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ABSTRACT 

 

 

 

 

 Design of highly efficient photocatalysts that is workable for various 

photocatalytic processes such as organic pollutant degradation and hydrogen 

production from water is crucial. Zinc oxide (ZnO) is the suitable candidate for such 

photocatalysis, owing to its superior activity under UV light. For phenol degradation, 

ZnO prepared by precipitation method showed ca. 10% degradation. This activity 

was twice higher compared with the ZnO prepared by calcination method due to 

higher degree of crystallinity, larger surface area (15 m
2
g

-1
) and higher interactions 

with phenol (Ksv = 0.0051 ppm
-1

). Unfortunately, poor responses to visible light and 

high rate of electron hole pair recombination have limited the use of ZnO as a 

photocatalyst. In order to overcome the drawbacks of the ZnO, carbon nitride-zinc 

oxide (CN-ZnO) and reduced graphene oxide-zinc oxide (rGO-ZnO) composites 

were prepared by impregnation and photoreduction methods, respectively. The 

effects of zinc to carbon mole ratio (Zn/C) for the CN-ZnO composites and GO 

loading amounts for the rGO-ZnO composites towards physical and chemical 

properties were studied. Both series of CN-ZnO and rGO-ZnO composites showed 

improved absorption in the visible light region, as proven by diffuse reflectance 

ultraviolet-visible (DR UV-visible) spectra. Fluorescence and electrochemical 

impedance spectroscopies (EIS) confirmed that the increased loading of CN or GO 

on ZnO led to the suppression of electron hole recombination in the ZnO. The 

transmission electron microscopy (TEM) images revealed that intimate contact was 

formed between ZnO to CN and ZnO to rGO. The prepared CN-ZnO and rGO-ZnO 

samples were studied for photodegradation of phenol and photocatalytic hydrogen 

production from water under visible light and UV irradiation, respectively. After 5 

hours reaction under visible light, the best photocatalyst for the CN-ZnO series was 

the CN-ZnO(1) that showed ca. 43% phenol degradation, while ZnO only achieved 

ca. 15% degradation. The improved photocatalytic efficiency of the CN-ZnO was 

due to the role of the CN to suppress electron-hole recombination and extend the 

absorption of ZnO to the visible light region. For the rGO-ZnO samples, after 6 

hours of irradiation under UV light, the best photocatalyst was rGO(3)-ZnO with 

31% phenol degradation, which was 3 times higher than ZnO with ca. 9% 

degradation. The optimum light intensity to produce rGO(3)-ZnO with low defects 

(ID/IG = 0.94) was 0.4 mW cm
-2

, while the irradiation time was 24 hours. The 

rGO(3)-ZnO sample was also the best photocatalyst for hydrogen production from 

water. The presence of Pt (0.25 wt%) increased the hydrogen production of the 

rGO(3)-ZnO from 20.2 to 99.3 µmol after 5 hours reaction under UV light in the 

presence of methanol as a sacrificial agent. Hydrogen production was dependent on 

the oxidation potential of the sacrificial agent, in the following order: methanol > 

hydroquinone > catechol > phenol. 
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 Reka bentuk fotomangkin yang cekap dan mampu berfungsi untuk pelbagai 

