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ABSTRACT 

 

 

One-dimensional (1-D) nanomaterials have drawn a lot of attention in last few 

decades because of their novel and unique properties and a wide range of applications. 

ZnO nanomaterials are among the most important 1-D nanomaterials due to their 

semi-conductive, piezoelectric, and biocompatible properties. With these unique 

characteristics, ZnO became one of the most important nanomaterials in scientific 

research and applications nowadays. ZnO is a member of group (II-VI) 

semiconducting compounds and exhibits n-type character so it can be easily doped by 

substituting Zn with group III elements (Al, Ge, In) and O with group VII elements 

(Chlorine, Iodine). Dopant effect can modify the electrical properties of ZnO which is 

an advancement for gas sensor. The large surface area of the ZnO 1-D nanostructures 

makes them attractive for gas sensing, as it can absorb as much of the target gas as 

possible particularly at low concentrations. Consequently, the electrical conductivity 

of ZnO significantly affected by the adsorption and desorption of gas species on their 

surface. In this work, simulation of pure and doped ZnO nanosheet are performed and 

the dopants effect on ZnO electronics, electrical and sensing properties are observed 

by using Quantum Wise simulation by ATK-VNL. The gas sensor based ZnO nano-

structure are fabricated by the atomic scale simulation using Quantum Wise software 

VNL-ATK and examined with group III (Al) and group VII (F) effect on ZnO towards 

gas sensor applications. Pure ZnO found to be sensitive towards group III and Group 

VII elements (Aluminum, Fluorine) by substituting a single O and a single Zn atom 

respectively from the bulk. It was observed an increased on the Fermi energy level 

when introducing the dopants on the ZnO nano surface. The calculated Fermi levels 

were -3.4464 eV, -3.075495eV and -3.1921eV respectively for pure, F-doped and Al-

doped ZnO. The sensitivity performance towards CO gas revealed, F-doped ZnO 

exhibits a 67% sensitivity. This value is higher compared to pure and Al-doped ZnO 

which were 28% and 56% respectively. This shows F-doped ZnO nanosheet can 

enhance the sensitivity towards CO gas sensing.  
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ABSTRAK 

 

 

 Satu dimensi (1-D) nanobahan telah menjadi satu tarikan dalam beberapa 

dekad kebelakangan ini disebabkan oleh ciri-cirinya yang unik dan juga boleh diguna 

dalam pelbagai kegunaan. ZnO nanobahan adalah antara yang terpenting dalam 

kumpulan 1-D nanobahan disebabkan mempunyai ciri-ciri seperti separa 

berkonduksian, piezoelektrik dan bioserasi. Hari ini, dengan ciri-ciri unik tersebut ZnO 

telah menjadi salah satu nanobahan yang terpenting dalam kajian saintifik dan pelbagai 

kegunaan. ZnO ialah semikonduktor sebatian dari kumpulan (II-VI) dan menunjukan 

ciri jenis-n, oleh itu ianya menjadi lebih mudah untuk didopkan dengan menggantikan 

Zn atom kepada unsur-unsur kumpulan III (Al, Ge, In) manakala O atom dengan 

unsur-unsur kumpulan VII (Cl, I). Kesan dopan boleh mengubah sifat elektrik ZnO 

yang merupakan satu kemajuan untuk sensor gas. Luas permukaan yang besar bagi 1-

D nanostruktur ZnO membuatkannnya menarik untuk mengesan gas seperti boleh 

menyerap sebanyak mungkin gas sasaran walaupun dalam kandungan yang sedikit. 

Hal ini demikian, kekonduksian elektrik ZnO secara jelas dipengaruhi jerapan dan 

penyeharapan spesies gas atas permukaanya. Dalam kajian ini, simulasi terhadap ZnO 

tulen dan ZnO nanokeping yang didopkan telah dibuat termasuklah menganalisa 

pengaruh kesan dopan terhadap sifat elektronik dan penderiaan ZnO menggunakan 

Quantum Wise (ATK-VNL). Bagi sensor gas ZnO nanostruktur yang telah 

difabrikasikan melalui simulasi berskala atom dan juga pemeriksaan kesan dopan Al 

dan F dalam ZnO terhadap penggunaan sensor gas telah menggunakan perisian 

Quantum Wise iaitu ATK-VNL. ZnO tulen didapati lebih peka apabila menggantikan 

O atom dengan Al dan Zn atom dengan F. Ianya telah dikesan meningkatkan tenaga 

aras Fermi apabila nanostruktur ZnO didopkan. Aras Fermi yang telah dikira bagi ZnO 

