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ABSTRACT 

Magnesium-zinc-sulfophosphate (P2O5-MgO-ZnSO4) glasses being a 

prospective host for lasing active media require precise composition optimization and 

systematic characterization. A series of glass samples in the composition of (60.0-

x)P2O5-20.0MgO-20.0ZnSO4-xRE2O3 (0.0 ≤ x≤ 2.0 mol% and rare earth (RE) = Sm, 

Dy, and Er), (59.5-y)P2O5-20.0MgO-20.0ZnSO4-0.5RE2O3-yAgCl (0.0 ≤  y ≤  0.5 

mol% and RE = Sm and Dy) and (59.5-z)P2O5-20.0MgO-20.0ZnSO4-0.5Er2O3-zAgCl 

(0.0 ≤ z≤ 1.5 mol%) were synthesized using melt-quenching technique. The samples 

were thoroughly characterized using X-ray diffraction (XRD), transmission electron 

microscopy (TEM), Fourier transform infrared (FTIR), ultraviolet-visible (UV-Vis) 

absorption, photoluminescence (PL) and Raman spectroscopy. XRD verified the 

samples amorphous nature and TEM images manifested the nucleation of 

homogeneously distributed spherical silver (Ag) nanoparticles in the glass matrix. 

FTIR spectra revealed the bonding vibrations for P-O bonds, P-O-P linkages, and PO2 

units. There is no evidence in Raman spectra of RE (RE= Sm, Dy and Er) doped P2O5-

MgO-ZnSO4 glasses to confirm the incorporation of the sulfate ions to the network 

formation. The absorption spectrum of RE (RE = Sm, Dy and Er) doped P2O5-MgO-

ZnSO4 glasses with and without incorporation of Ag nanoparticles is originated from 

electronic transitions from the ground level to various excited levels belonging to the 

4f9 electronic configuration of the RE ions. Absorption and emission spectra are used 

to evaluate the Judd-Ofelt (JO) intensity parameters and radiative transition 

probabilities, branching ratios and stimulated emission cross-sections of the three RE 

ion (RE = Sm, Dy, and Er) doped glass systems. The room temperature PL spectra of 

samarium-doped glass revealed four emission peaks centered at around 562, 599, 644, 

and 702 nm, which are assigned to the transitions from 4G5/2 to 6H5/2, 
6H7/2, 

6H9/2 and 
6H11/2, respectively. The PL spectra of dysprosium-doped glass displayed two 

prominent peaks at around 480 nm and 574 nm corresponding to the 4F9/2→6H15/2 and 
4F9/2→6H13/2 transitions, respectively and two weak peaks. Conversely, erbium-doped 

glass system exhibited two strong emission peaks centered at around 541 nm and 654 

nm attributed to the 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions, respectively. All glass 

series containing Ag nanoparticles showed considerable emission intensity 

enhancement, which is attributed to the nanoparticle surface plasmon resonance 

mediated intensified local field effect in the proximity of RE ions. Overall properties 

of each glass series are demonstrated to be modified due to the embedment of Ag 

nanoparticles. Among all the glass series produced, the stimulated emission cross-

section for 4S3/2→4I15/2 transition in erbium-doped glass system is discerned to be the 

highest.  
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ABSTRAK 

Kaca magnesium-zink-sulfofosfat (P2O5-MgO-ZnSO4) sebagai satu hos 

prospektif bagi media aktif las memerlukan pengoptimuman komposisi yang persis 

dan pencirian yang sistematik. Satu siri kaca dengan komposisi (60.0-x)P2O5-

20.0MgO-20.0ZnSO4-xRE2O3 (0.0 ≤ x≤ 2.0 mol% dan nadir bumi (RE) = Sm, Dy, 

dan Er), (59.5-y)P2O5-20.0MgO-20.0ZnSO4-0.5RE2O3-yAgCl (0.0 ≤ y≤ 0.5 mol%) 