proses fotopemangkinan seperti degradasi pencemar organik dan penghasilan 

hidrogen daripada air amat diperlukan. Zink oksida (ZnO) adalah calon bahan yang 

sesuai untuk fotopemangkinan, disebabkan aktivitinya yang unggul di bawah cahaya 

UV. Untuk degradasi fenol, ZnO yang disediakan menggunakan kaedah pemendakan 

menunjukkan degradasi ca. 10%. Aktiviti ini dua kali lebih tinggi berbanding ZnO 

yang disediakan dengan kaedah pengkalsinan disebabkan darjah penghabluran yang 

tinggi, luas permukaan (15 m
2
g

-1
) yang lebih besar dan interaksi dengan fenol (Ksv= 

0.0051 ppm
-1

) yang lebih tinggi. Malangnya, gerak balas yang lemah terhadap 

cahaya nampak dan kadar tinggi penggabungan semula pasangan elektron-lubang 

telah mengehadkan penggunaan ZnO sebagai fotomangkin. Untuk mengatasi 

kelemahan ZnO, komposit karbon nitrida-zink oksida (CN-ZnO) dan grafin oksida 

terturun-zink oksida (rGO-ZnO) masing-masing telah disediakan menggunakan 

kaedah pengisitepuan dan fotopenurunan. Kesan zink ke atas nisbah mol karbon 

(Zn/C) untuk komposit CN-ZnO dan jumlah muatan GO untuk komposit rGO-ZnO 

terhadap sifat fizikal dan kimia telah dikaji. Kedua-dua siri komposit CN-ZnO dan 

rGO-ZnO menunjukkan peningkatan penyerapan di kawasan cahaya nampak, 

dibuktikan dengan spektrum pantulan serakan ultralembayung-cahaya nampak (DR 

UV-visible). Spektroskopi pendarfluor dan impedans elektrokimia (EIS) 

mengesahkan bahawa penambahan muatan CN atau GO ke atas ZnO mendorong 

kepada penyekatan penggabungan semula pasangan elektron-lubang dalam ZnO. 

Imej mikroskopi penghantaran elektron (TEM) mendedahkan terjadi sentuhan rapat 

antara ZnO ke CN dan ZnO ke GO. Sampel CN-ZnO dan rGO-ZnO yang disediakan 

telah dikaji masing-masing untuk fotodegradasi fenol dan fotopemangkinan 

penghasilan hidrogen daripada air di bawah cahaya nampak dan penyinaran UV. 

Selepas 5 jam tindak balas di bawah cahaya nampak, fotomangkin terbaik untuk siri 

CN-ZnO adalah CN-ZnO(1) yang menunjukkan degradasi fenol ca. 43%, manakala 

ZnO hanya mencapai degradasi ca. 15%. Peningkatan kecekapan fotopemangkinan 

CN-ZnO adalah kerana CN berperanan dalam menyekat penggabungan semula 

elektron-lubang dan memperluas penyerapan ZnO ke kawasan cahaya nampak. 

Untuk sampel rGO-ZnO, selepas 6 jam penyinaran di bawah cahaya UV, 

fotomangkin terbaik adalah rGO(3)-ZnO dengan degradasi fenol sebanyak 31%, iaitu 

3 kali lebih tinggi daripada ZnO dengan degradasi ca. 9%. Keamatan cahaya 

optimum untuk menghasilkan rGO(3)-ZnO dengan kurang kecacatan (ID/IG = 0.94) 

adalah 0.4 mW cm
-2

, manakala masa penyinaran ialah 24 jam. Sampel rGO(3)-ZnO 

juga merupakan fotomangkin terbaik untuk penghasilan hidrogen daripada air. 

Kehadiran Pt (0.25 wt%) meningkatkan penghasilan hidrogen rGO(3)-ZnO dari 20.2 

ke 99.3 µmol selepas 5 jam tindak balas di bawah cahaya UV dengan kehadiran 

metanol sebagai agen korban. Penghasilan hidrogen bergantung kepada keupayaan 

pengoksidaan agen korban mengikut turutan: metanol > hidrokuinon > katekol > 

fenol. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of the study 

 

 

Zinc oxide (ZnO) with tremendous unique advantages such as high electron 

mobility [2000cm
2
/(V.s)], high temperature stability, excellent heat capacity and 

thermal conductivity, good antibacterial and anticorrosive properties is generally 

used in various practical applications, for instances in the oil lubricants (Battez et al., 

2006) electronic and optoelectronic (Chen et al., 2013; Logothetidis et al., 2008), 

catalysis (Lorenz et al., 2013; Sabbaghan and Ghalaei, 2014), biomedicine and 

biosensing (Ansari et al., 2011; Arya et al., 2012), energy storage (Cauda et al., 

