer) (Provis 

et al., 2005). The mechanism of geopolymerization process (Dimas et al., 2009) is 

based on three steps: (i) dissolution in alkaline solution, (ii) reorganization and 

diffusion of dissolved ions with the formation of small coagulated structures and (iii) 

polycondensation of soluble species to form hydrated products. In recent years the 

name of alkali-activated has been used to replace the geopolymer name for a matrix 

using calcium in geopolymerization process. 

 

Compared to OPC, alkali activated mortars are well-known for their excellent 

properties such as high compressive strength (Burciaga-Díaz et al., 2013; Zhang et 

al., 2010a),  low shrinkage (Chi et al., 2012; Zhang et al., 2010a), acid resistance 

(Palomo et al., 1999), fire resistance, devoid of toxic fumes emission (Duxson et al., 

2007c), low thermal conductivity (Zhang et al., 2010a), excellent heavy metal 

immobilization, high temperature stability (Yao et al., 2009), low manufacturing 

energy consumption for construction purposes and several engineering applications 

(Zhang et al., 2010a). Owing to these distinctive features, Geopolymers are 

potentially being used in construction engineering, fire proof, biomaterials and waste 

treatment (Davidovits, 2002; Yao et al., 2009). New applications including the use of 

Geopolymer as concrete repair material is under in-depth exploration. 

 

In recent times, use of the alkali activated mortar as surface concrete repair 

materials has generated renewed research interests (Balaguru, 1998; Zhang et al., 

2012; Zhang et al., 2010b). In the exploitation of the alkali activated mortar as repair 

material, the bond strength between the substrate concrete and the repair material 

(Geissert et al., 1999b; Momayez et al., 2005) plays a decisive role. Alkali activated 
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mortar is compatible with Portland cement concrete because of the close match of 

various properties such as the modulus of elasticity, Poisson's ratio, and the tensile 

strength (Hardjito et al., 2005). Furthermore, alkali activated mortar can also cure at 

ambient temperature as conventional concrete (Nath and Sarker, 2015).  All these 

merits make alkali activated mortar an excellent candidate for surface concrete 

repair. Despite much research, the durability of these applications has not been 

evaluated comprehensively. 

 

Commercial repair materials due to their good mechanical properties and 

bonding strengths are generally used for the repair work in concrete (Mirza et al., 

2014). However, they are rather expensive. Thus, less expensive alternative repair 

materials with comparable properties are needed. Constant research efforts are made 

(Hu et al., 2008; Pacheco-Torgal et al., 2008a; Suksiripattanapong et al., 2015) to 

utilize alkali activated mortar as repair material, where tests are performed to 

determine their slant shear, pull-out, direct shear and bond strength between mortar 

substrate and alkali activated mortars. Interestingly, alkali activated mortar exhibits 

higher bonding strength than that of Portland cement mixture. Pacheco-Torgal et al. 

(2008a) determined the bond strength between concrete substrate and alkali activated 

mortar produced from tungsten mine waste containing calcium hydroxide. They 

found that Alkali activated binders have very high bond strength even at an early age 

as compared to commercial repair products. Suksiripattanapong et al. (2015) tested 

the bond strength between rebar and concrete substrate using geopolymer paste as 

the bonding agent. They reported that the bond strengths of rice husk ash and silica 

fume geopolymer paste are approximately 1.5 times higher than epoxies. 

Consequently, the occurrence of sufficiently high bond strength of geopolymer 

materials made them suitable alternative bonding material for repairing. 

 

 

 

 

1.2 Study Background 
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The surfaces of concrete structures such as sidewalks, pavements, parking 

decks, bridges, runways, canals, dykes, dams, spillways. to cite a few  deteriorate 

progressively due to varieties of physical, chemical, thermal and biological 

processes. Actually, the durability of concrete structure is strongly influenced by the 

inappropriate use of materials, physical and chemical conditioning of the 

surroundings. The immediate consequence is the anticipated need of maintenance 

and execution of repairs (Alanazi et al., 2016). For the repair and maintenance, 

several expensive surface repair mortars are easily available commercially. They are 

constantly being used without prior laboratory testing. Earlier, many materials 

including cement mortars, polymer-modified cement-based mortars containing 

styrene butadiene rubber (SBR) and acrylics, sand epoxy mortars and emulsified 

epoxy mortars, have been developed to repair the damaged concrete surfaces. These 

repair materials are often sold in the market with the promise of achieving wonderful 

results (Pacheco-Torgal et al., 2014).  

