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ABSTRACT 

 Network densification is considered as the leading approach to meet the 

expectations of high data rates, sub 1ms latency, negligible packet loss rates, flexible 

deployment and other key network and user performance attributes however, several 

obstacles such as interference management, mobility management, back haul 

implementations, etc. exists that prevent a full commercial rollout. One of these 

hurdles includes the significant increase in number of handovers for mobile users due 

the ultra-dense deployment strategy of eNBs. In this work, we attempt to tackle this 

problem by developing a novel Cell Coverage Aware (CCA) strategy which 

augments the conventional strongest cell approach by factoring Target cell coverage 

size. Network performance attributes such as throughput, end to end delay, jitter and 

packet loss ratio for video streaming, VOIP and web browsing applications were 

monitored since they directly impact user QoE. Simulations were performed using 

NS3 discrete event simulator. In order to validate to performance of our approach, 

we perform a comparative analysis of our algorithm and the traditional approach 

under various traffic types. Results show that a handover saving of 33.3% can be 

achieved with CCA for considered topology at the cost of a marginal reduction 

network performance. 
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ABSTRAK 

Penguatkuasaan rangkaian dianggap sebagai pendekatan utama untuk 

memenuhi jangkaan kadar data yang tinggi, latensi sub 1ms, kadar kehilangan paket 

yang tidak dapat dielakkan, penggunaan fleksibel dan rangkaian kunci dan prestasi 

pengguna lain tetapi beberapa halangan seperti pengurusan gangguan, pengurusan 

mobiliti, jarak belakang pelaksanaan, dsb. wujud yang menghalang pelan komersil 

sepenuhnya. Salah satu halangan ini termasuk peningkatan jumlah bilangan 

penyumbang bagi pengguna mudah alih disebabkan oleh strategi penggunaan ultra-

padat eNBs. Dalam usaha ini, kami cuba menangani masalah ini dengan membangun 

strategi baru Cope Cover Aware (CCA) yang menambah pendekatan sel terkuat 

konvensional dengan memfaktikkan saiz liputan sel Sasaran. Ciri-ciri prestasi 

rangkaian seperti penghantaran, kelewatan akhir, rugi dan nisbah paket untuk 

penstriman video, VOIP dan aplikasi penyemak imbas web dipantau kerana mereka 

memberi kesan langsung kepada pengguna QoE. Simulasi dilakukan menggunakan 

simulator peristiwa diskret NS3. Untuk mengesahkan prestasi pendekatan kami, kami 

melakukan analisis perbandingan algoritma kami dan pendekatan tradisional di 

bawah pelbagai jenis trafik. Keputusan menunjukkan bahawa penyerahan 33.3% 

boleh dicapai dengan CCA untuk dianggap topologi pada kos prestasi rangkaian 

pengurangan kecil. 
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CHAPTER 1 

INTRODUCTION 

1.1       Introduction 

The projected burst of data traffic by a factor of 1000 coupled with a 10-fold 

increase in number of connected devices (up to 50 billion) from current levels and 

sub millisecond latency by the year 2020 has been extensively documented [1]. 

These network performance demands are needed to realize a diverse range of 

applications such as remote surgery, machine to machine communication, etc. and 

cannot be implemented with state of the art 4G technologies (3GPP LTE-A).  In 

retrospect, the evolution of 4G technology from LTE (3GPP release 8) to LTE-A 

(3GPP release 10) was massively supported by cell size reduction [2].  Since LTE 

employed macro base stations in a homogeneous network topology, spectral 

efficiency and hence, network capacity quickly approached its theoretical limits. The 

introduction of low powered small cells such as femtocells, picocells, micro cells and 

relay stations allowed for a substantial extension of these performance boundaries 

[3].  The deployment of small cells overlaid with a high-power macro base station is 

known as a heterogeneous network topology. Table 1.1 below shows the types of 

cells available within a heterogeneous network [4] 

 

 

 

 

 



2 

 

Table 1.1: Base station types [4] 

 

The improvement in network performance by the employment of small cells 

is leveraged by the Shannon capacity theorem. An increase in the number of base 

stations will lead to a proportionate increase in network capacity. Moreover, since 

base stations are now closer to UE, the effect of path loss is reduced hence, 

improving SNR, data rates and latency [5]. This means that increasing the number of 

cells (network densification) promises even greater performance. This is the principle 

behind the invention of Ultra Dense Networks (UDN). 

Ultra-dense deployment of heterogeneous cells is expected to satisfy 

projected data traffic demands in future cellular networks together with other 

enabling technologies such as Multiple Input Multiple Output (MIMO) antennas and 

millimeter wave (mm wave) communications [6]. Ultra-Dense Networks (UDN) will 

support easy and unsupervised dense deployment of heterogeneous small cells 

varying in power, capacity and coverage as seen in figure 1 below [7]. 