2014), gas sensing (Galstyan et al., 2015; Wang et al., 2012) and solar cell (Cauda et 

al., 2014; Huang et al., 2011; Li et al., 2012). ZnO has been recognized to show an 

exceptional potential ability in the photocatalysis due to its unique properties of 

having wide band gap in the UV range of 3.37 eV, high chemical inertness, immense 

quantum efficiency, low toxicity, strong oxidation ability, excellent redox potential, 

tunable morphology, high abundance and easily soluble in organic 

solvents(Behnajady et al., 2006; Chen et al., 2008; Chen et al., 2014; Chekir et al., 

2016; Daneshvar et al., 2004; Khezrianjoo et al., 2013; Kumar and Rao, 2015; Lee et 

al., 2016; Ma et al., 2011; Pardeshi and Patil, 2009; Xie et al., 2011; Yassitepe et al., 

2008; Zhang et al., 2012; Zhang et al., 2014).  

 

 

Previous researches reported that ZnO exhibited higher photocatalytic 

efficiency than the benchmark photocatalyst of titania (TiO2) in degradation of 

organic dyes and pollutants since ZnO was capable to absorb wider range of solar 
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spectrum and light quanta better than TiO2 with threshold of 425 nm (Chakrabarti et 

al., 2004; Chekir et al., 2015; Daneshvar et al. 2004; Khezrianjoo et al., 2013). 

Tianet al. (2012) have demonstrated a superior photocatalytic performance of ZnO 

with scalable production as compared to Degussa P25 TiO2. The ZnO was prepared 

by only direct calcination of Zn(Ac)2.2H2O at 600 °C. The obtained yield of ZnO 

sample was 97% and it showed completed degradation methyl orange and rhodamine 

B after 2 h. Saravananet al. (2013) carried out the comparative study on the effect of 

preparation methods of ZnO for degradation of methylene blue and methyl orange. 

The ZnO sample prepared by chemical precipitation of Zn(Ac)2.2H2O under basic 

condition showed a remarkable activity with full mineralization of methylene blue 

and 62% degradation of methyl orange. 

 

 

Eventhough, ZnO showed great activities in photocatalytic degradation of 

organic pollutants and organic dyes, it could only absorb light in UV region due to its 

large band gap. Enormous amount of energy is needed to activate ZnO as a 

photocatalyst since UV light comprises only 5% portion in the solar spectrum. Thus, 

modification of ZnO to extend its absorption to visible light region must be 

performed. Many attempts have been used in order to obtain ZnO with visible light 

property by tailoring and modification of the surface property of ZnO with dopants 

(Chen et al., 2008; Kong et al., 2009; Zhang et al., 2012), dye sensitization (Saikia et 

al., 2015; Velmurugan and Swaminathan, 2011; Yang and Chan, 2009), polymer 

(Olad and Nosrati, 2012; Qiu et al., 2008), and surface passivation (Li et al., 2009). 

Semiconductor coupling of ZnO with other narrow band gaps semiconductors such 

as CuO (Saravanan et al., 2011), CdO (Saravanan et al., 2013) and BiOI (Jiang et al., 

2011) offered promising results as compared to other approaches mentioned above 

since it provided a synergistic effect which induced adequate charge separationsfor 

the improvement of the photostability especially to tackle the problemof 

ZnOphotocorrosion.  

 

 

Over the past decade, research on the polymeric carbon nitride (CN) as a free 

metal semiconductor and visible light driven photocatalystis particularly in interest, 

owing to its advantages such as high photostability, high surface area, responsive to 

the visible light absorption up to ca. 470 nm and its abundance (Ansari et al., 2011; 
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Chen et al., 2013; Thomas et al., 2008; Zheng et al., 2012). However, bare CN alone 

suffered electron-hole recombinations, which limited its performances forvarious 

photocatalytic applications. In order to cover up the weaknesses of the CN, 

composites consisting of CN with other active semiconductor wereproposed and they 

showed remarkable activities in photodegradation of organic pollutants and hydrogen 

evolution from wateras compared to the bare CN (Ge and Han, 2012; Tian et al., 

2013).Yanet al. (2011) have successfully prepared TiO2-CN photocatalysts for H2 

evolution under visible light irradiation and the prepared composite showed two 

times higher performance than bulk CN. Another report of inorganic-organic 

heterojunctions of CdS-CN composite photocatalyst showed an exceptional activity 

compared to only individual CN or CdS and even better activity than the benchmark 

visible light photocatalyst N-doped TiO2 for degradation of methyl orange and 4-

aminobenzoic acid (Fu et al., 2013).  