tulen, F-dop ZnO dan Al-dop ZnO masing-masing adalah -3.4464 eV, -3.075495eV 

dan -3.1921eV. Prestasi penderiaan terhadap gas CO juga memperlihatkan bahawa F-

dop ZnO menunjukkan peratus kepekaaan sebanyak 67%. Nilai ini adalah lebih tinggi 

dibandingkan dengan ZnO tulen dan Al-dop ZnO yang masing-masing memiliki 

peratus kepekaan sebanyak 28% dan 56%. Ini menunjukkan F-dop ZnO nanokeping 

boleh meningkatkan kepekaan penderiaan terhadap gas CO. 
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CHAPTER 1 

INTRODUCTION 

1.1  Background Study 

The earliest electronic application of ZnO was the radio set year 1920’s by 

creating a Schottky barrier with wiring a ZnO crystal with a copper wire, which 

provided the amendment needed for converting the AC radio waves to DC signals [1]. 

ZnO was widely spread in electronics for the use of varistors allowing reliable surge 

protection. As material science started progressing during 20th century, ZnO got more 

appreciation in the material investigation. The role of semiconductor nanostructure has 

the colossal impact on the expansion of nanotechnology in last eras such as functional 

devices including Gas Sensor [2] And Biological Sensor [3], Field Effect Transistors 

[4], Light Emitting Diodes [5], solar Cells [6] And Nano-Generators [7]. Among many 

semiconducting oxides for instance SnO2, NiO, MgO, CdO, ZnO have captured the 

most attentions for nano-device applications due to its hexagonal wurtzite structure 

type, electronic distribution, and polarity [8]. 

In 1954 ZnO was confirmed as an n-type material characteristically [9] and the 

light emission from ZnO was also drawing attention among researchers in Germany 

[10].  
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Figure 1.1: Investigation into the Properties of ZnO [11] 

 ZnO has proved to be a propitious semiconductor material for numerous 

applications. Many researches have been carried out and published over the decades 

on ZnO and ZnO related materials. The Figure 1.1 above shows the steady growth of 

investigations on ZnO in every ten years.  

 ZnO possesses direct and extensive band gap of 3.37 eV with a large free-

exciton binding energy [12-16] at room temperature. The optical and piezoelectric 

properties of ZnO make it a noble application for transducers, sensors, and energy 

generators, as well as in photo-catalysis for hydrogen production [17]. Although, the 

vast use of ZnO in many applications was proceeding, ZnO was slowed down in 

electronics devices due to the absence of control over its electrical conductivity as ZnO 

crystal found naturally n-type which made it more debatable and cause of advance 

research [18–20]. To control the unpremeditated n-type conductivity and to attain p-

type conductivity in ZnO many research started focusing on its semiconductor 

properties. Optical, magnetic and electrical properties of a semiconductor can be 

overelaborated by impurities or doping with other elements. Different group elements 

as dopants have various effect on semiconductor materials for numerous applications. 



3 
 

Doping of ZnO with group I-VII elements Li, Na, K [21], Mg [22], Ga [23], Si 

[24], N [25], S [26], Cl [27], transitional elements such as Cr, Fe, and Ni [28] and rare 

earth elements La [29] have been confirmed and reported to bring additional 

enhancements on optical, structural, electrical, and magnetic properties of ZnO. P-type 

conductivity on ZnO is still controversial as the properties of these acceptor-doped 

samples are often unsteady [30-34].   

Both pure and doped ZnO nanostructure have verified their capability in many 

applications among the earliest learnt metal oxide materials [35]. The furthermost 

common application of semiconducting metal oxide (SMO) is the resistive element in 

gas sensor between different applications. ZnO is the 2nd most oppressed solid for gas 

detecting after SnO2 because of its distinctive structure and possessions [36]. 

The environment is critically getting polluted by the growing energy 

consumptions in today’s world, which is affecting human and animal safety in terms 

of their health. Hazardous gases are created from the burnt energy such as painting, 

smoking, petrol filling, building, diggings of polluted soils, landfill procedures, 

entering restricted spaces, etc. Many investigations have brought out to detect those 

toxic gases such as CO [37], O2 [38], LPG [39], NO2 [40], H2S [41], Alcohol [42] and 

to protect the environment from their harmful affect all over the world. An efficient 

study led the knowledge proceeding the deviations in the electrical properties of 

semiconductor materials due to the iteration of gas molecules at the surface and that 

study driven the research on metal oxides for gas sensing application further [43-45]. 