dan (59.5-z)P2O5-20.0MgO-20.0ZnSO4-0.5Er2O3-zAgCl (0.0 ≤ z≤ 1.5 mol%) telah 

disintesis menggunakan teknik lebur-lindap kejut. Sampel telah dicirikan secara 

terperinci dengan menggunakan pembelauan sinar-x (XRD), mikroskopi elektron 

penghantaran (TEM), spektroskopi infra merah jelmaan Fourier (FTIR), spektroskopi 

serapan ultraungu-nampak (UV-Vis), spektroskopi kefotopendarcahayaan (PL) dan 

spektroskopi Raman. XRD telah menentusahkan sifat amorfus sampel dan imej TEM 

telah menunjukkan penukleusan zarah nano perak (Ag) berbentuk sfera yang teragih 

secara homogen dalam matriks kaca. Spektrum FTIR  memperlihatkan getaran ikatan 

bagi ikatan P-O, rantaian P-O-P, dan unit PO2. Tidak ada sebarang petunjuk pada 

spektrum Raman kaca P2O5-MgO-ZnSO4 berdop RE (RE = Sm, Dy dan Er) yang 

mengesahkan penggabungan ion sulfat dalam pembentukan rangkaian. Spektrum 

penyerapan kaca P2O5-MgO-ZnSO4  berdop RE (RE = Sm, Dy dan Er) dengan dan 

tanpa penggabungan zarah nano Ag berasal daripada peralihan elektronik dari aras 

asas ke pelbagai aras teruja ion RE yang berkonfigurasi elektronik 4f9.  Spektrum 

serapan dan pancaran telah digunakan untuk menilai parameter keamatan Judd-Ofelt 

(JO) dan kebarangkalian peralihan pancaran, nisbah pencabang dan keratan rentas 

pancaran teransang bagi tiga sistem kaca berdop ion RE (RE = Sm, Dy, dan Er) 

tersebut. Spektrum PL kaca berdop Samarium pada suhu bilik memperlihatkan empat 

puncak pancaran berpusat sekitar 562, 599, 644, dan 702 nm, yang terumpu kepada 

peralihan masing-masing dari 4G5/2 ke 6H5/2, 
6H7/2, 

6H9/2 dan 6H11/2. Spektrum PL bagi 

kaca berdop dysprosium mempamerkan dua puncak yang ketara berpusat sekitar 480 

nm dan 574 nm yang masing-masing berpadanan dengan peralihan 4F9/2 → 6H15/2 dan  
4F9/2 → 6H13/2 dan dua puncak yang rendah. Sebaliknya, sistem kaca berdop erbium 

telah mempamerkan dua puncak pancaran yang tinggi berpusat pada 541 nm dan 654 

nm yang terumpu masing-masing kepada peralihan 4S3/2 → 4I15/2 dan 4F9/2 → 4I15/2. 

Kesemua siri kaca yang mengandungi zarah nano Ag menunjukkan peningkatan 

keamatan pancaran yang agak banyak, yang terumpu kepada peningkatan kesan medan 

setempat berperantaraan resonans plasmon permukaan zarah nano di kehampiran ion 

RE. Sifat keseluruhan setiap siri kaca menunjukkan perubahan yang disebabkan oleh 

pembenaman zarah nano Ag. Antara semua siri kaca yang terhasil, keratan rentas 

pancaran teransang untuk peralihan 4S3/2 →4I15/2  bagi sistem kaca berdop erbium 

adalah dianggap sebagai yang tertinggi.   
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study 

The history of glass may extend back in time to the formation of the earth as 

mentioned by Porai-Koshits (1990) and Vogel (1994).  About thousands of years ago, 

the first glass prepared by man in furnaces was applied in the ancient art of pottery 

(Shelby, 2005).  The nature of the glass during those old days remained mysterious 

and unexplored until later.  Although some systematic studies on glass composition 

and their properties along with growth of new glasses occurred, glass preparation with 

sufficient homogeneity was impossible until 1800 when a new fabrication method was 

developed by Guinad and Fraunhofer.  The glass is capable to be modified both 

chemical and physical properties of the material by changing the compositions.  

Compositional modifications which are accompanied by distinct alterations in atomic-

level glass structure lead to variations in glass properties.  The ability to monitor these 

atomic-level structure changes as a function of composition may eventually lead to a 

better understanding of structure/property relationships in glasses.  