 

 

In the early of 2000s, modification of ZnO by carbon based materials, such as 

graphene (GR) has been reported intensively.Since GR was introduced by Geim and 

Novoselov (2007), this rapidly rising starof two-dimensional (2D) material has been 

widely used especially as the modifier for photocatalysts, owing to its exceptionally 

unique properties such as high electron conductivity, excellent mechanical 

properties, high specific surface area and high thermal stability (Balandin et al. 2008; 

Bolotin et al., 2008; Rafiee et al., 2009; Worsley et al. 2010; Wu et al., 2008)  

Despite of the excellent properties of GR, graphene oxide (GO) is more favourable to 

be used as a modifier due to the presence of abundant oxygen functional groups, 

which able to interact with organic and inorganic compounds to produce stronger 

interaction of hybrid composite photocatalysts (Iwaseet al. 2011, Yun et al., 2013). 

However, GO itself is an insulating material with poor electron conductivity, thus in 

order to restore the electron conductivity of GO sheets, it has to be reduced to form 

reduced graphene oxide (rGO).  

 

 

The ZnO-rGO composite has been commonly synthesized by several 

strategies, such as direct exfoliation, in situ growth and thermal reduction methods 

(Kumar et al., 2015; Luo et al., 2012; Lv et al., 2011; Zhan et al., 2012). 

Unfortunately, the reduction of GO to rGO by these methods relies on the use of 
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toxic reducing agents such as sodium borohydride (NaBH4) and hydrazine (N2H4) 

which introduced residue of reductant into rGO suspension. The implementation of 

heat treatment in the preparation of ZnO-rGO is not favourable since it creates rGO 

with less crystalline structure and more defects. Therefore, an alternative strategy 

using UV light to assist the reduction process in the presence of suitable 

photocatalyst should be adapted. A clean and environmental-friendly reduction 

method to convert GO to rGO using TiO2 or ZnOas photocatalyst under UV light 

irradiation at room temperature has been demonstrated (William et al., 2008; 

William et al., 2009). This approach offers a few advantages such as no involvement 

of toxic reducing agents, no impurities created during composite formation, no side 

reactions with water as well as the mild condition needed to conduct a synthesis 

process. 

 

 

Liu et al.(2012) firstly reported the photocatalytic property of rGO-ZnO 

prepared by this mild method for reduction of Cr(IV). Notably, the rGO-ZnO 

composites wereable to achieve maximum reduction of Cr(IV) which was 1.5 times 

higher than bare ZnO due to the successful suppression of electron hole 

recombinations on ZnO as well as the increasein the light absorption capability. 

However, the use of excessive light intensity in order to synthesize rGO-ZnO 

composites may lead to the defect formation on the rGO sheets, which dramatically 

lower the potential electron conductivity between rGO and ZnO system and thus, 

affect the photocatalytic property. On the other hand, ZnO with strong photocatalytic 

abilityis able to decompose the oxygen functionalities of GO by reduction process 

that led to the unrecovered process of sp
2
 C-C bond of graphite. Owing to the high 

reactivity of ZnO, a control reaction condition is necessary during the synthesis 

process. 

 

 

Oxidation of phenol and its derivatives were investigated as they are 

considered asnoxious compounds released from the industrial as effluents. Especially 

for phenol, it is very stable and it remains in the wastewater for a long term. Due to 

its carcinogenic and toxicity factors, it will destroy ecosystem in water as well as 

human health (Gupta et al., 2012, Pardeshi et al. 2008), if it is not treated well before 

its disposal. Since photocatalytic process involves a minimum requirement of energy 
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for removal of organic pollutant, it is believed that photocatalytic reaction is a green 

method for phenol removal. Some studies on the removal of phenol by ZnO have 

been reported. However, the use of the CN-ZnO and rGO-ZnO composites for 

phenol removal has not been reported yet. If the composites are able to oxidize 

phenol, the use of phenol as a sacrificial agent in the photocatalytic hydrogen 

production from water is feasible.  