 

Information on most of these commercially available products has always 

been inadequate and thus the manufacturers are unable to supply specific data on 

these mortars' resistance to the harsh conditions exist in many parts of the globe. 

Even though some data on the performance of these repair materials are provided by 

the suppliers and the manufacturers, the values are generally given based on the 

laboratory ambient temperature of 21±1 
o
C. Insufficient evaluation work on the 

important laboratory or field has ever been made public to determine the 

effectiveness of these repair materials, especially at severe hot and cold climatic 

conditions. Further, the practising engineers find difficulties to select the right 

product for the particular repairing purpose. Certainly, there is a need to select 

appropriate materials for repairing the deteriorated concrete surfaces of various 

structures. 

 

It is worth noting that millions of tons of natural, industrial and agriculture 

wastes such as FA, coal and oil-burning by-products, bottom ash, palm-oil fuel ash 

(POFA), rice-husk ash, bagasse ash, used tires, cement dust, stone crushers dust, 

marble dust, waste ceramic materials (CWP), silica fume, are wasted every year in 

Malaysia. These waste materials cause severe environmental problems like air 

pollution and leaching of toxic chemicals. Several studies revealed that many of 
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these wastes can be used successfully in all kinds of new concrete structures by 

replacing cement (sometimes up to 70%) (Lim et al., 2015). Moreover, these newly 

developed concrete can provide environmentally safe, stable, more durable and low 

cost green construction materials. Yet, development of different Alkali activated 

mortars containing these wastes which can be used as repair materials, especially for 

deteriorated concrete surfaces are rarely explored. 

 

As aforementioned, geopolymerization is a complex and important process in 

the alkali activated industry, where high pH alkaline solution that is used to dissolute 

the aluminosilicates is still to be clarified. The term “alkali  activator solution”  is  

used  for  a  combination  of  a silica-rich  solutions  (e.g.  sodium  or  potassium  

silicate)  and highly  concentrated  alkali  solutions  (e.g. sodium or potassium  

hydroxide)  with  certain  weight  ratios.  Such  combination  is  used  to  dissolve  

the alumina-silicate from pozzolanic waste materials  for  building  the amorphous  

structure  of  Alkali activated.  An  increase  in the  ratio  of silica-rich  solution  to  

alkali  solution enhances  the  possibility  of  geopolymerization  because of  high  

amount  of  SiO2.  For various  aluminosilicate  sources,  it  has  been  authenticated  

that  availability  of  SiO2 is  a  key  factor  to  determine  mechanism  of 

geopolymerization (De Vargas et al., 2011).  

 

Even though the knowledge regarding the mechanisms that control the alkali 

activation process is considerably advanced but many things need further 

investigations. The study of alkali activation of aluminosilicates is a relatively a new 

research domain as compared to traditional Portland cement-based systems. Alkali-

activated aluminosilicates are differentiated from hydrated Portland cements by their 

higher initial alkalinity and the absence of lime. This is quite different hydration 

products from the diverse systems. Thus, the predictions on the properties of alkali-

activated aluminosilicates that are made based on Portland cement chemistry remain 

inappropriate. Whereas the main binding phase of hydrated Portland cement is an 

aluminate substituted calcium silicate hydrate (C-(A)-S-H) gel and the main product 

in alkali activated systems is sodium aluminosilicate hydrate gel designated (N-A-S-

H).  Thus, it is significant to determine the detail mechanism of (N-A-S-H) 

formation. 
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Recent research indicated that the amount of calcium content in the FA have 

significant impact on the resultant hardened geopolymer. Most of the earlier studies 

revealed promising results (Phoo-ngernkham et al., 2015b). Calcium oxide is 

believed to form calcium silicate hydrate (C-S-H) together with the aluminosilicate 

geopolymer gel. Main challenge for wide application of aluminosilicate materials 

based geopolymer is the requirement of curing at elevated temperature. Earlier, 

researchers have attempted to enhance the reactivity of these materials by adding 

some calcium containing substances (Al-Majidi et al., 2016). The addition of 

calcium oxide (CaO) allowed forming the hydrated products such as C-S-H together 

with the alumino-silicate geopolymer network. The amount of CaO content of the 

precursor materials is found to have considerable influence on the resultant hardened 

geopolymer. Meanwhile, an increase in the strength and a decrease in the setting time 

are observed with increasing CaO content.  