Besides, due to primitive utility of oxide glasses as decorative pottery to the 

biocompatible and laser communication technology, they have been and will be used 

as potential materials in many aspects of ordinary life (Concas et al., 1998; Farok et 

al., 1994; Wang et al., 1993; Weber, 1990).  The most important oxide glasses are 

silicate glasses (SiO2), borate glasses (B2O3), germinate glasses (GeO2) and phosphate 

glasses (P2O5).  Silicate glasses are of interest with regard to their commercial 

application structural properties and optical application.  Borate glasses are of interest 
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due to their structures.  Rare earth (RE) doped borate glasses have a very high 

refractive index.  Germanium glasses have the important property of transmission of 

longer wavelength infrared than the silicate glasses but they are limited due to the high 

cost.  Among the three known oxides of phosphates P2O3, P2O4 and P2O5; only 

P2O5 forms glasses.  The structure of binary phosphate glasses is based on tetrahedral 

units.  Phosphate glasses can be made with a range of structures from a cross-linked 

network of Q3 tetrahedra (vitreous P2O5) to polymer-like metaphosphate chains of Q3 

tetrahedra to invert glasses based on small pyro-Q1 and orthophosphate (Q0) anions, 

depending on the [O]/[P] ratio as set by glass composition (Brow, 2000).   

The properties of phosphate glasses such as relatively high thermal expansion 

coefficients, low optical dispersions and low glass transition temperatures compared 

with their silicate or borate glasses, make them technologically important material in 

spite of their hygroscopic and poor chemical durability properties (Brow, 2000; 

Moustafa and El-Egili, 1998).  However, most of the existing binary and ternary glass 

systems contain toxic elements, chemically unstable, highly reactive with water, 

display powerful devitrification tendency together with complex preparation 

conditions.  During past two decades, continuous efforts have been made to overcome 

these limitations, where sulfophosphate glasses played a vital role (Da et al., 2011; Da 

et al., 2010).  

Sulphate containing alkali/alkaline phosphate glasses are suitable for 

electrolytic applications due to their unique electrical properties (Scholz, 2011).  The 

SO4
2- ions largely dissolve in the phosphate glass matrix.  There is a weak interaction 

between SO4
2- ions and metaphosphate ions, resulting in a small dynamic 

concentration of dithiophosphate (DTP) units.  Interaction between these two ions 

provides suitable environment for incorporation of RE ions to offer high luminescence 

efficiencies with minimal non-radiative (NR) losses in these glasses.  Moreover, the 

interaction between sulphate and phosphate ions can be modified by  the presence of 

different modifier oxides.  Both disruption of the glass network and formation of non-

bridging oxygens (NBO) groups are due to the incorporation of alkali-earth oxides in 

the glass structure (Vogel, 1994).  Regard to these facts, structural modifications occur 

by incorporation of magnesium oxide (MgO) (as modifier) to the zinc sulfophosphate 
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glasses.  REs doped magnesium-zinc-sulfophosphate glasses are technologically 

prospective due to their several unique attributes.  The RE doped glasses have gained 

some attention due to high dielectric constants, a wide band infrared transmittance and 

large third order non-linear optical susceptibility (Auzel et al., 2001; Chillcce et al., 

2006; Inoue et al., 2002b; Jha et al., 2000; Kumar et al., 2003; Mori et al., 1997; 

Prakash et al., 2001; Souza et al., 2002; Tanabe et al., 2002).  

Amongst various RE ions, samarium (Sm3+) reveals most remarkable 

luminescence properties (Brahmachary et al., 2015; Carnall et al., 1968; Lin et al., 

2007; Venkatramu et al., 2007).  Sm3+ ion is well-suited to explore the energy transfer 

processes because of its lowest emitting level 4G5/2 possesses relatively higher 

quantum efficiency and shows different quenching channels.  Sm3+ ions are added to 

glass to create prominent orange-red color or unique optical properties to make lasers 

for special applications (Elisa et al., 2013; Lim et al., 2013; Thomas et al., 2013).  In 

its usual oxidized form, it is added to ceramics and glasses to increase the absorption 

of infrared light.  Sm3+ ions are also combined with many other substances under 

relatively mild conditions.  Looking at these wealthy prospects, sulfophosphate system 

with Sm3+ are prepared in order to achieve lasing glass material.  In addition, Sm3+ 

ions are exploited for high-density optical storage, under sea communication and color 

displays.   