 

 

Hydrogen is regarded as an alternate fuel replacing the existing fossil fuel in 

the future, which offers a clean combustion and renewable source, leading to the 

green technology. The sources of hydrogen production are commonly from 

renewable energy such as water. Hydrogen production by photocatalytic water 

splitting offers a clean, low cost and environmentally friendly way of utilizing solar 

energy, but the use of photocatalyst is limited since it is difficult to produce hydrogen 

in large scale. Photoelectrochemical hydrogen production was early reported by 

(Fujishima and Honda, 1972) using TiO2 photocatalysts. Subsequently, studies on 

semiconductor photocatalysts were grown significantly. Since hydrogen production 

by photocatalytic water splitting is an uphill reaction with highly exothermic process 

(∆H> 0), requires large amount of input energy and involves fast backward reaction, 

sacrificial agents are usually employed to proceed the reaction.  

 

 

Sacrificial agent is needed in photocatalytic hydrogen production since it 

prevents fast backward reaction of recombination hydrogen and oxygen to form 

water. The utilization of organic pollutants such as phenol and its derivatives as the 

sacrificial agent has barely been reported and in this study,the exploration of the 

possibility to produce hydrogen from water in the presence of phenol and its 

derivatives was performed. There are certain requirements for photocatalysts to be 

able to catalyze water splitting. The photocatalysts should have more negative 

conduction band (CB) level than hydrogen production level (EH
+
/H2, 0 eV), while the 

valence band (VB) should be more positive than water oxidation level (EO2/H2O, 1.23 

eV).  

 

 

ZnO photocatalysts are able to fulfil the requirements but the photocorrosion 

and high rate of electron-hole recombinations inhibit the efficiency and cycle life of 
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water splitting. Even though modification of ZnO photocatalysts with carbon based 

materials such as rGO able to solve the ZnO problem, the production rate of 

hydrogen from water by these composite is still considered low. Noble metals 

loading such as platinum (Pt) (Kmetykóet al., 2014, Xie et al., 2017), gold (Au) 

(Iwase et al., 2006, Rayalu et al. 2013), rhodium (Rh) (Zhang et al., 2014, Jia et al., 

2014)were reported as the co-catalyst and proven capable to accelerate the hydrogen 

production rate. Although there are many reports on the noble metal especially Pt for 

water splitting process, but there is no report on the modification of Pt towards the 

rGO-ZnO.  

 

 

 

 

1.2 Statement of Problem 

 

 

 Many studies have been reported on the photocatalytic activity of ZnO for 

degradation of organic pollutants and dyes under UV light irradiation. Since the solar 

spectrum consists of 40% visible light and only 5% UV light, itis necessary to 

develop awide range of active photocatalyst in both visible and UV light irradiation 

rather than only UV active photocatalyst. Since ZnO only provides light absorption 

up to ca. 370 nm, activityof ZnO under visible light irradiation is relatively low. In 

this study, modification of ZnO with CN was able to provide light absorption up to 

ca.470 nm, which greatly enhanced the activity of ZnO under visible light 

irradiation. The effect of CN onto ZnO for photocatalytic removal of phenol and 

photocatalytic hydrogen evolution was evaluated and the mechanism of reaction was 

proposed. 