 

The compatibility of the two cementitious gels so called C-(A)-S-H and N-A-

S-H has important implications for hybrid Portland cement as well alkali activated 

aluminosilicate systems, where both products might be expected (Yip et al., 2005). 

Previous studies used the synthetic gels to determine the effects of the constituents of 

each gel on the other such as the high pH conditions. The presence of aqueous 

aluminate is found to strongly influence C-S-H composition and structure (Garcia-

Lodeiro et al., 2011). Besides, the aqueous Ca modified the N-A-S-H gels and led to 

a partial replacement of sodium with calcium to form C-A-S-H and N-A-S-H gels 

(Garcia-Lodeiro et al., 2011) as explained using the following reactions. Despite 

these observations, the conditions required for such modifications have not been 

fully defined. Furthermore, to explore the possibility of constructional cements 

having both gels co-existing, a systematic study of N-A-S-H and C-A-S-H 

compatibility seems essential. The process of producing the C-S-H, C-A-S-H and N-

A-S-H gels has been explained in equation (1.1 to 1.6). 

 

 

 

SiO2 + Al2O3 + OH
-
 → SiO2(OH)2

-2
 or SiO2(OH)2

-1
 + Al(OH)4

-1                       
 (1.1) 

 CaO + H2O → Ca
+2

 + OH
-
                                                                           (1.2) 

Ca
+2

 + SiO2(OH)2
-2

 or SiO2(OH)2
-1

 + Al(OH)4
-1

 → C-A-S-Hgel                   (1.3)  
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Ca
+2

 + 2(OH
-
) + SiO2 → C-S-Hgel                                                                 (1.4) 

Ca
+2

 + 2(OH
-
) + Al2O3 → C-A-Hgel                                                              (1.5) 

Na
+1

 + SiO2(OH)2
-2

 or SiO2(OH)2
-1

 + Al(OH)4
-1

 → N-A-S-Hgel                   (1.6)      

 

1.3 Problem Statements 

 

Most of the commercial repair materials owing to their low durability and 

sustainability perform poorly under severe hot and cold climatic conditions. 

Although few epoxy repair materials display good performance but they are 

somewhat costly. Geopolymer prepared from the waste materials with high content 

of aluminium-silicate and alkaline activator solution has emerged as a leading repair 

material. Geopolymeric binders are preferred because they generate 70-80% lesser 

CO2 with remarkably reduced greenhouse gas emissions than Portland cement. 

However, new binders are prerequisite for enhanced durability performance, better 

sustainability, reduced cost and environmental affability. 

 

Currently, intensive researches on the alkali activated mortar as emerging 

construction material have been undertaken, where most studies revealed that an 

elevated concentration of sodium hydroxide and high ratio of sodium silicate to 

sodium hydroxide ≥ 2.5 are preferred for the production of high performance alkali 

activated mortars. Sodium silicate is known to impact negatively on the environment. 

Besides additional cost, high concentration of sodium hydroxide has negative effect 

on the environment and remains hazardous to the workers. High molarity of sodium 

hydroxide and enriched sodium silicate in alkaline solution content are the major 

problems for the usage of alkali activated mortar as new construction materials, 

especially for repairing. This is a serious concern for the environmental safety 

because it is a mineral based material with relatively high demand for sodium silicate 

during synthesis. These deficiencies caused by alkaline solution limits the diversified 

use of geopolymer in the construction industry. 