Another lanthanide ion chosen for the present study is dysprosium (Dy3+) ion.  

Since the 6F11/2 (
6H9/2) →6H15/2 transition of Dy3+ around 1.3 μm is found to be useful 

for the optical amplification and its visible upconversion emission can be used as a 

solid state laser, this RE ion received much practical attention (Heo and Shin, 1996; 

Kityk et al., 2002; Yang et al., 2005).  Dy3+ gives very strong emission in yellow 

region, which is expected to give lasing from 4F9/2 → 6H7/2, 
4F9/2 → 6H9/2, 

4F9/2 → 6H11/2, 

4F9/2 → 6H13/2 and 4F9/2 → 6H15/2 consider as emission transitions for Dy3+ ions in the 

visible and near infrared (NIR) regions.  Among these emission transitions, 4F9/2 →

 6H13/2 (electric dipole) in yellow and 4F9/2 → 6H15/2 (magnetic dipole) in blue regions 

are the main transitions (Babu and Jayasankar, 2000). 
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Erbium (Er3+) as a RE ion has played an important role in the development of 

broadband erbium-doped fiber amplifiers (EDFA) (Auzel et al., 2001; Jha et al., 2000; 

Kumar et al., 2003; Prakash et al., 2001; Tanabe et al., 2002).  Optical properties of 

Er3+ ion in various glasses make it as a promising materials for the optical application 

for instance, it can be used as a solid-state laser due to its 1.54 𝜇m emission and it can 

be used as a solid-state laser because of its visible upconversion emission. 

RE doped glasses are applicable in various practical application such as optical 

amplifiers, optical recording, infrared sensors, laser active media and infrared-to-

visible converters (Xiao and Yang, 2007).  Earlier, the good characteristics of RE 

doped glasses such as nonlinear optical performance and optical bi-stability have been 

reported.  Besides, high RE ions solubility, good thermal and mechanical stability, low 

cutoff phonon energy, higher refractive indices than the silicates and fluoride glasses, 

large amplification bandwidth and enhanced luminescence are the remarkable 

characteristics of RE doped glasses (Liu et al., 2007; Sahar et al., 2008).  As the results 

of these notable advantages, they become promising candidates for photonic 

applications such as window materials and optical memory (Xiao and Yang, 2007).  In 

order to make devices with optimized photonic properties, usually, the RE ion 

concentration needs to be kept low to minimize luminescence quenching (Jlassi et al., 

2010; Shen et al., 2007).  Since the absorption cross-section of majority of RE ions in 

such glasses are very small, some modifications are needed to improve it for 

applications (Lin et al., 2004).  One way is to exploit energy transfer from a RE with 

a large absorption cross-section to the RE with small absorption cross-section (Lin et 

al., 2003b; Lin et al., 2004; Madden and Vu, 2009; Mirgorodsky et al., 2006; Rai and 

Rai, 2007).  RE ion environment by embedding metallic nanoparticles can be modified 

to compensate the harmful effect of quenching (Amjad et al., 2013; Eroni et al., 2009; 

Kassab et al., 2008; Kassab et al., 2009; Li et al., 2004; Lin et al., 2008; Rai and Rai, 

2007; Singh et al., 2010; Ueda et al., 2009). 

Glasses embedded with metallic nanoparticles have received much attention 

because of their notable optical properties that could lead to the development of new 

solid-state short-wavelength lasers, biological labelling and efficient solar cells 

(Švrček et al., 2004).  The luminescence intensity RE doped glasses can be enhanced 
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by embedding the semiconducting and metallic nanoparticles.  The excitation or 

luminescence wavelength is near to the surface plasmon resonance (SPR) wavelength 

for metallic nanoparticles and must be greater than optical band gap energy for 

semiconducting nanoparticles.  The preparation and characterization of RE doped 

glasses embedded with metallic nanoparticles have been studied by many researchers 

in the past few years (Almeida et al., 2008; Carmo et al., 2009; Jime´nez et al., 2010).  