 

 

ZnO has been reported to show relatively high activity for certain 

photocatalytic reactions. However, the main drawbacks of ZnO which are suffered 

from fast electron-hole recombination and photocorrosion cause the actual activity 

cannot be retained after several cycles. Many reports have shown that modification 

of ZnO with rGO able to suppress the main drawbacks of ZnO in photocatalysis. The 

reported common rGO synthesis usually involves hazardous reducing agents and 

thermal reduction process, which are harmful and able to affect the properties of the 

formed rGO. In this study, a green and safe process, which is photocatalytic 
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reduction method was used by applying ZnO as the photocatalyst. While there isa 

report addressing this method for preparation of rGO-ZnO (Liu et al., 2012), there is 

no study on the optimization of the synthesis parameters to obtain a highly active 

rGO-ZnO photocatalyst. In order to obtain high performance for photocatalytic 

hydrogen production rate, most of the reported literatures implied the noble metal 

such as Pt, Pd and Rh to accelerate the production rate of hydrogen during reaction. 

However, the investigation of noble metal for modification of rGO-ZnO 

islessreported. This study examined the effect of Pt toward properties rGO-ZnO 

photocatalysts and their activities for photocatalytic hydrogen evolution from water 

containing phenol and its derivatives as sacrificial agents under UV light irradiation. 

 

 

Phenol and its derivatives are toxic compounds that have to be treated before 

their disposals. A green approach should be designed to remove phenol and its 

derivatives through environmentally benign process. In the present study, it is 

important to study the photocatalytic activity of the prepared materialsfor these 

organic pollutants removal. Theoretically, phenol may act as a sacrificial agent for 

hydrogen production from water. However, it has to be clarified since there is no 

such study up to now. If the prepared composites act as good photocatalysts to 

oxidize phenol and its derivatives, it might be possible to use them as alternative 

sacrificial agents for hydrogen production from water. Wastewater containing 

organic pollutants has never been related as the energy source. This means that the 

possibility to produce hydrogen production from wastewater has not been revealed 

yet and remained as a significant challenge. In order to realize the use of the 

wastewater as the green energy source, the design of good and active photocatalysts 

is highly required. It is still unclear if a good photocatalyst for removal of organic 

pollutants will also act as a good photocatalyst for hydrogen production from pure 

water or wastewater containing organic pollutants. 

 

 

 

 

1.3 Objectives  
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In order to obtain highly active photocatalysts for degradation of phenol and 

photocatalytic hydrogen production from water containing sacrificial agents, several 

objectives need to be achieved asshown below. 

 

 

a) To synthesize CN-ZnO and rGO-ZnO composites. 

b) To investigate the significant parameters affecting the synthesis process of rGO-

ZnO. 

c) To determine the structural, optical, textural, morphological, and 

electrochemical properties of the ZnO, CN-ZnO, rGO-ZnO and Pt/rGO-ZnO. 

d) To evaluate the photocatalytic ability ofZnO, CN-ZnO, rGO-ZnO and Pt/rGO-

ZnO photocatalysts for photocatalytic removal of phenol as well as 

photocatalytic hydrogen production from water containing phenol and its 

derivatives as the sacrificial agent. 

 

 

 

 

1.4 Scope of Study 

 

 

This study was divided into three different main parts, which involved the 

preparation of different types of ZnO for removal of phenol, modification of ZnO by 

CN for removal of phenol and photocatalytic hydrogen production, and modification 

of ZnO by rGO and Pt co-catalyst for removal of phenol and photocatalytic hydrogen 

production with different sacrificial agents. 

 

 

The first part involved the synthesis of ZnO via two different approaches 

which were direct calcination and co-precipitation methods from zinc acetate 

precursor. The properties of the prepared ZnO samples were characterized by various 

techniques, such as X-ray diffraction (XRD) spectroscopy, Fourier-transform 

infrared (FTIR) spectroscopy, diffuse reflectance ultraviolet-visible (DR UV-Vis) 

spectroscopy, nitrogen adsorption-desorption for Brunauer-Emmett-Teller (BET) 

specific surface area and fluorescence spectroscopy. The photocatalytic performance 

of ZnO samples was tested for removal of phenol under UV light irradiation for 6 h. 
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The concentration of phenol after the photocatalytic reaction was determined by 

using gas chromatography equipped with flame ionization (GC-FID). 