 

Several studies are carried out on the materials containing calcium 

compounds especially ground granulated blast furnace slag (GBFS). However, most 
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of these studies used high volumes and concentrations of corrosive sodium silicate 

and/or sodium hydroxide to achieve geopolymer products, which posed health and 

safety issues of workers during handling. Davidovits et al. (Davidovits, 2013) 

proposed a user friendly method for geopolymer production to improve the strength, 

reduce the costs by avoiding thermal activation and promote an easier handling 

mechanism. So far, no studies are made on the mechanical performance of ‘user 

friendly’ alkali activated, only the mineralogical and microstructure analyses of the 

geopolymer cement paste have been conducted. 

 

Pacheco-Torgal et al. (2008b) established two models of alkali-activated 

binding systems. First one is related to the alkali activation of Si + Ca systems 

including GBFS with mild alkaline media to form C-A-S-H gel as main product. 

Second model deals with the alkaline activation of Si + Al system such as FA and 

metakaolin that requires a medium with strong alkaline to form N-A-S-H gel as the 

main product. Therefore, potential production procedure of alkali activated mortar 

need to be developed where low alkaline solution concentration (low sodium 

hydroxide molarity and low amount of sodium silicate) must be used by combining 

the effect of slag, high alumium and silicate content materials including FA, POFA 

and CWP with varying ratios of SiO2:Al2O3, CaO:SiO2 and CaO:Al2O3. 

Consequently, the present study intends to develop an environmental friendly and 

low cost alkali activated mortar with broad arrays of applications in the construction 

industry.  

 

 

1.4 Aim and Objectives of the Research 

 

The aim of this study is to investigate the impact of GBFS on fresh, 

mechanical and durable properties of ternary blended alkali activated mortars 

containing FA and POFA or CWP activated with low concentration of sodium 

hydroxide and sodium silicate. Based on the aim of the study and the above 

mentioned problem statement the following objectives are set: 
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i. To characterize the microstructures, physical and chemical properties of FA, 

POFA, GBFS and CWP constituents to develop a mixture proportion of 

ternary blended alkali activated mortars with enhanced durability. 

ii. To determine the fresh and hardened properties of synthesized ternary blend 

alkali activated mortars.  

iii. To evaluate the durability performance of ternary-blend alkali activated 

mortars. 

iv. To compare the bonding properties of ternary blend alkali activated mortars 

with normal OPC mortar substrate. 

 

 

1.5 Scopes of the Research 

 

This research (experimental) focuses on the feasibility of achieving a new 

alkali activated mortars with improved mechanical properties and enhanced 

durability. This new ternary blend alkali activated mortars can be achieved by 

combining FA, GBFS and POFA or CWP with appropriate proportions. The effects 

of various concentration ratios of blends, molarities, on the durability and mechanical 

properties of synthesized alkali activated mortars are examined. Different tests are 

performed to characterize the prepared alkali activated mortars.  Materials 

characterizations are performed in terms of physical properties, chemical properties 

and mineralogical compositions. To obtain the optimum ternary blend, tests on the 

properties of various ternary blended mixes are carried out with varying replacement 

levels, the minimum content of slag (kept up to 20% by weight) and constant alkaline 

solution binder ratio of 0.40. Molarity of sodium hydroxide and the ratio of sodium 

silicate to sodium hydroxide are kept constant of 4 M and 0.75, respectively. The 

properties considered are mortar flow as well as compressive strength, flexural 

strength and porosity after ambient-cured for up to 365 days. The achieved optimum 

multi blend is further used for detail investigations on fresh and hardened properties, 

microstructures and durability. In addition, different proportions of SiO2:Al2O3, 

CaO:SiO2 and CaO:Al2O3  are used for the production of optimum mortar. 



10 

  

 

 

In the fresh state, the setting times, standard consistency and flowablity of the 

optimized ternary blend are determined. Conversely, in the hardened state the 

compressive strength, splitting tensile, flexural, dry shrinkage, bond strength, 

microstructures and durability properties for up to 6 months are evaluated. The 

durability is assessed in terms of resistance of magnesium sulphate, sulphuric acid 

attack, freezing-thawing, abrasion-erosion resistance. Microstructure of alkali 

activated mortar is characterized using the Thermal Gravimetric Analysis (TGA), X-

ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and Scanning Electron 

Microscopy (SEM) measurements. The series of tests are conducted based on the 

procedures of British Standards (BS) and American Society for Teststing and 

Materials (ASTM). International Union of Laboratories and Experts in Construction 

Materials, Systems and Structures is adopted in reviewing the literature. As these 

methods are being well established has enabled a comparison with related studies 

with information on their precision known. 