Several attempts have been made to indicate that luminescence efficiency of the glass 

matrix containing RE ions can be enhanced by the presence of nanoparticles inside it 

(Carmo et al., 2009; de Almeida et al., 2008; Manoj Kumar et al., 2003; Mattarelli et 

al., 2007).  In all these studies, the large local field on the RE ions present within the 

vicinity of metallic nanoparticles and the energy transfer from metallic nanoparticles 

to the RE ions are responsible for luminescence enhancement.  In the previous reported 

studies, various nanoparticles such as Au, Ag, AgCl, CuCl, CdSe, CdTe have been 

introduced into glasses to improve the optical nonlinearity to a big extent (Amjad et 

al., 2013; Kassab et al., 2009; Lin et al., 2003b; Lin et al., 2008; Mirgorodsky et al., 

2006).   

Size-controlled optical properties of silver (Ag) nanoparticles are promising 

material for technological applications such as diffraction elements, optical filters, 

nanoplasmonic devices, bi-sensors, and nonlinear media (Nikonorov et al., 2010).  Ag 

nanoparticles can be made in various media such as water solutions, polymers, glasses, 

and crystalline media.  In addition, the inorganic glasses are the unique matrix for Ag 

nanoparticles formation.  Ag nanoparticles size within the wide range can be controlled 

by means of altering the temperature and duration of thermal processing in the 

inorganic glasses due to the wide temperature range of glass viscosity growth in these 

glasses (Nikonorov et al., 2010). In regard to this fact, controlling and exploring all 

the stages of Ag nanoparticles formation including the starting stage is possible in this 

kind of matrix (Nikonorov et al., 2010).  

Few studies have been made on metallic nanoparticles embedded RE doped 

phosphate glasses.  Silicate or tellurite are the usual host matrix that phenomenon of 

enhanced luminescence have been investigated.  Phosphate glasses are widely 

applicable in photonic applications as a consequence of their mechanical properties 
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and ability to accept higher concentration of RE ions, however, they have not received 

much attention in the field of plasmonics or nanophotonics.  Specifically, there is no 

report on metallic nanoparticles embedded inside the magnesium-zinc-sulfophosphate 

glass matrix with RE ions.  Regards to this matter, deeper study of the effect of 

nanoparticles on luminescence enhancement and energy transfer processes in the 

magnesium-zinc-sulfophosphate glass matrix is necessary. 

1.2 Problem Statement  

Since phosphate glasses also have a very high solubility for RE ions, many 

researchers have been reported the properties of phosphate glasses doped with RE ions.  

For example, the photoluminescence properties of the Dy3+-doped and Dy3+-Tm3+ co-

doped phosphate glasses have been studied by absorption, excitation and emission 

spectra (Liang et al., 2008).  The observation of white light is allowed when the glasses 

are excited by the ultraviolet light because a combination of blue and yellow emissions 

has emerged in the glasses.  Spectral properties of Nd 3+ and Dy 3+ ions in different 

phosphate glasses have been studied by Seshadri et al. (2010) and several 

spectroscopic parameters such as Judd-Ofelt intensity parameters, radiative transition 

probabilities and radiative lifetimes of certain excited states of these RE ions in these 

glass matrices have been reported.  Other researchers (Kesavulu and Jayasankar, 2012; 

Lim et al., 2013; Rao et al., 2011; Reddy et al., 2011; Sreedhar et al., 2013) 

investigated the effects of RE ions on luminescence properties of the glasses.  

Although a large number of studies has been done on luminescence and structural 

properties of RE doped phosphate glasses, the luminescence and structural features of 

RE3+ (RE = Sm, Dy and Er) doped magnesium-zinc-sulfophosphate glasses are rarely 

investigated.   