 

 

In the second part of study, the hybrid composite of CN-ZnO was prepared 

by the impregnation method.The CN was initially synthesized fromthermal 

polymerization method of urea as starting as precursor, while ZnO was prepared by 

the direct calcination method.Initial ratios of zinc precursor to CN were varied from 

1 to 50. The properties of synthesized CN-ZnO composites were characterized by 

XRD spectroscopy, FTIR spectroscopy,nitrogen adsorption-desorption for BET 

specific surface area, electrochemical impedance spectroscopy (EIS), transmission 

electron microscopy (TEM), DR UV-Vis spectroscopy and fluorescence 

spectroscopy. The photocatalytic performance of CN-ZnO samples was evaluated 

through removal of phenol under visible light irradiation for 6 h and photocatalytic 

hydrogen production from methanol was conducted under visible light irradiation for 

5h. The concentration of phenol after phenol oxidation reactionwas determined by 

using GC-FID and H2 gas evolved during photocatalytic hydrogen production 

reaction was measured by using gas chromatography equipped with thermal 

conductivity detector (GC-TCD). Radical scavengers used were tert-butyl alcohol 

(TBA), 1,4-benzoquinone (BQ), and ammonium oxalate (AO).  

 

 

In the third part of the work, the rGO-ZnO composites were prepared by 

photocatalytic reduction method. The GO was prepared by the improved Hummers 

method while ZnO was prepared by co-recipitation method. The ZnO was modified 

with various loading amounts of GO ranging from 0.5-10 wt%. The synthesis  

method for best sample, the rGO(3)-ZnO, was further optimized, involving different 

light intensity of 0.2-14.0 mW/cm
2
 and various time duration exposure of 3-30 h. In 

order to achieve high activity on water production, the platinum (Pt) was introduced 

on the best sample from the optimization study, with various contents of 0.1-0.5 

wt%.Properties of the synthesized rGO-ZnO composites were characterized by XRD 

spectroscopy, FTIR spectroscopy, thermogravimetric analysis (TGA), Raman 

spectroscopy, EIS, photocurrent transient response, SEM, TEM, DR UV-Vis 

spectroscopynitrogen adsorption-desorption for BET specific surface area and 

fluorescence spectroscopy. The photocatalytic performance of rGO-ZnO samples 
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was tested for removal of phenol under UV light irradiation for 6 h and 

photocatalytic hydrogen production from methanol under UV light irradiation for 5 

h, respectively. Sacrificial agents used for hydrogen production were phenol, 

catechol and hydroquinone.  

 

 

 

 

1.5 Significance of Study 

 

 

This work develops ZnO basedphotocataysts, which are relatively active 

photocatalysts,by simple preparation methods and cheap starting precursor. 

Moreover, the lacking of ZnO capability in absorbing visible light portion can be 

reduced by modification with CN, so utilization of solar energy having large portion 

of visible region can be achieved. Furthermore, additional modification of ZnO with 

rGO could provide the interfacial charge transfer between ZnO and rGO which 

promotedthe enhancement of activity. Both the used CN and rGO modifierswere able 

to suppress the drawbacks of ZnO by reducing electron hole recombinations, 

preventingphotocorrosion, and extending visible light absorption. Hence, these 

studies are very important in enhancing the knowledge in photocatalytic science 

since the prepared ZnO based photocatalyst materialscan be activated under both UV 

and visible light irradiation. 

 

 

 The efforts to reduce, treat, and even utilize the wastewater are very crucial to 

maintain the sustainability of our environment. Based on this research, an alternative 

approach to treat organic pollutants from wastewater as well as production of 

hydrogen can be acquired at the same time by photocatalysis process. Throughout 

this study, the potential of ZnO based photocatalysts was disclosed for degradation of 

phenol and hydrogen production using sacrificial agents of phenolic compounds. In 

Malaysia, for example, the sources of hydrogen production are mainly come from 

fossil fuel and only a few researches have been done in the field of photocatalytic 

hydrogen production. This research is covering one of the essential issues for our 

country, i.e., to take initiative on the study of hydrogen production using clean and 

low cost photocatalytic method. 
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