 

In addition to compressive strength and porosity, the amount of CaO is varied 

for assessing the microstructure of the optimized alkali activated mortars specimens 

in the hardened state. Meanwhile, residual compressive strength, residual mass and 

expansion are used as parameters for measuring the resistance of specimens to 

sulphuric acid, magnesium and sulphate attacks. All the results are analysed and 

presented in the form of graphs and output plots from the XRD, TGA, DTG, and 

FTIR tests. The findings are validated and compared with similar relevant existing 

studies whenever available in the literature. 

      

1.6 Significance of the Research  

 

As abovementioned, this research intends to generate new information on the 

use of ternay blend alkali activated mortars by means of systematic methods of 

sample preparation from waste materials economically, appropriate and careful 

materials characterizations, and subsequent data analyses useful for the development 

of standard specifications for ternary blend alkali activated mortars system for 

diversified practical applications. This generated knowledge is expected to contribute 
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to the development of environmental friendly and inexpensive geopolymer material 

for wide range of applications in the construction industry. This would be greatly 

beneficial for sustainable development of Malaysia, where wastes disposal problems 

towards the land filling can be avoided and minimized. The outcome of the study is 

believed to provide the basis for further researches and better understanding of the 

behaviour of a ternary blend alkali activated mortar obtainable from the waste 

material in a cheap and environmental affable manner.  

 

 

 

1.7 Thesis Organisation   

 

Chapter 1 : renders a general background as well as concrete rationale for 

conducting this study. In addition, a brief explanation of the problem background by 

emphasizing the need of better repair materials and development of new alkali 

activated mortars, aims and objectives, scope and limitations, and importance of this 

study are depicted. 

 

Chapter 2 comprehensively reviews the existing relevant literature and 

describes the properties of alkali activated mortar as well as pozzolanic materials. It 

also outlines the review of previous studies on used geopolymer mortars as repair 

material for fixing damaged concretes. Although, there few or no literature available 

on friendly alkali activated mortar using low molarity of sodium hydroxide and low 

content of sodium silicate as alkaline solution. 

 

Chapter 3 emphasizes a comprehensive description of the materials and 

sample synthesis methods together with the test used for characterizing the samples. 

Basic principle of various tests is underscored useful for the evaluation of alkali 

activated mortars performance. 

 

Chapter 4 highlights the physical and chemical characteristics of FA class F, 

POFA, GBFS and CWP. The outcomes on the optimization of ternary blend alkali 

activated mortar and the in-depth discussions are underlined. 
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Chapter 5 presents the significant experimental outcomes and discussions on 

the fresh and hardened properties of alkali activated mortar, where the microstructure 

properties of the optimized ternary blend alkali activated mortars are analysed and 

discussed. The results on the properties of alkali activated mortars studied in its fresh 

state are the workability/flow, and setting time. At the hardened state, the results on 

characteristics of alkali activated mortars presented are the compressive strength, 

splitting tensile strength, flexural strength, and modulus of elasticity. A relationship 

between (SiO2:Al2O3) and compressive strength of alkali activated mortar is 

established. Furthermore, SEM images and XRD spectra of the ternary blended alkali 

activated mortars revealing the microstructure is analyzed and the mechanisms of the 

formation is understood. 

 

Chapter 6 depicts the results on porosity, chemical attack, freezing-thawing 

and abrasion-erosion resistance tests of the ternary blended alkali activated mortars. 

 

Chapter 7 emphasizes the basic insight on the bond strength between 

conventional mortar and ternary blend alkali activated mortars. An evaluation of the 

durability of synthesized alkali activated mortars is presented. The applications of the 

achieved alkali activated mortars as repair material are assessed.  

 

Chapter 8 concludes the thesis and makes some recommendations for further 

researches in ternary blend alkali activated mortars using waste materials. 
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