 

Figure 1.1   An Ultra-Dense network [7] 

Cell 

Type 

Output 

Power (W) 

Cell 

radius 

(km) 

Users Locations 

Femto 

cell 
0.001 -0.25 

0.001 -

0.1 
1 - 30 

Indoor 

Pico 

cell 
0.25 - 1 0.1 - 0.2 30 - 100 

Both 

Micro 

cell 
1 - 10 0.2 - 2.0 100 - 2000 

Both 

Macro 

cell 
8 to >50 8 - 30 >2000 

outdoor 
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UDN is not only expected to improve network capacity, but also bolster 

network coverage. Small cells are used primarily in the data plane while macro cells 

may be used in both control and data planes and control plane only depending on the 

architecture. Key differences between UDN and traditional cellular networks are 

outlined in Table 1.2 below [8]: 

Table 1.2: Comparison between UDN and traditional networks [8] 

ITEM UDN Traditional Cellular Network 

Deployment 

scenarios 

Indoor, Outdoor Hotspot Wide coverage 

AP density More than 1000/km2 3-5/km2 

AP coverage Approximately 10m Hundreds of meters and more 

AP types Pico, femto, UE relay, Relay Macro/Micro BS 

AP backhaul Ideal/non-ideal, 

wired/wireless 

Ideal wired 

User density High Low/medium 

User mobility Low mobility High mobility 

Traffic density High Low/medium 

Deployment Heterogeneous/Irregular Single layer, regular cell 

System 

bandwidth 

Hundreds of MHz Tens of MHz 

Spectrum > 3GHz (up to mm Wave) <3GHz 
 

UDN does not come without its complications; these include-and are not 

limited to- network architecture, backhaul implementation, interference management 

and mobility management [8].  Of these myriad of challenges, mobility management 

poses a unique problem since cell reselection or handover (HO) frequency 

dramatically increases due to increased number of cells with relatively smaller 

coverage areas compared to macro cells in legacy networks. Studies have shown that 

throughput as well as other Quality of Service (QOS) parameters of UE deteriorates 

substantially during HO [9]. Moreover, control signaling overhead increases 

substantially thereby, increasing the risk of Handover Failure (HoF) [6]. This implies 

that the probability of HoF increases in UDN due to increased HO frequency. 

Moreover, it is likely-by virtue of Evolved Node B (eNB) density- that a UE can be 

in the coverage area of several eNBs at the same time with some or even all 

neighboring eNBs seemingly eligible candidates for handover based on traditional 
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HO discriminator engines which rely on a single parameter such as Received Signal 

Strength (RSS), Data rates, etc. This means that traditional HO decision techniques 

cannot be used in UDN; thus, an optimized approach which considers relevant 

network and QOS criteria for HO is mandatory for choosing the best candidate cell 

keeping in mind the cumulative effect of each decision on network performance and 

Perceived Quality of Service (PQoS).  

1.2       Research objective 

The aim of the research is to develop a robust handover decision making 

algorithm that minimizes handover failure rate in UDN HetNET while maintaining 

user quality of experience (QoE). In order to achieve this aim, the following 

objectives are outlined: 

1. To integrate cell coverage data into legacy handover decision algorithms in 

order to minimize handover rate in UDN HetNET 

2. To test and validate approach via simulation 

3. To perform a comparative performance analysis between proposed algorithm 

and conventional algorithm in order to contextualize obtained results. 

1.3       Scope of work 

This work focuses on the mobility management problem in UDN HetNets 

with the purpose of developing, testing and analyzing the performance of an 

optimized handover algorithm. In this regard, the following assumptions are made 

1. No interference mitigation/management scheme (e.g. eICIC or COMP) 

implemented for brevity. Although this may have some effect in the obtained 

results, we can safely model this effect as a linear function of the output such 

that a linear correlation exists between results of current work and future 

implementations in which interference management is considered. 
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2. All backhaul P2P connections in EPC use fiber links as opposed to mm Wave 

technology projected to be the primary backhaul traffic carrier in UDN.  

3. For brevity, we only study the network behavior and performance in 

downlink data plane. Uplink performance will contribute to our future 

studies. 

1.4       Thesis structure 

Chapter 2 will introduce the necessary technological background in order to 

understand the study of this thesis. Subsequently, chapter 3 will discuss previous 

related work done and review literature accordingly. The proposed solution, 

implementation and testing methodology will be given in chapter 4. The results and 

findings will be presented in chapter 5 along with performance analysis. Final review 

of the thesis and proposals for future work will be outlined in chapter 6. 
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