Moreover, emission characteristics of RE ions are enhanced by the presence of 

the metal.  The preparation and characterization of RE doped glasses embedded with 

metallic nanoparticles have been studied by many researchers in the past few years 

(Carmo et al., 2009; de Almeida et al., 2008).  For instance, Naranjo et al. (2005) 

reported down conversion luminescence enhancement for Pr3+-doped lead-germanate 
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glass containing silver nanoparticles.  But, the influence of embedded silver 

nanoparticles on optical and structural features of RE3+ (RE = Sm, Dy and Er) doped 

magnesium-zinc-sulfophosphate glasses has not been studied yet. 

1.3 Research Objectives 

In line with the aim of the research, the followings are the research objectives: 

i. To determine the structural and physical features of RE3+ (RE = Sm, Dy 

and Er) doped magnesium-zinc-sulfophosphate glass with and without 

incorporation of Ag nanoparticles 

ii. To determine the influence of RE3+ (RE = Sm, Dy and Er) concentration 

on the optical properties of magnesium-zinc-sulfophosphate glass with and 

without Ag inclusion 

iii. To analyse the Judd-Ofelt analysis for magnesium-zinc-sulfophosphate in 

the presence of various concentration of RE3+ (RE = Sm, Dy and Er) and 

Ag nanoparticles 

1.4 Significance of Research 

The importance of the study is to obtain high efficiency of luminescence in 

glasses.  The significant of research are as follows: 

i. To demonstrate the influence of the RE3+ (RE = Sm, Dy and Er) on the 

structural and optical properties of magnesium-zinc-sulfophosphate 

glasses.  Therefore, the outcomes of the study contribute better 

understanding towards the behaviour of the RE3+ (RE = Sm, Dy and Er) on 

the luminescence enhancement since these glasses are applicable in many 

optical devices due to their potential applications.  
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ii. To study the effects of the Ag nanoparticles on the optical properties of 

RE3+ (RE = Sm, Dy and Er) doped magnesium-zinc-sulfophosphate 

glasses.  Consequently, it provides promising materials with enhanced 

optical properties for photonic devices, such as, sensors, solid state lasers, 

and optical switches. 

1.5 Scope of the Study 

In this study, RE3+ (RE = Sm, Dy and Er) doped and undoped magnesium-zinc-

sulfophosphate glass as well as RE doped magnesium-zinc-sulfophosphate glass 

containing Ag nanoparticles were prepared.  Investigation of structural and optical 

properties were the main purposes of the study.  The structural properties can be 

determined by X-Ray diffraction (XRD) spectroscopy, Fourier Transformed Infrared 

(FTIR), and Raman spectroscopy.  Ultraviolet-Visible-Near Infrared (UV-Vis-NIR) 

and photoluminescence (PL) spectroscopy were operated to describe the optical 

properties.  In order to observe the small structure of nanoparticles embedded in 

samples, the Transmission Electron Microscope (TEM) was utilized.    

1.6 Outline of Thesis  

This thesis is composed of six chapters and three appendices.  The summaries 

of the chapters are as follows:  

Chapter 1 presents the background of the study, statement of the problems, 

research objectives, scope of the study and brief review on characterization tools.    

Chapter 2 explains briefly about Judd-Ofelt theory.  Furthermore, literature are 

invoked to describe the sulfophosphate glass.    
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Chapter 3 explains the experimental procedure to synthesize the studied sample 

glass.  In addition, instruments and their fundamental concepts which have been 

operated to characterize the sample glass are also introduced.    

Chapter 4 describes the effect of RE3+ (RE = Sm, Dy and Er) ions on structural 

and optical properties of magnesium-zinc-sulfophosphate glass.    

Chapter 5 presents general descriptions of the influence of the nanoparticles on 

structural and optical properties of RE3+ (RE = Sm, Dy and Er) doped magnesium-

zinc-sulfophosphate glass.  In this chapter, new RE3+ (RE = Sm, Dy and Er) doped 

glasses containing metallic Ag nanoparticles were prepared using melt quenching 

technique.  They were characterized to investigate the structural and optical properties. 

Chapter 6 gives the conclusion of the research and some recommendations for 

future works.    
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