Japan invented and published a research paper on gas sensor utilized by semiconductor 

catalyst mechanism, which indicated the measurement of resistance change in a 

metallic oxide (ZnO) when it comes in contact with a gas in 1962 [46]. In addition, 

further investigation discovered metal impurities or doping can enhance the reaction 

of the gas sensor towards an object gas by reducing particle size, by altering operation 

temperature and humidity. The selection of metal oxide with respect to the types of 

gas and effects of dopants on the semiconductor material were also studied to have a 

strong understanding about the connection between the metal oxide and gas. Constant 

advancement of nanoscience and technology has brighten the field more and steered 

the sensor technology to drastic revolution [47-63]. 



4 
 

In this current study, the effect of various dopants on ZnO surface such as 

electrical properties and the gas sensitivity of pure and doped ZnO toward targeted gas 

have been focused on by using Quantum-wise Atomix Toolkit for simulation process. 

Initially Aluminum (Al) and fluorine (F) as dopants and toxic gas Carbon Monoxide 

(CO) have been chosen for the research. 

1.2 Problem Statement 

 The wide band gap and crystal structure of ZnO made it the most potential 

candidate for gas sensing among other metal oxides. Numerous studies have been done 

on gas sensing properties of ZnO over decades by using synthesis methods for example 

Chemical Vapor Method (CVD), Thermal Evaporation, Laser Ablation, Solution 

Methods and ARC Plasma Reaction etc. Most synthesis methods used are time 

consuming and costly for the whole process. So, the simulation using Quantum Wise 

is a better way to examine and predict the sensitivity and the properties of both pure 

and doped ZnO. 

1.3 Objectives of Project 

The main purpose of the study is to design a ZnO nanosheet and observe the 

dopants effect on ZnO electronics and electrical properties and compare gas sensing 

properties on the both pure and doped models by using Quantum Wise simulation by 

ATK-VNL. 

To characterize the electrical properties of pure ZnO nanosheet in Quantum 

wise Simulation tool. 

1. To compare the band structures and electrical properties with effect of dopants 

(Al and F) on ZnO nano-sheet. 
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2. To analyze and compare the sensing properties of pure and doped ZnO 

nanostructure under the influence of dangerous gas (CO). 

1.4 Scope of Study 

These are the scopes of study: 

1. Simulation of both conventional wurtzite nanosheet pure and doped ZnO using 

Quantum Wise ATK VNL software package.  

2. The dopant elements Aluminum (group III) and Fluorine (group VII) will be 

used to analyze the electrical and sensing performance. 

3. Measure the sensing performance based on one molecule of CO gas. Verify the 

gas sensing parameters such as gas sensitivity (S) and limit of detection for 

ZnO-based gas sensor with the use of CO gas. 

 

1.5 Research Outline 

 The framework of this thesis is divided into five chapters. The first chapter has 

discussed the introduction of the project. These include project background, problem 

statements, research objectives, scope of project work, the organization of thesis and 

planning for the project work for both semester. 

 The next Chapter discusses the literature review related to this research project. 

Literature review is established on the previous research work done by the researchers, 

including the published thesis and journal. Initially the main focus of this literature 

analyses was to recognize the basic electrical and electronic properties and the doping 
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effect on ZnO achieved by several experiments performed. Later on the studies fixated 

on the gas sensitivity of pure and doped ZnO. Many conclusive results and descriptions 

of ZnO properties can be figured out from all these resources, which were really 

beneficial for this current study. 

 Chapter three demonstrates the methodology of this research project. The steps 

of the project are summarized in flowcharts and figures in this part. 

 Chapter four designates the main results of this project, where the electronic 

and electrical properties of pure and doped ZnO obtained from the simulation by ATK 

VNL have been presented. Moreover the proposed result of the project which was to 

find the sensitivity of pure and doped ZnO towards the gas CO are exposed. 

 The conclusion part of the project is enclosed in Chapter five. All the results 

and discussions made in Chapter four were concluded with the proposals for future 

work, which can be done on ZnO by simulation process. 

1.6  Summary 

 Due to the rich basic properties of ZnO, it can be doped by different group 

member on the periodic table to tune its band gap and thus can be very useful candidate 

for several nano-electronic devices. These dopants effect and sensitivity can be easily 

and effectively simulated on ATK VNL before going into actual physical 

configuration of the device. In this way researchers can save cost and time and avoid 

trial and error process of experimental studies.
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